Methane Savings from Transmission Pipelines: Agenda

- Transmission Pipeline Opportunities for Methane Recovery:
 - Pipeline pumpdowns
 - Composite wrap
 - Hot taps
 - Pipeline pigging
 - Aerial leak detection

- Discussion
Reducing Methane Emissions from Pipelines: Economics

- All technologies and practices promoted by Methane to Markets and Natural Gas STAR are proven based on successful field implementation by Partner companies.
- Examples represented in the following presentation are based on company specific data collected from actual projects in the U.S. and other countries; economic information is presented according to U.S. costs and gas prices.
- One example estimates the economics for Russia using a range of natural gas prices and a factor to adjust for Russian capital and labor costs (slides 16 to 18) using data from the Oil and Gas Journal.
Overview: Pipeline Pumpdown

- Most applicable to large pipelines operating at high pressures
- Use in-line compressors to “pull down” the pressure to minimum suction pressure
- Use portable compressor to “pull down” pressure even further
- Cost is justified by immediate payback in gas savings
- About 90% of gas usually vented is recoverable
Pipeline Pumpdown Sequence of Depressurization Events

1. Identify Pipeline Segment Needing Repair
 - Pipeline Compressor Block Valve Open Compressor Block Valve Open Pipeline

2. Depressurize Segment by 50% Using In-line Pipeline Compressor
 - Pipeline Compressor Block Valve Closed Compressor Block Valve Open Pipeline

3. Depressurize Segment Further by 90% Using Portable Compressor In Sequence With an In-line Compressor
 - Pipeline Compressor Block Valve Closed Compressor Block Valve Closed Pipeline

Legend:
- Normal pipeline pressure
- Pipeline with pressure reduced by 50%
- Pipeline with pressure reduced by 90%
Economics of Pipeline Pumpdowns

- Calculate total gas that would be vented by depressurizing pipeline to atmosphere
- Calculate gas savings from pumpdown with in-line compressors
- Calculate costs and savings from pumpdown with portable compressor
- Calculate annual savings
Pipeline Pumpdown: Calculate Gas Savings

- Estimate the quantity and value of gas that in-line and portable compressors can recover:

 - Total gas in pipeline segment:
 \[M = L \times (1,000 \text{ m/km}) \times (\pi \times l^2/4) \times (P/101.3 \text{ kPa}) \times (1 \text{ Mcm}/1,000 \text{ m}^3) \]

 - Gas saved by in-line compressor:
 \[N_i = M - (M/R_i) \]

 - Gas saved by portable compressor:
 \[N_p = N_i - (N_i / R_p) \]
Pipeline Pumpdown: Calculate Gas Savings

- Example Calculation
 - Given:
 - Pipeline isolated length (L) = 16.1 kilometer (km)
 - Pipeline interior diameter (I) = 0.724 meter (m)
 - Pipeline operating pressure (P) = 4,134 kilopascals (kPa)
 - In-line compressor compression ratio (Ri) = 2
 - Portable compression ratio (Rp) = 8

<table>
<thead>
<tr>
<th></th>
<th>Volume of Gas (Mcm)</th>
<th>Value of Gas Saved ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Gas in Pipeline Segment</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Gas Saved by In-Line Compressor</td>
<td>135</td>
<td>$34,000</td>
</tr>
<tr>
<td>Gas Saved by Portable Compressor</td>
<td>118</td>
<td>$30,000</td>
</tr>
<tr>
<td>Total Gas Saved by Pumpdown</td>
<td>253</td>
<td>$64,000</td>
</tr>
</tbody>
</table>

Source: EPA Natural Gas STAR Lessons Learned Document “Using Pipeline Pumpdown Techniques to Lower Gas Line Pressure Before Maintenance”
Pipeline Pumpdown: Calculate Portable Compressor Costs

