

Sest Management Practices and Key Issues for Small and Independent Producers

Lessons Learned from the Natural Gas STAR Program

IOGCC

Marcellus Shale Basin Producers Technology Transfer Workshop

> Penn State, Pennsylvania November 18, 2009

> > epa.gov/gasstar

1

Key Issues for Small Producers: Agenda

- Determining the appropriate emission reduction technologies
- Economic barriers to implementing technologies and practices
- Biggest opportunities for emissions reductions:
 - Pneumatic devices
 - Oehydrators
 - Compressor Rod Packing

Production in Pennsylvania

- In 2007, there were about 52,700 gas production wells producing 182 Bcf of dry gas
- That same year, EPA estimates 12 Bcf of gas may be vented or flared from unconventional well completions in Pennsylvania
- At \$5.72¹ per Mcf, that equals about \$70 million of lost revenue due to venting and flaring
- Mean How much revenue are you losing?

1. EIA. 2007 Natural Gas Navigator. Retrieved 17 Jul 09 from http://tonto.eia.doe.gov/dnav/ng/ng_prod_top.asp 3

Economic Barriers to Implementation

- Current and future gas prices
- Payback criteria and project feasibility

Additional Barriers to Implementation

- Lack of man-power
- Engaging management
- Lack of information

What is the Problem?

- Pneumatic devices are major source of methane emissions from the natural gas industry
- Pneumatic devices used throughout the natural gas industry
 - Over 630,000 in production sector¹
 - About 13,000 in processing sector¹
 - About 83,000 in transmission sector¹

1 - Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 - 2007

Methane Emissions

- As part of normal operations, pneumatic devices release natural gas to atmosphere
- High-bleed devices bleed in excess of 6 cf/hour
 - 6 Equates to >50 Mcf/year
 - Typical high-bleed pneumatic devices bleed an average of 140 Mcf/year
- Actual bleed rate is largely dependent on device's design

How Can Methane Emissions be Recovered?

- Option 1: Replace high-bleed devices with low-bleed devices
- Option 2: Retrofit controller with bleed reduction kits
 - Field experience shows that up to 80% of all high-bleed devices can be replaced or retrofitted with low-bleed equipment
- Option 3: Maintenance aimed at reducing losses

11

Economics of Replacement & Retrofitting

	Replace	Retrofit		Early Replacements	
Implementation ¹	at End of Life	Level Control ⁴	Pressure Control	Level Control	Pressure Control
Cost (\$)	150 – 250 ²	189	41	380	1,340
Annual Gas Savings (Mcf)	50 – 200	131	184	166	228
Annual Value of Saved Gas (\$)3	350 – 1400	917	1,288	1162	1596
IRR (%)	138 – 933	>450	>3,100	306	117
Payback (months)	2 – 9	3	<1	4	10

- 1 All data based on partners' experiences. See Lessons Learned for more information
- 2 Range of incremental costs of low-bleed over high bleed equipment
- 3 Gas price is assumed to be \$7/Mcf
- 4 Large nozzle to small

Dehydrators

- Methane Losses
- Methane Recovery
- Is Methane Recovery Profitable?

A Partner Experience

13

Glycol Dehydrators Emit?

- Produced gas is saturated with water, which must be removed for gas transmission
- 6 Glycol dehydrators are the most common equipment to remove water from gas
 - § 36,000 dehydration units in natural gas production, gathering, and boosting
 - Most use triethylene glycol (TEG)
- Glycol dehydrators create emissions
 - Methane, Volatile Organic Compounds (VOCs), Hazardous Air Pollutants (HAPs) from reboiler vent
 - Methane from pneumatic controllers

www.prideofthehill.com

Optimizing Glycol Circulation Rate

- Gas pressure and flow at wellhead dehydrators generally declines over time
 - Glycol circulation rates are often set at a maximum circulation rate
- Glycol overcirculation results in more methane emissions without significant reduction in gas moisture content
 - Partners found circulation rates two to three times higher than necessary
 - Methane emissions are directly proportional to circulation
- Lessons Learned study: optimize circulation rates

17

Installing Flash Tank Separator (FTS)

- Methane that flashes from rich glycol in an energyexchange pump can be captured using an FTS
- Many small units are not using an FTS

Methane Recovery

- Recovers about 90% of methane emissions
- Reduces VOCs by 10 to 90%
- Must have an outlet for low pressure gas
 - Fuel
 - 6 Compressor suction
 - Vapor recovery unit

Flash Tank Costs

- Lessons Learned study provides guidelines for scoping costs, savings and economics
- Capital and installation costs:
 - Capital costs range from \$3,300 to \$6,700 per flash tank
 - Installation costs range from \$1,200 to \$3,000 per flash tank
- Negligible Operational & Maintenance (O&M) costs

Overall Benefits

- Financial return on investment through gas savings
- Increased operational efficiency
- Reduced O&M costs (fuel gas, glycol make-up)
- Reduced compliance costs (HAPs, BTEX)
- Similar footprint as gas assist pump

Is Recovery Profitable?

Three Options for Minimizing Glycol Dehydrator Emissions

Option	Capital Costs	Annual O&M Costs	Emissions Savings	Payback Period ¹
Optimize Circulation Rate	Negligible	Negligible	394 to 39,420 Mcf/year	Immediate
Install Flash Tank	\$6,500 to \$18,800	Negligible	1,191 to 10,643 Mcf/year	4 to 11 months
Install Electric Pump	\$1,400 to \$13,000	\$165 to \$6,500	360 to 36,000 Mcf/year	< 1 month to several years

^{1 -} Gas price of \$7/Mcf

23

Partner Experience (Shell)

- Installed flash tank separators on 106 dehydrators over 8 years
- M Project cost = \$15,000- \$30,000 per FTS
- ♠ Annual Emissions reductions = 216 MMcf
- Annual Value Savings: \$3.00/Mcf x 216 MMcf = \$648,000
- 3 year pay-back period

Reciprocating Compressors

- Methane Losses from Rod Packing
- Implementing Proper Seals
- Nod Packing Replacement Economics
- Low Emission Packing

25

Methane Losses from Reciprocating Compressors

- Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 60 cubic feet per hour (cf/hour) in large compressors at processing plants or gathering and booster stations
 - Worn packing has been reported to leak up to 15 times more gas than a newly installed packing

Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket, between packing cups, around the rings, and between rings and shaft

Methane Losses from Rod Packing

Transmission Compressors

Emission from Running Compressor	99	cf/hour-packing
Emission from Idle/Pressurized Compressor	145	cf/hour-packing
Leakage from Idle Compressor Packing Cup	79	cf/hour-packing
Leakage from Idle Compressor Distance Piece	34	cf/hour-packing

Leakage from Rod Packing on Running Compressors				
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon
Leak Rate (cf/hour)	70	63	150	24

Leakage from Rod Packing on Idle/Pressurized Compressors				
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon
Leak Rate (cf/hour)	70	N/A	147	22

PRCI/ GRI/ EPA. Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations

Steps to Determine Economic Replacement

- Measure rod packing leakage
 - When new packing installed after worn-in
 - Periodically afterwards
- Determine cost of packing replacement
- 6 Calculate economic leak reduction
- Replace packing when leak reduction expected will pay back cost

29

Cost of Rod Packing Replacement

- Assess costs of replacements
 - A set of rings: (with cups and case)

Nods:

Special coatings such as ceramic, tungsten carbide, or chromium can increase rod costs \$ 675 to \$ 1,080 \$ 2,025 to \$ 3,375

\$ 2,430 to \$13,500

Source: CECO

Calculate Economic Leak Reduction

- Determine economic replacement threshold
 - Partners can determine economic threshold for all replacements
 - This is a capital recovery economic calculation

Economic Replacement Threshold (cf/hour) = $\frac{CR*DF*1,000}{(H*GP)}$

CR = Cost of replacement (\$)

DF = Discount factor at interest $i = DF = \frac{i(1+i)^n}{(1+i)^n - 1}$

GP = Gas price (\$/thousand cubic feet)

04

Economic Replacement Threshold

Example: Payback calculations for new rings and rod replacement

CR = \$1,620 for rings

H = 8,000 hours per year

GP = \$7/Mcf

DF @ i = 10% and n = 1 year

$$DF = \frac{0.1(1+0.1)^1}{(1+0.1)^1-1} = \frac{0.1(1.1)}{1.1-1} = \frac{0.11}{0.1} = 1.1$$

One year payback

 $ER = $1,620 \times 1.1 \times 1,000$

(8,000 x \$7)

= 32 scf per hour

DF @ i = 10% and n = 2 years
DF =
$$\frac{0.1(1+0.1)^2}{(1+0.1)^2-1} = \frac{0.1(1.21)}{1.21-1} = \frac{0.121}{0.21} = 0.576$$

Is Rod Packing Replacement Profitable?

- Replace packing when leak reduction expected will pay back cost
 - "leak reduction expected" is the difference between current leak rate and leak rate with new rings

Rings Only Rod and Rings

 Rings:
 \$1,620
 Rings:
 \$1,620

 Rod:
 \$0
 Rod:
 \$9,450

 Gas:
 \$7/Mcf
 Gas:
 \$7/Mcf

Operating: 8,000 hours/year Operating: 8,000 hours/year

Leak Reduction Expected	Payback
(cf/hour)	(months)
62	6
32	12
22	18

Leak Reduction Expected	Payback
(cf/hour)	(months)
425	6
217	12
148	18
114	24

Based on 10% interest rate Mcf = thousand cubic feet

33

Industry Experience – Occidental

- Occidental upgraded compressor rod packing at its Elk Hills facility in southern California
- Savings 145 MMcf/yr
- Payback in under 3 years

Discussion Questions

- What industry experiences do you have applying these technologies and practices?
- What are your limitations on applying these technologies and practices?
- Actual costs and benefits