Methane to Markets

Reduced Emission Completions / Plunger Lift and Smart Automation

IAPG & US EPA Technology Transfer Workshop

November 5, 2008
Buenos Aires, Argentina
Well Venting Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion

Source: Williams
Methane Losses (U.S.): Gas Well Completions and Workovers

- An estimated 1,27 Bm³ of natural gas lost annually due to well completions and workovers¹
- An estimated total of 480,000 Bbl condensate lost annually due to venting and flaring

¹Percentage that is flared and vented is not known
Methane Loss During Gas Well Completions

- It is necessary to clean out the well bore and formation following hydraulic fracturing
 - After new well completion
 - After well workovers

- Produce the well to an open pit or tankage to collect sand, cuttings and reservoir fluids for disposal

- Vent or flare the natural gas produced
 - Venting may lead to dangerous gas buildup
 - Flaring is preferred where no fire hazard or nuisance
Methane Recovery by Reduced Emission Completions

- Recover natural gas and condensate produced during flow-back following hydraulic fracture
- Portable equipment separate sand and water, processes gas and condensate for sales
- Direct recovered gas through permanent dehydrator and meter to sales line, reducing venting and flaring
Reduced Emission Completions: Equipment

- Truck or trailer mounted equipment to capture produced gas during cleanup
 - Sand trap
 - Three-phase separator
- Use portable desiccant dehydrator for workovers requiring glycol dehydrator maintenance

Temporary, Mobile Surface Facilities, Source: BP
Reduced Emission Completions: Preconditions

- Permanent equipment required on site before cleanup
 - Piping to well head
 - Dehydrator
 - Lease meter
 - Stock tank
- Sales line gas can be used for energy and/or gas lift in low pressure wells
Reduced Emission Completions: Low Pressure Wells

- Use portable compressors when pressure in well is low
 - Artificial gas lift to clear fluids
 - Boost gas to sales line
 - Higher cost to amortize investment

![Image of portable compressor](JERRY_MCBRIDE_Herald)
Reduced Emission Completions: Benefits

- Reduced methane emissions during completions and workovers
- Sales revenue from recovered gas and condensate
- Improved relations with government agencies and public neighbors
- Improved safety
- Reduced disposal costs
Is Recovery Profitable?

- Partners report recovering 2% - 89% (average of 53%) of total gas produced during well completions and workovers.

- Estimate 0.2 – 354 Mm3 (average of 85 Mm3) of natural gas can be recovered from each cleanup.

- Estimate 1- 580 Bbl of condensate can be recovered from each cleanup.

Note: Values for high pressure wells.
Anadarko Experience

- Produces gas from “tight” formations in Wyoming, Colorado, and Utah
- 1998 to 2005 implemented conventional completions
 - 421 wells/year completed average
 - 59 MMm³/year lost average
 - 12 days venting/completion average
- Lost US$33.2 million\(^1\) of gas in 8 years
 - US$4.1 million/year average

\(^1\) Gas valued at US$70.63/MMm³
Anadarko Experience

- In 2006 started implementing RECs
- 2006 to 2008 RECs:
 - 613 wells/year completed
 - Net savings: 58 MMm3/year
 - Despite 45% increase in well completions
 - Less than 2 hours venting/completion on average
- 4.1 million/year1 increased revenue

1 Gas valued at US$70.63/Mm3
Devon Energy Experience

- Implemented Reduced Emission Completion (REC) in the Fort Worth Basin
- REC performed on 30 wells at an average incremental cost of US$8,700
- Average 337 MMm³ of natural gas sold vs. vented per well
 - Natural gas flow and sales occur 9 days out of 2 to 3 weeks of well completion
 - Low pressure gas sent to gas plant
 - Conservative net value of gas sold is US$23,800 per well at Argentina gas price¹
- Expected emission reductions of 43 to 57 MMm³ per year moving forward

¹ Gas valued at US$70,63/MMm³
Williams Experience

- Implemented 1.064 completions with flowback from 2002 through 2006
- Total implementation cost: US$17.41 million
- Recovered a total of 671 MMm³
 - Equal to 91.1% recovery
 - Worth US$47.4 million at Argentina gas value¹

¹ Gas valued at US$70.63/Mm³
Discussion Questions

- To what extent are you implementing this opportunity?
- Can you suggest other approaches for reducing well venting?
- How could these opportunities be improved upon or altered for use in your operation?
- What are the barriers (technological, economic, lack of information, regulatory, focus, manpower, etc.) that are preventing you from implementing this practice?
Liquid Unloading

