

Directed Inspection and Maintenance and Infrared Leak Detection

Lessons Learned from the Natural Gas STAR Program

Chevron Corporation, New Mexico Oil and Gas Association, Texas Oil and Gas Association

Producers and Processors Technology Transfer
Workshop
Midland, Texas
July 23, 2008

epa.gov/gasstar

Directed Inspection and Maintenance and Infrared Leak Detection Agenda

- Methane Losses
 - What are the sources of emissions?
 - Mow much methane is emitted?
- Methane Recovery
 - Directed Inspection and Maintenance (DI&M)
 - Olam by Infrared Leak Detection
- Is Recovery Profitable?
- Partner Experience
- Discussion

What is the Problem?

Methane gas leaks are invisible, unregulated, and go unnoticed

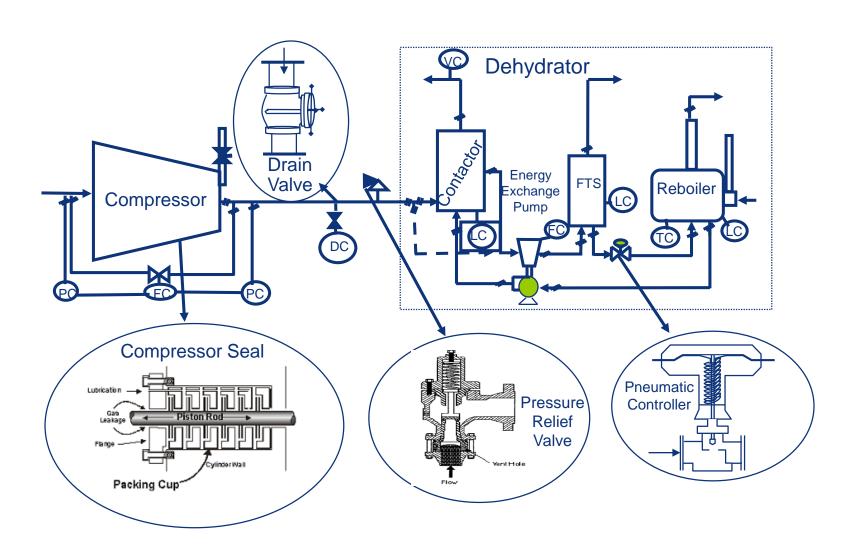
- Natural Gas STAR Partners find that valves, connectors, compressor seals, and open-ended lines (OELs) are major methane fugitive emission sources
 - In 2006, 3.59 Bcf of methane was emitted as fugitives by reciprocating compressor related components alone
 - Production and processing fugitive methane emissions depend on operating practices, equipment age, and maintenance

Methane Losses - Production

- Over 412,000 producing gas wells nationally
- Fugitive emissions from gas production and gathering/boosting facilities are estimated to be 19 billion cubic feet per year (Bcf/year)
 - Estimated 46 thousand cubic feet emissions (Mcf) per wellyear
 - Worth \$322/well-yr

Source: Anadarko (Formerly Western Gas Resources)

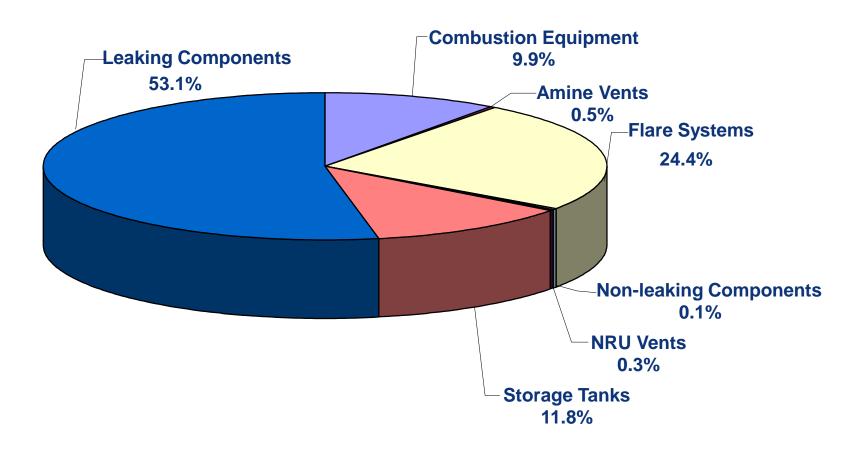
Methane Losses - Processing


- 571 natural gas processing plants nationally
 - Operating nearly 5,000 compressors
- Fugitive emissions from gas processing facilities are estimated to be 23 billion cubic feet per year (Bcf/year)
 - Estimated 40 million cubic feet emissions (MMcf) per plant-year
 - Worth over \$280,000/plant-yr

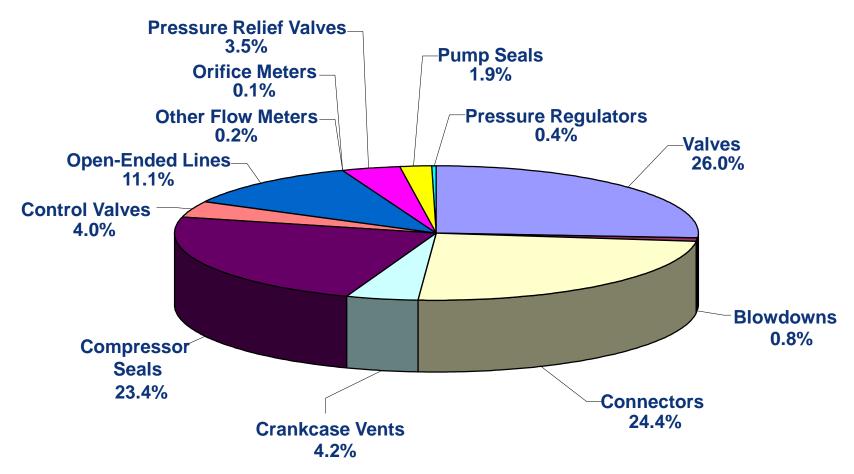
Source: Chevron/Unocal

Sources of Methane Emissions

What are the losses? - Clearstone


- Clearstone studied 4 gas processing plants
 - Screened for all leaks
 - Measured larger leak rates
 - Analyzed data
- Principles are relevant to all sectors
 - Fugitive leaks from valves, connectors, compressor seals, and lines still a problem in production
 - Solution is the same

Source: Hy-bon Engineering


Distribution of Losses by Source Category

Source: Clearstone Engineering, 2002

Distribution of Losses from Equipment Leaks by Type of Component

Source: Clearstone Engineering, 2002

How Much Methane is Emitted?

Methane Emissions from Leaking Components at Gas Processing Plants Estimated Average % of Total % Leak **Methane Emissions per Component Type** Methane **Leaking Component** Sources **Emissions** (Mcf/year) Valves (Block & Control) 26.0% 7.4% 66 24.4% 1.2% Connectors 80 Compressor Seals 23.4% 81.1% 372 Open-ended Lines 11.1% 10.0% 186 Pressure Relief Valves 3.5% 2.9% 844

Source: Clearstone Engineering, 2002, *Identification and Evaluation of Opportunities to Reduce Methane Losses at Four Gas Processing Plants*. Report of results from field study of four gas processing plants in Wyoming and Texas to evaluate opportunities to economically reduce methane emissions.

How Much Methane is Emitted?

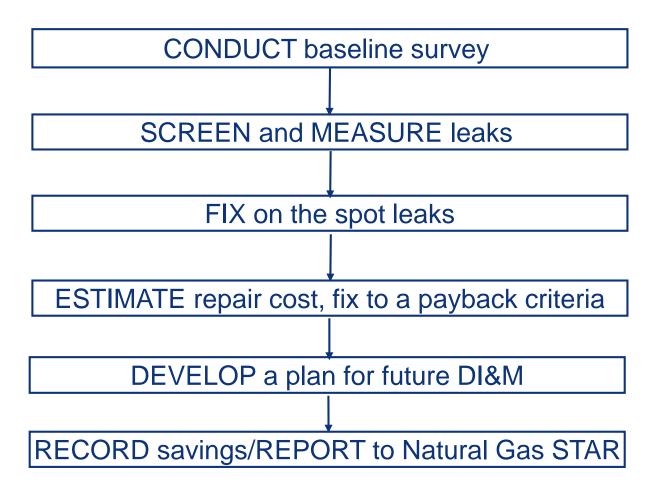
Summary of Natural Gas Losses from the Top Ten Leak Sources ¹							
Plant Number	Gas Losses From Top 10 Leak Sources (Mcf/day) ²	Gas Losses From All Leak Sources (Mcf/day)	Contribution By Top 10 Leak Sources (%)	Contribution By Total Leak Sources (%)			
1	43.8	122.5	35.7	1.78			
2	133.4	206.5	64.6	2.32			
3	224.1	352.5	63.6	1.66			
4	76.5	211.3	36.2	1.75			
Combined	477.8	892.8	53.5	1.85			

^{1 –} Excluding leakage into flare system

^{2 –} Approximately 10,000 components surveyed per plant

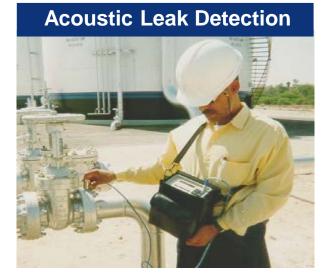
Methane Recovery

- Fugitive losses can be dramatically reduced by implementing a directed inspection and maintenance program
 - Voluntary program to identify and fix leaks that are costeffective to repair
 - Survey cost will pay out in the first year
 - Provides valuable data on leak sources with information on where to look "next time"


What is Directed Inspection and Maintenance?