- Estimate the costs associated with using a portable compressor
 - Capital or compressor leasing costs
 - Fuel costs (mostly natural gas) ~ 7.38 – 8.86 MJ per brake horse power per hour
 - Maintenance costs ~ $5 – $12 per horsepower per month
 - Labor costs
 - Taxes and administrative costs
 - Installation costs
 - Freight costs
Calculate Portable Compressor Capital Costs

Example: Total cost of using the portable compressor during a 12 month period

- fuel costs + lease and maintenance costs + freight costs
- \(12 \times (\$500 + \$31,000) + \$19,000 \)
- \(\$397,000 \)

Portable Compressor Purchase and Lease Cost Range*

<table>
<thead>
<tr>
<th>Purchase</th>
<th>Lease</th>
<th>Purchase</th>
<th>Lease</th>
<th>Purchase</th>
<th>Lease</th>
</tr>
</thead>
<tbody>
<tr>
<td>68 atm – High Flow</td>
<td>$3 - $6 million</td>
<td>$77,000 - $194,000 per month</td>
<td>$1.0 - $1.6 million</td>
<td>$31,000 - $46,000 per month</td>
<td>$518,131 - $777,197</td>
</tr>
<tr>
<td>41 atm – Medium Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 atm – Low Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$15,000 - $23,000 per month</td>
</tr>
</tbody>
</table>

*Based on assumptions that purchase cost does not include cost of freight or installation and that lease cost is 3 percent of purchase cost

Source: EPA Natural Gas STAR Lessons Learned Document “Using Pipeline Pumpdown Techniques to Lower Gas Line Pressure Before Maintenance”
Pipeline Pumpdown: Calculate Annual Savings

Based on this example:

- Gross value of gas recoverable during a 12-month period, **In-line Compressor**

 \[\text{Gross} = 34,000 \times 4 \times 12 = 1,632,000 \]

- Gross value of gas recoverable during a 12-month period, **Portable Compressor**

 \[\text{Gross} = 30,000 \times 4 \times 12 = 1,440,000 \]

- **Net Savings** associated with using both In-line and Portable Compressor

 \[\text{Savings} = 1,632,000 + (1,440,000 - 397,000) = 2,675,000 \]

\(^1\)Gross value of the recoverable gas during a 12-month period, assuming an average of 4 pump-downs per month
Methane Savings from Transmission Pipelines: Agenda

- Transmission Pipeline Opportunities for Methane Recovery:
 - Pipeline pumpdowns
 - **Composite wrap**
 - Hot taps
 - Pipeline pigging
 - Aerial leak detection

- Discussion

Source: Armor Plate
What is Composite Wrap?

- Non-leaking pipeline defects can only be fixed in one of three ways:
 - Cut out damaged segment and replace with new pipes
 - Install a full-encirclement steel split sleeve over the damaged area
 - Install a composite sleeve over the damaged area

- Composite wrap advantages:
 - Can be performed without taking pipeline out of service
 - Repair is quick and less costly than replacement or sleeve options
 - Eliminates venting associated with replacement
Composite Wrap Overview

1) A high-strength glass fiber composite or laminate
2) An adhesive or resin bonding system
3) A high-compressive-strength load transfer filler compound
4) Replaces lost hoop strength

Source: Clock Spring® Company L. P.
Composite Wrap Installation

- After excavation and pipe preparation
 - External defects filled with filler
 - Composite wrap wound around pipe with adhesive or laminating agents
 - Typically 5 cm of wrap must extend beyond damage
 - Excavation site refilled after mandated curing time

- Reducing pressure improves quality of repair

Source: Armor Plate
Economics of Composite Wrap

- Calculate associated costs
 - State assumptions (pipeline diameter, distance between shut-off valves, value of gas, etc.)
 - Calculate labor cost
 - Calculate capital and equipment costs
 - Calculate indirect costs

- Calculate natural gas savings

- Compare options
Example Economic Analysis: Adjusted Russian Cost Scenario

- The chart on the next slide shows a comparison of economics for pipeline replacement vs. composite wrap

- Economics are estimated for Russia using a range of natural gas prices and factors from the Oil and Gas Journal\(^1\) to adjust for Russian capital and labor costs

Comparison of Options: Pipeline Replacement vs. Composite Wrap

<table>
<thead>
<tr>
<th>Cost Factors</th>
<th>Natural Gas Lost (Mcm)</th>
<th>Purge Gas (Mcm)</th>
<th>Number of Wrap Kits</th>
<th>Cost of Natural Gas Lost</th>
<th>Cost of Purge Gas</th>
<th>Labor</th>
<th>Equipment and Materials</th>
<th>Indirect Costs</th>
<th>Total Cost of Repair</th>
<th>Most Economical Option</th>
</tr>
</thead>
</table>
| | 15 cm Defect | 595 cm Defect | 15 cm Defect | 595 cm Defect | 15 cm Defect | 595 cm Defect | 15 cm Defect | 595 cm Defe
Composite Wrap versus Pipeline Replacement

- Based on this example and Natural Gas Star Partner company experiences, composite wrap is the most cost-effective repair option for small defects.

- Larger defects may be repaired using composite wrap or pipeline replacement depending on value of gas, labor costs, and equipment costs.
 - Note: using higher Russian cost estimates, our economic analysis showed pipeline replacement may be more economic for larger defects.
 - Companies should calculate break even point for defect size based on your specific capital and labor costs.
Summary: Composite Wrap Lessons Learned

- Reduced gas venting as opposed to pipeline replacement
- Proven permanent repair for external defects
- Temporary repair for internal faults
- In-service pipeline repair methodology
- Ideal for urgent and quick repair
- Avoid service disruptions
- Cost-effective
- Trained but not skilled crafts persons required
- Specialized welding and lifting equipment not required
- No delays awaiting metal sleeve
- Cathodic protection remains functional
Methane Savings from Transmission Pipelines: Agenda

- Transmission Pipeline Opportunities for Methane Recovery:
 - Pipeline pumpdowns
 - Composite wrap
 - Hot taps
 - Pipeline pigging
 - Aerial leak detection

- Discussion

Source: Williamson Industries Inc.
What are Hot Taps?

- New branch connection while the pipeline remains in service
 - Attach a branch connection and valve to the main pipeline
 - Cut-out a section of the main pipeline wall through the valve to connect the branch to the main pipeline
- Current technology has improved reliability and reduced complications
- Hot tapping can be used to add connections to a wide range of pipelines
 - Transmission pipelines
 - Distribution mains

Schematic of Hot Tapping Machine
Hot Tapping Procedure

- Connect fitting and permanent valve on the existing pipeline
- Install hot tapping machine on the valve
- Perform hot tap and extract coupon through the valve
- Close valve and remove hot tapping machine
- Connect branch line
Hot Tap Benefits

- Continuous system operation – shutdown and service interruptions are avoided
- No gas released to the atmosphere
- Avoided cutting, realignment and re-welding of pipeline sections
- Reduced planning and coordination costs
- Increased worker safety
- No gas outages for customers
Hot Tap Economics

- Determine physical conditions of existing line
- Calculate the cost of a shutdown interconnect
- Calculate the cost of a hot tap procedure
- Estimate annual hot tap program costs
- Estimate annual hot tap program savings
- Economic analysis of hot tap vs. shutdown
Hot Taps: Determine physical conditions of existing line

- Maximum operating pressure (during hot tap)
- Type of pipe material
- Condition of parent pipeline (internal/external corrosion and wall thickness)
- Emergency valve location for isolation in case of accidents
- Working space evaluation (desired tap diameter, location of other welds, obstructions, etc.)
- Check if the line is looped
Estimated Annual Hot Tap Savings

Estimated Annual Gas Savings for the Example Scenario

<table>
<thead>
<tr>
<th>Tap Scenario</th>
<th>Annual Tap Number</th>
<th>Natural Gas Savings</th>
<th>Nitrogen Purge Gas Savings</th>
<th>Total Gas Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2 cm pipeline, 24.8 atm, 3.2 km</td>
<td>250</td>
<td>0.6</td>
<td>155.7</td>
<td>0.05 14.1 42,500</td>
</tr>
<tr>
<td>20.3 cm pipeline, 7.8 atm, 1.6 km</td>
<td>30</td>
<td>0.4</td>
<td>11</td>
<td>0.1 3.4 3,690</td>
</tr>
<tr>
<td>25.4 cm pipeline, 69.0 atm, 4.8 km</td>
<td>25</td>
<td>16.7</td>
<td>417</td>
<td>0.5 13.4 106,875</td>
</tr>
<tr>
<td>45.7 cm pipeline, 14.6 atm, 3.2 km</td>
<td>15</td>
<td>7.2</td>
<td>108.3</td>
<td>1.2 17.4 31,695</td>
</tr>
<tr>
<td>Total Annual</td>
<td>320</td>
<td>692.1</td>
<td>48.4</td>
<td>184,760</td>
</tr>
</tbody>
</table>

1 Source: EPA Natural Gas STAR Lessons Learned Document "Using Hot Taps for In Service Pipeline Connections"
Economic Analysis of Hot Tap vs. Shutdown

Economic Analysis for Five Year Hot Tap Program (320 taps/yr)\(^1\)

<table>
<thead>
<tr>
<th></th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost, $</td>
<td>$(47,409)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Contract Service Cost, $</td>
<td>0</td>
<td>$(54,263)</td>
<td>$(54,263)</td>
<td>$(54,263)</td>
<td>$(54,263)</td>
<td>$(54,263)</td>
</tr>
<tr>
<td>O&M Cost, $</td>
<td>0</td>
<td>$(7,959)</td>
<td>$(7,959)</td>
<td>$(7,959)</td>
<td>$(7,959)</td>
<td>$(7,959)</td>
</tr>
<tr>
<td>Natural Gas Savings, $</td>
<td>171,080</td>
<td>171,080</td>
<td>171,080</td>
<td>171,080</td>
<td>171,080</td>
<td>171,080</td>
</tr>
<tr>
<td>Inert Gas Savings, $</td>
<td>13,680</td>
<td>13,680</td>
<td>13,680</td>
<td>13,680</td>
<td>13,680</td>
<td>13,680</td>
</tr>
<tr>
<td>Net Benefit, $</td>
<td>$(47,409)</td>
<td>122,538</td>
<td>122,538</td>
<td>122,538</td>
<td>122,538</td>
<td>122,538</td>
</tr>
<tr>
<td>Payback (months)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>258 %</td>
</tr>
<tr>
<td>NPV(^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$417,107</td>
</tr>
</tbody>
</table>

\(^1\) Source: EPA Natural Gas STAR Lessons Learned Document "Using Hot Taps for In Service Pipeline Connections

\(^2\) Net Present Value (NPV) based on 10% discount rate for 5 years.
Methane Savings from Transmission Pipelines: Agenda

- Transmission Pipeline Opportunities for Methane Recovery
 - Pipeline pumpdowns
 - Composite wrap
 - Hot taps
 - Pipeline pigging
 - Aerial leak detection

- Discussion

Source: www.girardind.com/
Overview: Pigging Pipelines

- Hydrocarbons and water condense inside pipelines, causing pressure drop and reducing gas flow

- Periodic line pigging removes liquids and debris to improve gas flow
 - Also inspect pipeline integrity

- Efficient pigging:
 - Keeps pipeline running continuously
 - Keeps pipeline near maximum throughput by removing debris
 - Minimizes product losses during launch/capture
How Does Pigging Vent Methane?

- Pig launchers have isolation valves for loading pigs, pressurizing pigs, and launching pigs with gas bypassed from the pipeline.
- Launcher pressuring/depressuring loses methane out the vent valve.