- Accumulation of liquid hydrocarbons or water in the well tubing reduces, and can halt, production
- Operators blow wells to atmosphere to expell liquids

Source: BP
Plunger lift recovers liquids with less gas venting

- Conventional plunger lift systems use gas pressure buildups to repeatedly lift columns of fluid out of well
- Fixed timer cycles may not match reservoir performance
 - Cycle too frequently (high plunger velocity)
 - Plunger not fully loaded
 - Cycle too late (low plunger velocity)
 - Shut-in pressure can’t lift fluid to top
 - May have to vent to atmosphere to lift plunger

Source: Weatherford
Plunger Lift Cycle

Production Control Services
Spiro Formation Well 9N-27E

Well Production
Potential Continuous
without Plunger Lift
Production with Plunger Lifts

Plunger Lifts Installed

Well Blowdowns
Potential Incremental Production with Plunger Lift
What is the problem?

- Fixed timer requires manual adjustments of the plunger cycle time
 - Not performed regularly
 - Do not account for gathering line pressure fluctuations, declining well performance, plunger wear

- Results in manual venting to atmosphere when plunger lift is overloaded

Source: BP
Smart Automation Well Venting

- Automation can enhance the performance of plunger lifts by monitoring wellhead parameters
 - Tubing and casing pressure
 - Sales line pressure
 - Flow rate
 - Plunger travel time
- Using this information, the system is able to optimize plunger operations
 - To minimize well venting to atmosphere
 - Recover more gas
 - Further reduce methane emissions
Automated Controllers

- Low-voltage; solar recharged battery power
- Monitor well parameters
- Adjust plunger cycling

- Remote well management
 - Continuous data logging
 - Remote data transmission
 - Receive remote instructions
 - Monitor other equipment

Source: Weatherford
Methane Savings

- Methane emissions savings a secondary benefit
 - Optimized plunger cycling to remove liquids increases well production by 10 to 20%\(^1\)
 - Additional 1%\(^1\) production increase from avoided venting

14 Mm\(^3\)/year methane emissions savings for average U.S. well

1 - Reported by Weatherford

Source: BP
Other Benefits

- Reduced manpower cost per well
- Continuously optimized production conditions
- Remotely identify potential unsafe operating conditions
- Monitor and log other well site equipment
 - Glycol dehydrator
 - Compressor
 - Stock Tank
 - Vapor Recovery Unit

Source: BP
Is Recovery Profitable?

- Smart automation controller installed cost: ~US$15,000
 - Conventional plunger lift timer: ~US$7,000
- Personnel savings: double productivity
- Production increases: 10% to 20% increased production
- Production increase from avoided venting: 1%

Savings =
\[
\text{(Mm}^3/\text{year}) \times (10\% \text{ increased prod.}) \times (\text{gas price}) + \text{(Mm}^3/\text{year}) \times (1\% \text{ emissions savings}) \times (\text{gas price}) + \text{(personnel hours/year}) \times (0.5) \times (\text{labor rate})
\]

$ savings per year
Economic Analysis

- Non-discounted savings for average well =

\[(1.416 \text{ Mm}^3/\text{year}) \times (10\% \text{ incr. prod.}) \times (\text{US}\$70,63/\text{Mm}^3)\]
\[+ (1.416 \text{ Mm}^3/\text{year}) \times (1\% \text{ emissions savings}) \times (\text{US}\$70,63/\text{Mm}^3)\]

US\$11,000 savings / year

- 16.5 months simple payback at Argentina gas price
BP Experience

- BP’s first automation project designed and funded in 2000
- Pilot installations and testing in 2000
 - Installed plunger lifts with automated control systems on ~2,200 wells
 - ~US$15,000 per well Remote Terminal Unit (RTU) installment cost
 - US$50,000 - US$750,000 host system installment cost
- Achieved roughly 50% reduction in venting from 2000 to 2004
BP Experience

- BP designed two pilot studies in 2006 to further improve well scientific control
 - Interviewed control room staff and worked closely with the field automation team leader
 - Established a new procedure based on plunger lift expertise and pilot well analysis

- In mid 2006, “smarter” automation was applied to wells
 - 40 Mm3 reported annual savings per well
 - Total of 88 MMm3/year savings
 - Worth US$6,2 million/year
BP Experience

Daily Vent Volumes

2001 2002 2003 2004 2005 2006 2007

0 2,000 10,000 12,000
Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits