Directed Inspection and Maintenance and Infrared Leak Detection

Lessons Learned from the Natural Gas STAR Program

Shell Exploration & Production Company, Chevron Corporation, Offshore Operations Committee, and Gulf Coast Environmental Affairs Group

Offshore Technology Transfer Workshop
New Orleans, Louisiana
May 6, 2008

epa.gov/gasstar

Directed Inspection and Maintenance and Infrared Leak Detection Agenda

- Methane Losses
 - What are the sources of emissions?
 - How much methane is emitted?
- Methane Recovery
 - Directed Inspection and Maintenance (DI&M)
 - DI&M by Infrared Leak Detection
- Is Recovery Profitable?
- Discussion
Methane Losses

- Over 3,900 offshore facilities nationally
- Emissions from offshore production facilities are estimated to be 34 billion cubic feet per year (Bcf/year)

Source: Spring 2004 Partner Update

What is the Problem?

- Methane gas leaks are invisible, unregulated, and go unnoticed
- Natural Gas STAR Partners find that valves, connectors, compressor seals, and open-ended lines (OELs) are major methane emission sources
 - In 2005, 25.5 Bcf of methane was emitted as fugitives by compressor related components in the production and processing sectors
 - Production fugitive methane emissions depend on operating practices, equipment age, and maintenance
Sources of Methane Emissions

What are the losses? – GOADS and Clearstone

- GOADS 2000 quantified leaks from offshore components
- Clearstone studied 4 gas processing plants
 - Screened for all leaks
 - Measured larger leak rates
 - Analyzed data
- Principles are relevant to all sectors
 - Fugitive leaks from valves, connectors, compressor seals, and lines still a problem in production
 - Solution is the same
Distribution of Losses by Source Category

- Vents: 45.4%
- Fugitives: 19.7%
- Gas Engine Exhaust: 16.6%
- Flashing: 10.8%
- Glycol: 2.6%
- Pneumatic Pumps: 2.2%
- Storage Losses: 1.1%
- Pneumatic Controllers: 1.6%

Source: MMS GOADS 2000

Distribution of Losses from Equipment Leaks by Type of Component

- Valves: 26.0%
- Crankcase Vents: 4.2%
- Connectors: 24.4%
- Blowdowns: 0.8%
- Pressure Regulators: 0.4%
- Other Flow Meters: 0.2%
- Orifice Meters: 0.1%
- Pressure Relief Valves: 3.5%
- Pump Seals: 1.9%
- Control Valves: 4.0%
- Open-Ended Lines: 11.1%
- Compressor Seals: 23.4%

Source: Clearstone Engineering, 2002
How Much Methane is Emitted?

Methane Emissions from Leaking Components at Gas Processing Plants

<table>
<thead>
<tr>
<th>Component Type</th>
<th>% of Total Methane Emissions</th>
<th>% Leak Sources</th>
<th>Estimated Average Methane Emissions per Leaking Component (Mcf/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valves (Block & Control)</td>
<td>26.0%</td>
<td>7.4%</td>
<td>66</td>
</tr>
<tr>
<td>Connectors</td>
<td>24.4%</td>
<td>1.2%</td>
<td>80</td>
</tr>
<tr>
<td>Compressor Seals</td>
<td>23.4%</td>
<td>81.1%</td>
<td>372</td>
</tr>
<tr>
<td>Open-ended Lines</td>
<td>11.1%</td>
<td>10.0%</td>
<td>186</td>
</tr>
<tr>
<td>Pressure Relief Valves</td>
<td>3.5%</td>
<td>2.9%</td>
<td>844</td>
</tr>
</tbody>
</table>

Mcf = Thousand cubic feet

How Much Methane is Emitted?

Summary of Natural Gas Losses from the Top Ten Leak Sources

<table>
<thead>
<tr>
<th>Plant Number</th>
<th>Gas Losses From Top 10 Leak Sources (Mcf/day)</th>
<th>Gas Losses From All Leak Sources (Mcf/day)</th>
<th>Contribution By Top 10 Leak Sources (%)</th>
<th>Contribution By Total Leak Sources (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43.8</td>
<td>122.5</td>
<td>35.7</td>
<td>1.78</td>
</tr>
<tr>
<td>2</td>
<td>133.4</td>
<td>206.5</td>
<td>64.6</td>
<td>2.32</td>
</tr>
<tr>
<td>3</td>
<td>224.1</td>
<td>352.5</td>
<td>63.6</td>
<td>1.66</td>
</tr>
<tr>
<td>4</td>
<td>76.5</td>
<td>211.3</td>
<td>36.2</td>
<td>1.75</td>
</tr>
<tr>
<td>Combined</td>
<td>477.8</td>
<td>892.8</td>
<td>53.5</td>
<td>1.85</td>
</tr>
</tbody>
</table>

1 = Excluding leakage into flare system
Methane Recovery

- Fugitive losses can be dramatically reduced by implementing a directed inspection and maintenance program
 - Voluntary program to identify and fix leaks that are cost-effective to repair
 - Survey cost will pay out in the first year
 - Provides valuable data on leak sources with information on where to look “next time”

What is Directed Inspection and Maintenance?