- Directed Inspection and Maintenance (DI&M)
 - Cost-effective practice, by definition
 - Find and fix significant leaks
 - Choice of leak detection technologies
 - Strictly tailored to company's needs
- O DI&M is NOT the regulated volatile organic compound leak detection and repair (VOC LDAR) program

Source: Targa Resources



- Screening find the leaks
 - Soap bubble screening
 - Electronic screening ("sniffer")
 - Toxic vapor analyzer (TVA)
 - Organic vapor analyzer (OVA)
 - Ultrasound leak detection
 - Acoustic leak detection
 - Infrared leak detection

- Evaluate the leaks detected measure results
 - High volume sampler
 - Toxic vapor analyzer (correlation factors)
 - Notameters
 - Calibrated bagging

Leak Measurement Using High Volume Sampler

Summary of Screening and Measurement Techniques					
Instrument/ Technique	Effectiveness	Approximate Capital Cost			
Soap Solution	**	\$			
Electronic Gas Detector	*	\$\$			
Acoustic Detector/ Ultrasound Detector	**	\$\$\$			
TVA (Flame Ionization Detector)	*	\$\$\$			
Calibrated Bagging	*	\$\$			
High Volume Sampler	***	\$\$\$			
Rotameter	**	\$\$			
Infrared Leak Detection	***	\$\$\$			
Source: EPA's Lessons Learned					

^{* -} Least effective at screening/measurement

^{\$ -} Smallest capital cost

^{*** -} Most effective at screening/measurement

^{\$\$\$ -} Largest capital cost

Estimating Comprehensive Survey Cost

- Cost of complete screening survey using high volume sampler (processing plant)
 - Ranges \$15,000 to \$20,000 per medium size plant
 - Nule of Thumb: \$1 per component for an average processing plant
 - Cost per component for remote production sites would be higher than \$1
- 4 25 to 40% cost reduction for follow-up survey
 - Focus on higher probability leak sources (e.g. compressors)

DI&M by Infrared Leak Detection

- Real-time detection of methane leaks
 - Quicker identification & repair of leaks
 - Screen hundreds of components an hour
 - Screen inaccessible areas simply by viewing them

Source: Leak Surveys Inc.

Source: Heath Consultants

Infrared Methane Leak Detection

Video recording of fugitive leaks detected by various infrared devices

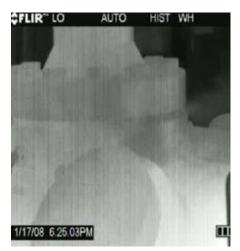
Is Recovery Profitable?

Repair the Cost-Effective Components						
Component	Value of lost gas ¹ (\$)	Estimated repair cost (\$)	Payback (months)			
Plug Valve: Valve Body	29,498	200	0.1			
Union: Fuel Gas Line	28,364	100	0.1			
Threaded Connection	24,374	10	0.0			
Distance Piece: Rod Packing	17,850	2,000	1.4			
Open-Ended Line	16,240	60	0.1			
Compressor Seals	13,496	2,000	1.8			
Gate Valve	11,032	60	0.1			
Source: Hydrocarbon Processing, May 2002 1 – Based on \$7/Mcf gas price						

1 – Based on \$7/Mct gas price

DI&M - Lessons Learned

- A successful, cost-effective DI&M program requires measurement of the leaks
- A high volume sampler is an effective tool for quantifying leaks and identifying cost-effective repairs
- ♦ Open-ended lines, compressor seals, blowdown valves, engine-starters, and pressure relief valves represent <3% of components but >60% of methane emissions
- The business of leak detection has changed dramatically with new technology



Source: Chevron

Partner Experience - EnCana

- O DI&M implemented as part of EnCana's energy efficiency initiative in all US production and midstream facilities in 2007
- Surveyed components in 1,860 production sites and 35 compressor stations using FLIR camera and Hi Flow Sampler
- Identified leaking rates as high as 17 Mcf/day/station
- Annual methane emissions reduction of 358,000 Mcf/year
- Annual savings: \$2,506,000/year (at \$7/Mcf)

Source: EnCana

Partner Experience - Targa Resources (formerly Dynegy)

- Surveyed components in two processing plants: 23,169 components
- Identified leaking components: 857 about 3.6%
- Repaired components: 80 to 90% of the identified leaking components
- Annual methane emissions reductions: 198,000 Mcf/year
- Annual savings: \$1,386,000/year (at \$7/Mcf)

Source: Targa Resources

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits