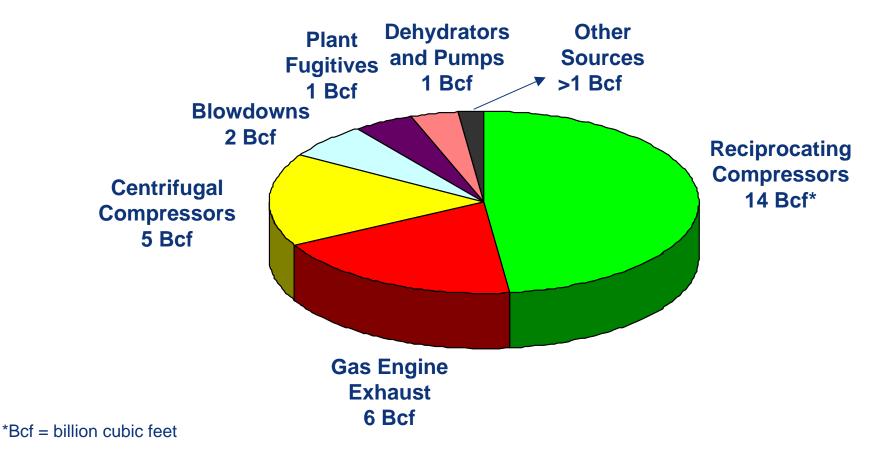
Methane Savings from Compressors

Lessons Learned from the Natural Gas STAR Program

DCP Midstream and the Gas Processors Association

Processors Technology Transfer Workshop Houston, Texas April 24, 2007

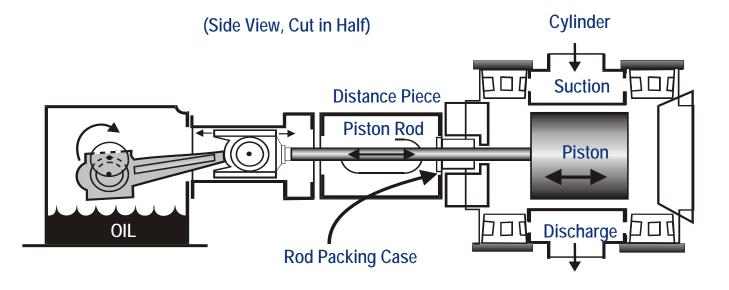
epa.gov/gasstar



Compressors: Agenda

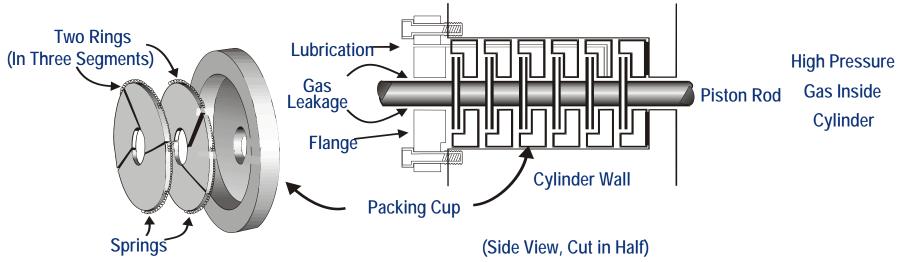
- Methane Losses from Reciprocating Compressors
 - Methane Savings through Economic Rod Packing Replacement
 - Is Rod Packing Replacement Profitable?
 - Industry Experience Occidental
- Methane Losses from Centrifugal Compressors
 - Methane Savings through Dry Seals
 - Is Wet Seal Replacement Profitable?
 - Industry Experience PEMEX
 - Finding More Opportunities
- Discussion

Methane Emissions from Natural Gas Processing Sector (2005)



EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2005.* April, 2007. Available on the web at: http://yosemite.epa.gov/oar/globalwarming.nsf/content/ResourceCenterPublicationsGHGEmissions.html Natural Gas STAR reductions data shown as published in the inventory.

Methane Losses from Reciprocating Compressors


- A Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 60 cubic feet per hour (cf/hour)
 - Worn packing has been reported to leak up to 900 cf/hour

Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket, between packing cups, around the rings, and between rings and shaft

Methane Losses from Rod Packing

king
king
king

Leakage from Rod Packing on Running Compressors				
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon
Leak Rate (cf/hour)	70	63	150	24

Leakage from Rod Packing on Idle/Pressurized Compressors				
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon
Leak Rate (cf/hour)	70	N/A	147	22

PRCI/ GRI/ EPA. Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations

Methane Savings Through Economic Rod Packing Replacement

Assess costs of replacements

\$	A set of rings:	\$ 675	to	\$ 1,100
	(with cups and case)	\$ 2,100	to	\$ 3,400
6	Rods:	\$ 2,500	to	\$13,500

- Special coatings such as ceramic, tungsten carbide, or chromium can increase rod costs
- Determine economic replacement threshold
 - Partners can determine economic threshold for all replacements

Where:

CR = Cost of replacement (\$)

DF = Discount factor (%) at interest i

H = Hours of compressor operation per year

GP = Gas price (\$/thousand cubic feet)

$$\frac{CR*DF*1,000}{(H*GP)}$$

$$DF = \frac{i(1+i)^n}{(1+i)^n - 1}$$

Is Rod Packing Replacement Profitable?

- Measure initial leakage rate
 - i.e. leakage expected with new rings
- A Periodically measure leakage increase

Rings Only			
Rings: \$	\$1,620		
Rod: \$	0		
Gas: \$	\$7/Mcf		
Operating: 8,000 hours/year			
Leak Reduction			
Expected	Payback		
(cf/hour)	(year)		
32	1		
17	2		
12	3		
9	4		

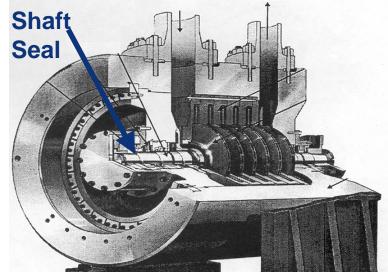
Rod and Rings			
Rings:	\$1,620		
Rod:	\$9,450		
Gas:	\$7/Mcf		
Operating:	8,000 hours/year		

Leak Reduction	
Expected	Payback
(cf/hour)	(year)
217	1
114	2
79	3
62	4

Based on 10% interest rate Mcf = thousand cubic feet

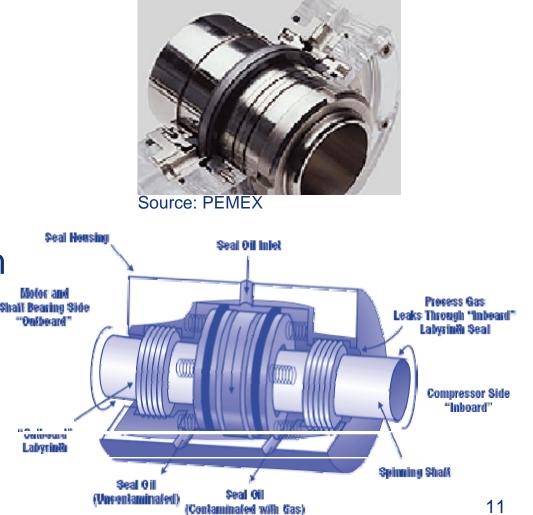
Industry Experience – Occidental

- Occidental upgraded compressor rod packing at its Elk Hills facility in southern California
- Achieved reductions of 400 Mcf/day/compressor
- Saving 145 MMcf/year
- A Payback in under 3 years

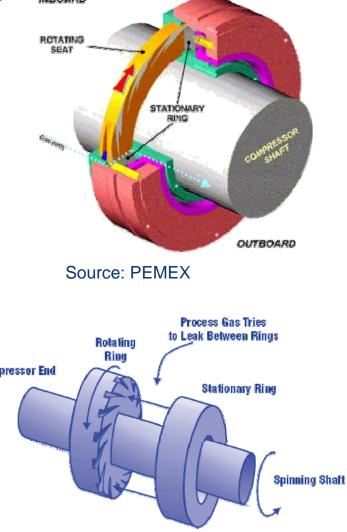


Source: Occidental

Methane Losses from Centrifugal Compressors

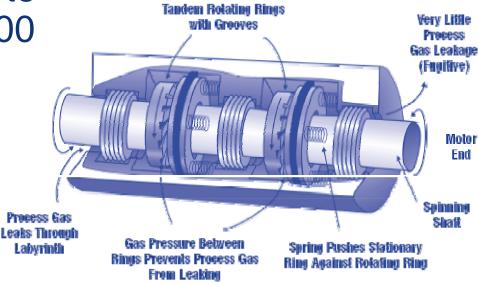

- Centrifugal compressor wet seals leak little gas at the seal face
 - Seal oil degassing may vent 40 to 200 cubic feet per minute (cf/minute) to the atmosphere
 - A Natural Gas STAR Partner reported wet seal emissions of 75 Mcf/day (52 cf/minute)

Centrifugal Compressor Wet Seals


- High pressure seal oil circulates between rings around the compressor shaft
- Oil absorbs the gas on the inboard side
- Little gas leaks through the oil seal
- Seal oil degassing vents methane to the atmosphere

Natural Gas STAR Partners Reduce Emissions with Dry Seals

- Ory seal springs press the stationary ring in the seal housing against the rotating ring when the compressor is not rotating
- Sealing at high rotation speed pump gas between the seal rings creating a high pressure barrier to leakage
- Only a very small volume of gas escapes through the gap
- Two seals are often used in tandem Compressor End
- Can operate for compressors up to 3,000 pounds per square inch gauge (psig) safely



Methane Savings through Dry Seals

- In the search of the search
 - Significantly less than the 40 to 200 cf/minute emissions from wet seals
- Gas savings translate to approximately \$112,000 to \$651,000 at \$7/Mcf

Source: PEMEX

Economics of Replacing Seals

Compare costs and savings for a 6-inch shaft beam compressor

Cost Category	Dry Seal (\$)	Wet Seal (\$)
Implementation Costs ¹		
Seal costs (2 dry @ \$13,500/shaft-inch, with testing)	\$162,000	
Seal costs (2 wet @ \$6,750/shaft-inch)		\$81,000
Other costs (engineering, equipment installation)	\$162,000	\$0
Total implementation costs	\$324,000	\$81,000
Annual Operating and Maintenance	\$14,100	\$102,400
Annual Methane Emissions (@ \$7/Mcf; 8,000 hours/year)		
2 dry seals at a total of 6 cf/minute	\$20,160	
2 wet seals at a total of 100 cf/minute		\$336,000
Total Costs Over 5-Year Period	\$495,300	\$2,273,000
Total Dry Seal Savings Over 5 Years		
Savings	\$1,777,700	
Methane Emissions Reductions (Mcf; at 45,120 Mcf/year)	225,600	

¹ Flowserve Corporation (updated costs and savings)

Is Wet Seal Replacement Profitable?

- Replacing wet seals in a 6 inch shaft beam compressor operating 8,000 hours/year
 - Net present value = \$1,337,769
 - Assuming a 10% discount over 5 years
 - Internal rate of return = 129%
 - A Payback period = 10 months
 - A Ranges from 3 to 11 months based on wet seal leakage rates between 40 and 200 cf/minute
- Economics are better for new installations
 - Vendors report that 90% of compressors sold to the natural gas industry are centrifugal with dry seals

Industry Experience – PEMEX

- PEMEX had 46 compressors with wet seals at its PGPB production site
- Converted all to dry seals
 - Cost \$444,000/compressor
 - Saves 20,500 Mcf/compressor/year
 - Saves \$126,690/compressor/year in gas
- 3.5 year payback from gas savings alone

Source: PEMEX

Finding More Opportunities

- A Partners are identifying other technologies and practices to reduce emissions
 - BP-Indonesia degasses wet seal oil to fuel gas pressure, capturing emissions as fuel
 - Reduces expensive implementation costs of replacing with dry seals
 - TransCanada is researching the use of an ejector to recover dry seal leakage
 - Compressor discharge to suction
 - Application to TransCanada compressors would save 538 MMcf/year
 - Negligible operating costs

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies an practices
- Actual costs and benefits
- Leased compressors
 - Control over rod packing type and maintenance?