- Directed Inspection and Maintenance (DI&M)
 - Cost-effective practice, by definition
 - Find and fix significant leaks
 - Choice of leak detection technologies
 - Strictly tailored to company’s needs
- DI&M is NOT the regulated volatile organic compound leak detection and repair (VOC LDAR) program

Source: Targa Resources
How Do You Implement DI&M?

- CONDUCT baseline survey
- SCREEN and MEASURE leaks
- FIX on the spot leaks
- ESTIMATE repair cost, fix to a payback criteria
- DEVELOP a plan for future DI&M
- RECORD savings/REPORT to Natural Gas STAR

How Do You Implement DI&M?

- Screening - find the leaks
 - Soap bubble screening
 - Electronic screening ("sniffer")
 - Toxic vapor analyzer (TVA)
 - Organic vapor analyzer (OVA)
 - Ultrasound leak detection
 - Acoustic leak detection
 - Infrared leak detection
How Do You Implement DI&M?

- Evaluate the leaks detected - measure results
 - High volume sampler
 - Toxic vapor analyzer (correlation factors)
 - Rotameters
 - Calibrated bagging

Summary of Screening and Measurement Techniques

<table>
<thead>
<tr>
<th>Instrument/ Technique</th>
<th>Effectiveness</th>
<th>Approximate Capital Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soap Solution</td>
<td>★★</td>
<td>$</td>
</tr>
<tr>
<td>Electronic Gas Detector</td>
<td>★</td>
<td>$$</td>
</tr>
<tr>
<td>Acoustic Detector/ Ultrasound Detector</td>
<td>★★</td>
<td>$$$</td>
</tr>
<tr>
<td>TVA (Flame Ionization Detector)</td>
<td>★</td>
<td>$$$</td>
</tr>
<tr>
<td>Calibrated Bagging</td>
<td>★</td>
<td>$$</td>
</tr>
<tr>
<td>High Volume Sampler</td>
<td>★★★</td>
<td>$$$</td>
</tr>
<tr>
<td>Rotameter</td>
<td>★★</td>
<td>$$</td>
</tr>
<tr>
<td>Infrared Leak Detection</td>
<td>★★★</td>
<td>$$$</td>
</tr>
</tbody>
</table>

Source: EPA’s Lessons Learned

* - Least effective at screening/measurement
★★★ - Most effective at screening/measurement
$ - Smallest capital cost
$$ - Larger capital cost
$$$ - Largest capital cost
Estimating Comprehensive Survey Cost

- Cost of complete screening survey using high volume sampler
 - Ranges $15,000 to $20,000 per medium size plant
 - Rule of Thumb: $1 per component for an average plant environment (based on processing plants)
 - Cost per component for remote small production sites would be higher than $1
- 25 to 40% cost reduction for follow-up survey
 - Focus on higher probability leak sources (e.g. compressors)

DI&M by Infrared Leak Detection

- Real-time detection of methane leaks
 - Quicker identification & repair of leaks
 - Screen hundreds of components an hour
 - Screen inaccessible areas simply by viewing them

Source: Leak Surveys Inc.
Infrared Methane Leak Detection

- Video recording of fugitive leaks detected by various infrared devices

Is Recovery Profitable?

<table>
<thead>
<tr>
<th>Component</th>
<th>Value of lost gas(^1) ($)</th>
<th>Estimated repair cost ($)</th>
<th>Payback (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug Valve: Valve Body</td>
<td>29,498</td>
<td>200</td>
<td>0.1</td>
</tr>
<tr>
<td>Union: Fuel Gas Line</td>
<td>28,364</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>Threaded Connection</td>
<td>24,374</td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>Distance Piece: Rod Packing</td>
<td>17,850</td>
<td>2,000</td>
<td>1.4</td>
</tr>
<tr>
<td>Open-Ended Line</td>
<td>16,240</td>
<td>60</td>
<td>0.1</td>
</tr>
<tr>
<td>Compressor Seals</td>
<td>13,496</td>
<td>2,000</td>
<td>1.8</td>
</tr>
<tr>
<td>Gate Valve</td>
<td>11,032</td>
<td>60</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Source: Hydrocarbon Processing, May 2002

\(^1\) – Based on $7/Mcf gas price
DI&M - Lessons Learned

- A successful, cost-effective DI&M program requires measurement of the leaks
- A high volume sampler is an effective tool for quantifying leaks and identifying cost-effective repairs
- Open-ended lines, compressor seals, blowdown valves, engine-starters, and pressure relief valves represent <3% of components but >60% of methane emissions
- The business of leak detection has changed dramatically with new technology

Source: Chevron

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits