Processor Best Practices and Opportunities

Lessons Learned from Natural Gas STAR

DCP Midstream and the Gas Processors Association

Processors Technology Transfer Workshop Houston, Texas April 24, 2007

epa.gov/gasstar

Processor Opportunities: Agenda

- Industry Emissions
- Recommended Technologies and Practices
- Selected Methane Saving Opportunities
 - A Pipeline Pigging
 - Installing Vapor Recovery Units
 - Dehydrators
 - Optimized glycol circulation rates
 - Flash tank separator (FTS) installation
 - 6 Electric pump installation
- Discussion

Processor Recommended Technologies and Practices

Methane Losses from Pipeline Pigging

- Gas lost when launching and receiving a pig
- Sugitive emissions from pig launcher/receiver valves
- Gas lost from storage tanks receiving condensate removed by pigging
- Gas vented from pipeline blowdowns

NaturalGas POLLUTION PREVENTER

Pigging Pipelines

- Hydrocarbons and water condense inside pipelines, causing pressure drop and reducing gas flow
- Periodic line pigging removes liquids and debris to improve gas flow
 - Also inspect pipeline integrity
- In the second second
 - Keeps pipeline running continuously
 - Keeps pipeline near maximum throughput by removing debris
 - Minimizes product losses during launch/capture

Source: www.girardind.com/

How Does Pigging Vent Methane?

- Is a Pig launchers have isolation valves for loading pigs, pressurizing pigs, and launching pigs with gas bypassed from the pipeline
- Launcher pressuring/depressuring loses methane out the vent valve

Pigging Vents Methane Twice!

- Methane lost through vent valve on the launcher and again through vent valve on the receiver
 - Once receiver is isolated from the line, it must be depressured to remove the pig
 - Liquids ahead of the pig drain to a vessel or tank
- MORE than twice: isolation valve leaks may cause excessive venting to depressure

Methane Recovery

- A Pipeline maintenance requires pipe section blowdown before work can begin
- Gas in pipeline is usually vented to the atmosphere
- Vse inert gas and pig
 - Inert gas can be used to drive a pig down the section of pipe to be serviced, displacing the natural gas to a product line rather than venting
 - Inert gas is then vented to the atmosphere, avoiding methane loss
- A Route vent to vapor recovery system or fuel gas
 - One Partner reported connecting pig receiver vent to fuel gas to recover gas while working a tight isolation

Is Recovery Profitable?

- One partner pigged gathering lines 30 to 40 times per year, collecting several thousand barrels of condensate per application
- A Partner reported saving 21,400 Mcf/year from recovering flash gases
- Dedicated vapor recovery unit (VRU) was installed with an electric compressor at an installation cost of \$24,000 and an annual operating cost of \$40,000 mostly for electricity
- Large gas savings and increasing gas prices will offset costs

Gas Price (\$/Mcf)	\$5.00	\$7.00	\$10.00
Gas Saved (Mcf/year)	21,400	21,400	21,400
Annual Savings (\$/year)	\$107,000	\$149,800	\$214,000
Installed Cost	\$24,000	\$24,000	\$24,000
Operating Cost	\$40,000	\$40,000	\$40,000
Payback Period (years)	0.4	0.3	0.2

Vapor Recovery Units: What is the Problem?

- In Flashing losses
 - Occur when crude is transferred from a gas-oil separator at higher pressure to a storage tank at atmospheric pressure
- Working losses
 - Occur when crude levels change and when crude in tank is agitated
- Standing losses
 - Occur with daily and seasonal temperature and barometric pressure changes

- Scrubber dump valve losses
 - Solids or liquids freeze in the valve preventing closure
 - Natural gas is lost through condensate tank vents

Conventional Vapor Recovery Unit

Options for Vapor Recovery Units

- The solution to these losses are vapor recovery units to capture the emissions
- A Recommended choices
 - & Rotary compressors require electrical power or engine driver
 - Sliding vane or rotary screw compressors
 - Scroll compressors

Alternative, niche technologies

- ♦ EVRUTM replaces rotary compressor and contains no moving parts
- Vapor Jet system requires high pressure water motive
- Choices not recommended
 - Reciprocating compressors
 - Centrifugal compressors

Vapor Recovery Most Applicable to:

- Steady source and sufficient quantity of losses
 - Condensate oil stock tanks
 - Is Flash tanks
 - Gas pneumatic controllers and pumps
- Outlet for recovered gas
 - Access to low pressure gas pipeline, compressor suction, or on-site fuel system
- Tank batteries

Methane Savings: Vapor Recovery

- Vapor recovery can capture up to 95% of hydrocarbon vapors from tanks
- Recovered vapors have higher heat content than pipeline quality natural gas
- A Recovered vapors are more valuable than natural gas and have multiple uses
 - Re-inject into sales pipeline
 - Vse as on-site fuel
 - Recover valuable natural gas liquids

What is the Recovered Gas Worth?

- Value depends on heat content of gas
- Value depends on how gas is used
 - On-site fuel
 - Valued in terms of fuel that is replaced
 - Natural gas pipeline
 - Measured by the higher price for rich (higher heat content) gas
 - Gas processing plant
 - Measured by value of natural gas liquids and methane, which can be separated

Is Recovery Profitable?

Financial analysis for a conventional VRU project ¹								
Peak Capacity (Mcf/day)	Installation & Capital Costs ² (\$)	O&M ³ Costs (\$/year)	Value of Gas ³ (\$/year)	Annual Savings (\$/year)	Simple Payback (months)	Internal Rate of Return		
25	35,738	7,367	30,300	22,933	19	58%		
50	46,073	8,419	60,600	52,181	11	111%		
100	55,524	10,103	121,360	111,257	6	200%		
200	74,425	11,787	242,725	230,938	4	310%		
500	103,959	16,839	606,810	589,971	3	567%		

1 – For VRUs with low discharge pressure

2 - Unit cost plus estimated installation at 75% of unit cost, updated to 2006 capital costs

3 - Operation & Maintenance

4 - \$7/Mcf x 1/2 capacity x 365 days/year

Dehydrators: What is the Problem?

- In Produced gas is saturated with water, which must be removed for gas transmission
- Glycol dehydrators are the most common equipment to remove water from gas
 - 36,000 dehydration units in natural gas production, gathering, and boosting
 - Most use triethylene glycol (TEG)
- Glycol dehydrators create emissions
 - Methane, Volatile Organic Compounds (VOCs), Hazardous Air Pollutants (HAPs) from reboiler vent

Methane from pneumatic controllers

Source: www.prideofthehill.com

Basic Glycol Dehydrator System Process Diagram

Methane Recovery: Three Options

- Optimized glycol circulation rates
- Flash tank separator installation
- Iectric pump installation

Glycol Dehydrator Unit Source: GasTech

Optimizing Glycol Circulation Rate

- Gas pressure and flow at gathering/booster stations vary over time
 - Glycol circulation rates are often set at a maximum circulation rate
- Glycol overcirculation results in more methane emissions without significant reduction in gas moisture content
 - A Partners found circulation rates two to three times higher than necessary
 - Methane emissions are directly proportional to circulation
- Lessons Learned study: optimize circulation rates

Flash Tank Recovers Methane

- Recovers about 90% of methane emissions
- A Reduces VOCs by 10 to 90%
- Must have an outlet for low pressure gas
 - Version

Flash Tank Costs

- Lessons Learned study provides guidelines for scoping costs, savings and economics
- Capital and installation costs:
 - Capital costs range from \$3,500 to \$7,000 per flash tank
 - Installation costs range from \$1,200 to \$2,500 per flash tank
- Negligible Operational & Maintenance costs

Electric Pump Eliminates Motive Gas

Overall Benefits

- In Financial return on investment through gas savings
- Increased operational efficiency
- A Reduced O&M costs (fuel gas, glycol make-up)
- A Reduced compliance costs (HAPs, BTEX)
- Similar footprint as gas assist pump

Is Recovery Profitable?

Three Options for Minimizing Glycol Dehydrator Emissions

Option	Capital	Annual O&M	Emissions	Payback
	Costs	Costs	Savings	Period ¹
Optimize Circulation Rate	Negligible	Negligible	394 to 39,420 Mcf/year	Immediate
Install Flash	\$6,500 to	Negligible	710 to 10,643	4 to 11
Tank	\$18,800		Mcf/year	months
Install Electric Pump	\$1,400 to \$13,000	\$165 to \$6,500	360 to 36,000 Mcf/year	< 1 month to several years

¹ Gas price of \$7/Mcf

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies an practices
- Actual costs and benefits