Source: www.girardind.com/
Pigging Vents Methane Twice

- Methane lost through vent valve on the launcher and again through vent valve on the receiver
 - Once receiver is isolated from the line, it must be depressured to remove the pig
 - Liquids ahead of the pig drain to a vessel or tank
- *More than twice*: isolation valve leaks may cause excessive venting to depressure

Source: www.girardind.com/
Pipeline Pigging: Methane Recovery

- Pipeline maintenance requires pipe section blowdown before work can begin
- Gas in pipeline is usually vented to the atmosphere
- Route vent to vapor recovery system or fuel gas
 - One processing company reported connecting pig receiver vent to fuel gas to recover gas while working a tight isolation
Pipeline Pigging: Is Recovery Profitable?

- One U.S. processing company pigged gathering lines 30 to 40 times per year, collecting several thousand barrels of condensate per application.
- Reported saving 606 Mcm/year from recovering flash gases.
- Dedicated vapor recovery unit (VRU) was installed with an electric compressor at an installation cost of $24,000 and an annual operating cost of $40,000 mostly for electricity. Large gas savings and increasing gas prices will offset costs.

<table>
<thead>
<tr>
<th>Gas Price ($/Mcm)</th>
<th>$250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Saved (Mcm/year)</td>
<td>606</td>
</tr>
<tr>
<td>Annual Savings ($/year)</td>
<td>$149,800</td>
</tr>
<tr>
<td>Installed Cost</td>
<td>$24,000</td>
</tr>
<tr>
<td>Operating Cost</td>
<td>$40,000</td>
</tr>
<tr>
<td>Payback Period (years)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Source: EPA Natural Gas STAR Partner Reported Opportunity “Recover Gas from Pipeline Pigging Operations” Fact Sheet
Methane Savings from Pipelines: Agenda

- Pipeline Opportunities
 - Pipeline pumpdowns
 - Composite wrap
 - Hot taps
 - Pipeline pigging
 - Aerial leak detection
- Discussion
Aerial Leak Detection

- Aerial surveys can quickly detect leaks over long distance transmission pipelines
- U.S. pipeline companies report performing aerial surveys from different platforms using infrared leak detection technologies
 - Fixed wing aircraft or helicopter
 - Passive IR imaging or Light Detection and Ranging (LIDAR) sensors

Source: LaSen, Inc.
DCP Midstream (U.S. Gathering and Processing Company) Aerial Leak Detection

- DCP operates nearly 100,000 km of gathering pipelines
 - No straight sections longer than 8 km
- Decided on helicopter surveys using the Airborne LIDAR Pipeline Inspection System (ALPIS)
- DCP prioritizes survey activities by using system balance measurements to determine which pipeline segments may be leaking
Using the ALPIS system, DCP was able to locate 70 – 80% of pipeline leaks.

DCP has combined aerial surveys with on the ground screening using the RMLD to help pinpoint leaks.

- DCP is able to locate 97% of leaks by combining ALPIS aerial surveys with ground-based RMLD follow-up surveys.

Since beginning these surveys, DCP has reduced lost and unaccounted for gas up to 50%.
Northern Natural Gas (U.S. Transmission Company): Pipelines Inspected with ANGEL Service

- Airborne Natural Gas Emission LIDAR (ANGEL) Service
 - ANGEL system can detect, image and map emissions of natural gas
 - Miles of Pipeline Surveyed: 1,183 Miles
 - Total Collection Time (DIAL): 13.5 Hours
 -Leaks Found and Verified: 27 Locations
Northern Natural Gas: Underground Pipeline Leak - Texas - 2006

DIAL Gas Detection and Measurement

DIAL Scan Pattern
80 foot wide swath

Ground Confirmation

Source: Northern Natural Gas
Northern Natural Gas: Facility Emissions - Texas - 2006

Controlled release of 8 scfm

Location D ANGEL Service Detection, 25 Jan 06 @ 10:16 AM

Source: Northern Natural Gas
Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits