Producer Best Practices and Opportunities

Lessons Learned from Natural Gas STAR

Occidental Petroleum Corporation and California Independent Petroleum Association

Producers Technology Transfer Workshop
Long Beach, California
August 21, 2007

epa.gov/gasstar
Producer Opportunities: Agenda

- Industry Emissions
- Recommended Technologies and Practices
- Selected Methane Saving Opportunities
 - Replace ignition/reduce false starts
 - Install electric compressors
 - Electronic pilots on flares
 - Dehydrators
 - Optimized glycol circulation rates
 - Reroute glycol skimmer gas
- Discussion
Methane Emissions from Natural Gas Production Sector (2005)

*Bcf = billion cubic feet

Natural Gas STAR reductions data shown as published in the inventory.
Methane Losses from Compressor False Starts

- Gas vented from depressuring the discharge header
- Gas-expansion starter motor vents gas to the atmosphere
- An ignition system in poor condition may not start promptly, or stall when the compressor is loaded
- Each engine false start results in excessive methane emissions from repeating the start-up cycle
Reduce False Starts with Electronic Ignition

- Replacing old ignition systems with a newer electronic system
 - Eliminates methane emissions from repeated false starts
 - Significantly reduces operating costs
- Electronic systems only require a small amount of electricity
 - Solar recharge battery
 - On-site power grid
Methane Recovery

- Engine starting on a reciprocating compressor
 - Gas pneumatic starters require 0.5 standard cubic feet (scf) per horsepower of natural gas stored at 250 to 350 pounds per square inch, gauge (psig)
 - One Partner reported reducing false starts from 150 to 10 per unit by replacing the ignition system, saving 1,150 scf of methane per start

- Replacing the ignition system on one 3,000 horsepower engine saves about 1,200 scf methane\(^1\) per year
 - Based on reducing startup attempts from 15 to 1 per year
 - Payback of less than one year

Source: www.waukeshaengine.com

1 – Assuming the methane content of produced natural gas is 78.8% methane
Methane Losses from Compressor Engine Drivers

- Gas-fired engines are often used to run compressors, generators, and pumps
- Normally, a portion of the produced gas stream is used as fuel for the engines
- Methane emissions result from:
 - Leaks in the gas supply line to the engine
 - Incomplete combustion
 - System upsets (requiring compressor blowdowns)
Installing Electric Compressors

- Partners reported decreasing gas losses by installing electric motors in place of the gas-fired units.
- Electric motors reduce the chance of methane leakage by:
 - Eliminating the need for fuel gas
 - Requiring less maintenance
 - Improving operational efficiency
- An electric power supply is needed
 - Remote facilities with electric power and high compressor maintenance may be good candidates for this technology
Methane Recovery

- Partners have reported methane savings ranging from 40 thousand cubic feet Mcf to 16,000 Mcf per year from installing electric compressors.

- Replacing one 3,000 horsepower reciprocating engine saves about 6,300 Mcf per year.

 - Methane emission factor of 2.11 Mcf per year per horsepower\(^1\)
 - Capital and energy costs are higher for an electric motor compared to a gas driven engine.
 - Electric motors increase operational efficiency and reduce maintenance costs.
 - Savings on maintenance relative to cost of energy will not be justify replacement unless the engine is at the end of its economic life.

Methane Losses from Flares

- Flares are used to safely dispose of combustible gas released in large quantities during emergencies.
- Gas pilots can be blown out by wind causing fuel gas and/or waste gas to vent from an unlit flare.
- Both situations result in excessive emissions:
 - Methane
 - Volatile Organic Compounds (VOC)
 - Hazardous air pollutants (HAP)
Install Electronic Flare Ignition Devices

- Replaces the intermittently or continuously burning flare pilots with electrical sparking pilots
- Sparking pilots require low electrical power
 - Solar recharge battery in remote sites
 - Low voltage commercial power
- Facilities can also install sensors to detect the pilot flame and shut off the fuel gas if the pilot is extinguished

Source: www.gba-corona.com
Methane Recovery

- An extinguished flare pilot can release 70 scf per hour per pilot of methane to the atmosphere until it is relit or shut off.
- One flare pilot that is blown out for 24 hours can release almost 2 Mcf of methane.
- Installing an electronic flare pilot can payback in less than 3 years.
 - Primary economic justification is the savings of natural gas burned in the flare pilots.
 - Associated benefit is a reduction in VOC and HAP emissions.
Dehydrators: What is the Problem?

- Produced gas is saturated with water, which must be removed for gas transmission
- Glycol dehydrators are the most common equipment to remove water from gas
 - 36,000 dehydration units in natural gas production, gathering, and boosting
 - Most use triethylene glycol (TEG)
- Glycol dehydrators create emissions
 - Methane, VOCs, HAPs from reboiler vent
 - Methane from pneumatic controllers

Source: www.prideofthehill.com
Basic Glycol Dehydrator System Process Diagram
Methane Recovery: Two Options

- For dehydrators with electric motor pumps, flash tank separators and vent condensers

 - Optimized glycol circulation rates
 - Reroute glycol skimmer gas

Glycol Dehydrator Unit
Source: GasTech
Optimizing Glycol Circulation Rate

- Gas pressure and flow at gathering/booster stations vary over time
 - Glycol circulation rates are often set at a maximum circulation rate
- Glycol overcirculation results in more methane emissions without significant reduction in gas moisture content
 - Partners found circulation rates two to three times higher than necessary
 - Methane emissions are directly proportional to circulation
- Lessons Learned study: optimize circulation rates
Methane Losses from Glycol Skimmer Gas

- Rich glycol is circulated through a regenerator where the dissolved water, methane, VOCs, and HAPs are vaporized and vented to the atmosphere.
- Still condensers and condensate separators recover natural gas liquids and reduce VOC and HAP emissions.
- Non-condensable gas from the condensate separator (mostly methane) is vented to the atmosphere.
Reroute Glycol Skimmer Gas

- Partner reported rerouting the condensate separator gas (skimmer gas) to:
 - Reboiler firebox
 - Other low pressure fuel gas systems
- Reduces methane emissions
- Further reduces VOC and HAP emissions
- Increases product revenue
- Condensate separator must operate a higher pressure than the destination for skimmer gas combustion
Methane Recovery

- Rerouting glycol skimmer gas can save 250 Mcf per year of methane
 - 20 MMcf per day dehydrator
 - Vent condenser with flash tank
 - Circulating 300 gallons of glycol per hour with electric pump
 - Gas entrainment of 1 scf per gallon of glycol
 - Still gas contains 95% methane
Is Recovery Profitable?

Two Options for Minimizing Glycol Dehydrator Emissions

<table>
<thead>
<tr>
<th>Option</th>
<th>Capital Costs</th>
<th>Annual O&M Costs</th>
<th>Emissions Savings</th>
<th>Payback Period¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimize Circulation Rate</td>
<td>Negligible</td>
<td>Negligible</td>
<td>394 to 39,420 Mcf/year</td>
<td>Immediate</td>
</tr>
<tr>
<td>Reroute Glycol Skimmer Gas</td>
<td>$1,000</td>
<td>$100 to $1,000</td>
<td>250 Mcf/year</td>
<td>10 months</td>
</tr>
</tbody>
</table>

¹ – Gas price of $7/Mcf
Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits