Acid Gas Removal Options for Minimizing Methane Emissions

NaturalGas EPA POLLUTION PREVENTER

Innovative Technologies for the Oil & Gas Industry: Product Capture, Process Optimization, and Pollution Prevention

Targa Resources and the Gas Processors Association

July 27, 2006

epa.gov/gasstar

Acid Gas Removal: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion

Methane Losses from Acid Gas Removal

- There are 290 acid gas removal (AGR) units in gas processing plants¹
 - 6 Emit 644 MMcf annually¹
 - 6 Mcf/day emitted by average AGR unit¹
 - Most AGR units use an amine process or Selexol[™] process
 - Several new processes have recently been introduced to the gas processing industry

What is the Problem?

- 1/3 of U.S. gas reserves contain CO₂ and/or N₂¹
- Wellhead natural gas may contain acid gases
 - H₂S, CO₂, are corrosive to gathering/boosting and transmission lines, compressors, pneumatic instruments and distribution equipment
- Acid gas removal processes have traditionally used an amine to absorb acid gas
- Amine regeneration strips acid gas (and absorbed methane)
 - CO₂ (with methane) is typically vented to the atmosphere, flared, or recovered for EOR
 - H₂S is typically flared or sent to sulfur recovery

¹www.engelhard.com/documents/GPApaper2002.pdf

Methane Recovery - New Acid Gas Removal Technologies

- **GTI & Uhde Morphysorb® Process**
- Instant Molecular Gate[®] Process
- Kvaerner Membrane Process
- In Primary driver is process economics, not methane emissions savings
- A Reduce methane venting by 50 to 100%

Morphysorb[®] Process

7

Morphysorb[®] Process

- Morphysorb[®] absorbs acid gas but also absorbs some methane
 - Methane absorbed is 66% to 75% lower than competing solvents¹
- Flash vessels 1 & 2 recycled to absorber inlet to minimize methane losses
- Flash vessels 3 & 4 at lower pressure to remove acid gas and regenerate Morphysorb[®]

Is Recovery Profitable?

- Morphysorb[®] can process streams with high (>10%) acid gas composition
- Solution 30% to 40% Morphysorb[®] operating cost advantage over DEA or Selexol^{TM 2}
 - 66% to 75% less methane absorbed than DEA or Selexol[™]
 - About 33% less THC absorbed²
 - Lower solvent circulation volumes
- At least 25% capital cost advantage from smaller contactor and recycles²
- Flash recycles 1 & 2 recover ~80% of methane that is absorbed¹

```
^{1}\mbox{Oil} and Gas Journal, July 12, 2004, p 57, Fig. 7 ^{2}\mbox{GTI}
```


Industry Experience - Duke Energy

- Kwoen plant does not produce pipeline-spec gas
 - Separates acid gas and reinjects it in reservoir
 - Frees gathering and processing capacity further downstream
- Morphysorb[®] used in process unit designed for other solvent
- Morphysorb[®] chosen for acid gas selectivity over methane
 - Less recycle volumes; reduced compressor horsepower

Methane Recovery - Molecular Gate[®] CO₂ Removal

- Adsorbs acid gas contaminants in fixed bed
- Molecular sieve application selectively adsorbs acid gas molecules of smaller diameter than methane
- Med regenerated by depressuring

0

- 5% to 10% of feed methane lost in "tail gas" depressuring
 - Route tail gas to fuel CH₄ CO₂ CO₂ CH₄ CO₂ CH₄ CO₂ CO₂

Molecular Gate® Applicability

- Lean gas
 - d Gas wells
 - Coal bed methane
- Associated gas
 - Tidelands Oil Production Co.
 - 4 1 MMcf/d
 - 18% to 40% CO₂
 - Water saturated
 - Design options for C_4 + in tail gas stream
 - Meavy hydrocarbon recovery before Molecular Gate[®]
 - Recover heavies from tail gas in absorber bed
 - Use as fuel for process equipment

Engelhard Molecular Gate system at a facility in Southern Illinois www.engelhard.com

Molecular Gate[®] CO₂ Removal

Industry Experience - Tidelands Molecular Gate[®] Unit

- First commercial unit started in May 2002
- Process up to 10 MMcf/d
- Separate recycle compressor is required
- No glycol system is required
- Heavy HC removed with CO₂
- Tail gas used for fuel is a key optimization: No process venting
- 18% to 40% CO₂ removed to pipeline specifications (2%)

Is Recovery Profitable?

- Molecular Gate[®] costs are 20% less than amine process
 - ♦ 9 to 35 ¢ / Mcf product depending on scale
- Fixed-bed tail gas vent can be used as supplemental fuel
 - Iliminates venting from acid gas removal
- Other Benefits
 - Allows wells with high acid gas content to produce (alternative is shut-in)
 - Can dehydrate and remove acid gas to pipeline specs in one step
 - Less operator attention

16

Kvaerner Membrane Process

- Membrane separation of CO₂ from feed gas
 - Cellulose acetate spiral wound membrane
- High CO₂ permeate (effluent or waste stream) exiting the membrane is vented or blended into fuel gas
- Low CO₂ product exiting the membrane exceeds pipeline spec and is blended with feed gas
 Fuel Gas Spec

Kvaerner Membrane Technology

- CO₂ (and some methane) diffuse axially through the membrane
- High-CO₂ permeate exits from center of tube; enriched product exits from outer annular section
- One application for fuel gas permeate
 - Methane/CO₂ waste stream is added with fuel gas in a ratio to keep compressor emissions in compliance
- In Design Requirements
 - Upstream separators remove contaminants which may foul membrane
 - Line heater may be necessary

Industry Experience – Duke Energy

- Kvaerner process installed at Mewborn processing plant in Colorado, 2003
- Problem: Sales gas CO₂ content increasing above the 3% pipeline spec

Evaluated options

- Is Blend with better-than-spec gas
 - Not enough available
- Use cryogenic NGL recovery to reject CO₂
 - Infrastructure/capital costs too high
- Final choice: membrane or amine unit

Duke Energy Field Services

Industry Experience

Membrane chosen for other advantages; zero emissions is added benefit

- 65% less capital cost than amine unit
- ~10% operating cost (compared to amine)
- ~10% operator man hours (compared to amine)
- 1/3 footprint of amine unit
- Typical Process conditions

- Less process upsets
- Less noise
- Less additional infrastructure construction

Flow Into Membrane	Membrane Residue (Product)	Membrane Permeate	
22.3 MMcf/d	21	1.3	
70 to 110 °F	70 to 110	70 to 110	
800 to 865 psia	835	55	
3% CO ₂	2%	16%	
84% C ₁	89%	77%	
13% C ₂ +	9%	7%	
~0% H ₂ O	~0%	~0%	
~0% H ₂ S	~0%	~0%	

Is Recovery Profitable?

Costs

- Conventional DEA AGR would cost \$4.5 to \$5 million capital, \$0.5 million O&M per year
- Kvaerner Membrane process cost \$1.5 to \$1.7 million capital, \$0.02 to \$0.05 million O&M per year

Optimization of permeate stream

- A Permeate mixed with fuel gas, \$5/Mcf fuel credit
- Only installed enough membranes to take feed from >3% to >2% CO₂, and have an economic supplemental fuel supply for compressors
- In operation for over 2 years
- Offshore Middle East using NATCO membrane process on gas with 90% CO₂, achieving pipeline spec quality

Comparison of AGR Alternatives

	Amine (or Selexol™) Process	Morphysorb® Process	Molecular Gate [®] CO ₂	Kvaerner Membrane
Absorbent or Adsorbent	Water & Amine (Selexol [™])	Morpholine Derivatives	Titanium Silicate	Cellulose Acetate
Methane Savings	100%	66 to 75%	0%	0% or higher
Regeneration	Reduce Pressure & Heat	Reduce Pressure	Reduce Pressure to Vacuum	Replace Membrane ~5 years
Primary Operating Costs	Amine (Selexol™) & Steam	Electricity	Electricity	Nil
Capital Cost	100%	75%	<100%	35%
Operating Cost	100%	60% to 70%	80%	<10%

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies an practices
- Actual costs and benefits