Natural Gas Dehydration

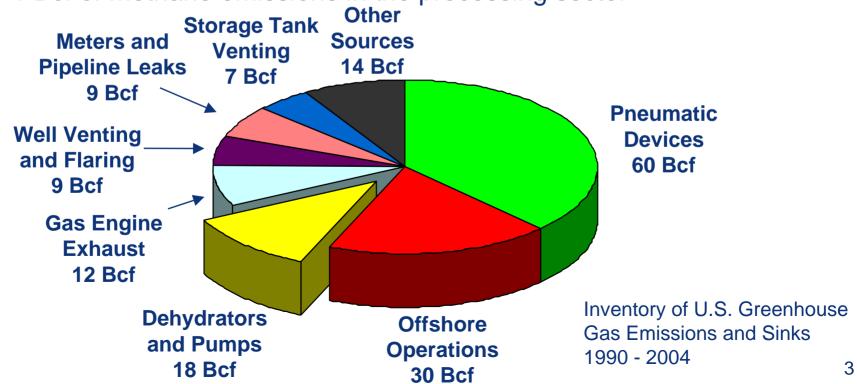
Innovative Technologies for the Oil & Gas Industry: Product Capture, Process Optimization, and Pollution Prevention

Targa Resources and the Gas Processors Association

July 27, 2006

epa.gov/gasstar

NaturalGas

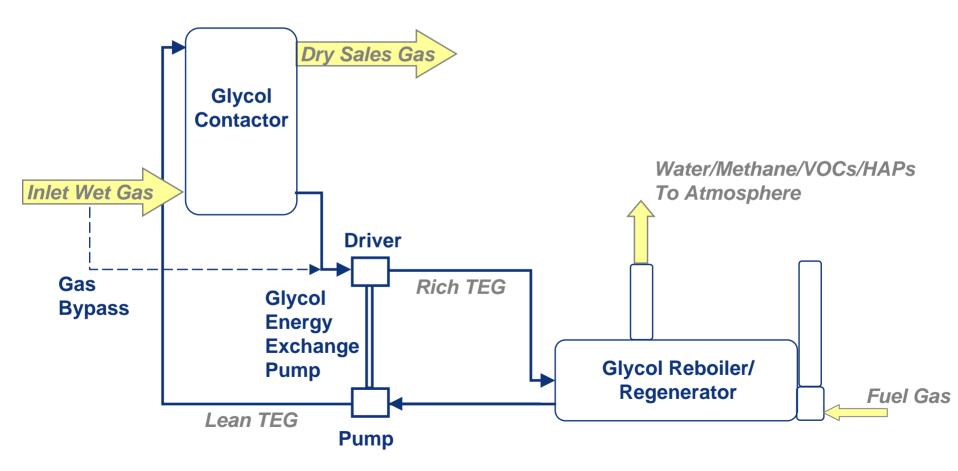

Natural Gas Dehydration: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion

Methane Losses from Dehydrators

- Dehydrators and pumps account for:
 - 18 Bcf of methane emissions in the production, gathering, and boosting sector
 - 1 Bcf of methane emissions in the processing sector

What is the Problem?

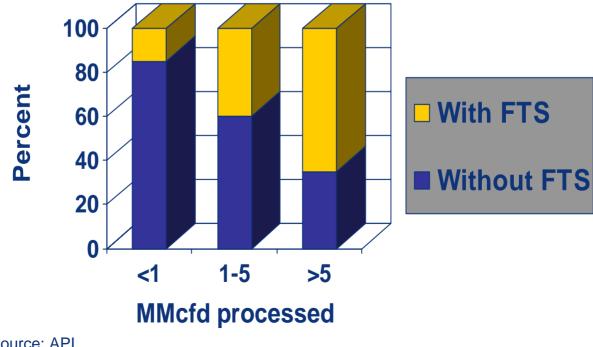

- Produced gas is saturated with water, which must be removed for gas transmission
- Glycol dehydrators are the most-common equipment to remove water from gas
 - 36,000 dehydration systems in natural gas production, gathering, and boosting
 - Most use triethylene glycol (TEG)
- Glycol dehydrators create emissions
 - Methane, VOCs, HAPs from reboiler vent
 - Methane from pneumatic controllers

Source: www.prideofthehill.com

Basic Glycol Dehydrator System Process Diagram

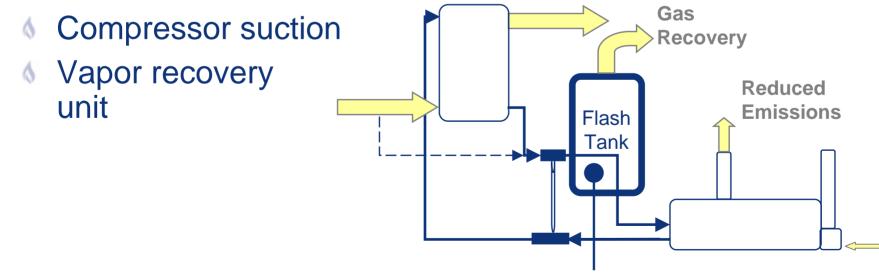
Methane Recovery: Five Options

- Optimized glycol circulation rates
- Flash tank separator (FTS) installation
- I Electric pump installation
- Replace glycol unit with desiccant dehydrator
- Sero emission dehydrator


Optimizing Glycol Circulation Rate

- Gas pressure and flow at gathering/booster stations vary over time
 - Glycol circulation rates are often set at a maximum circulation rate
- Glycol overcirculation results in more methane emissions without significant reduction in gas moisture content
 - A Partners found circulation rates two to three times higher than necessary
 - Methane emissions are directly proportional to circulation
- Lessons Learned study: optimize circulation rates

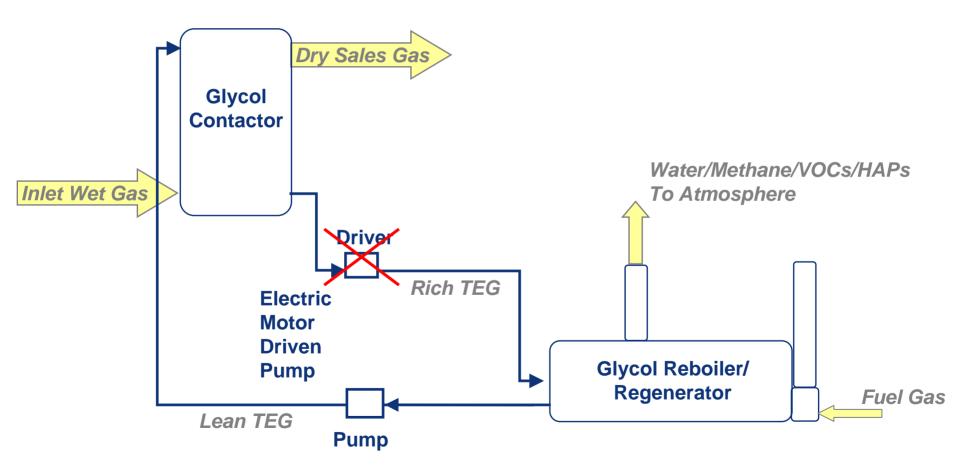
Installing Flash Tank Separator


- Flashed methane can be captured using an FTS ٨
- Many units are not using a FTS ٨

Methane Recovery

- Recovers ~ 90% of methane emissions
- Reduces VOCs by 10 to 90%
- Must have an outlet for low pressure gas
 - Version Fuel

Low Capital Cost/Quick Payback



Flash Tank Costs

- Lessons Learned study provides guidelines for scoping costs, savings and economics
- Capital and installation costs:
 - Capital costs range from \$5,000 to \$10,000 per flash tank
 - Installation costs range from \$2,400 to \$4,300 per flash tank
- Negligible O&M costs

Installing Electric Pump

Overall Benefits

- Financial return on investment through gas savings
- Increased operational efficiency
- Reduced O&M costs
- A Reduced compliance costs (HAPs, BTEX)
- Similar footprint as gas assist pump

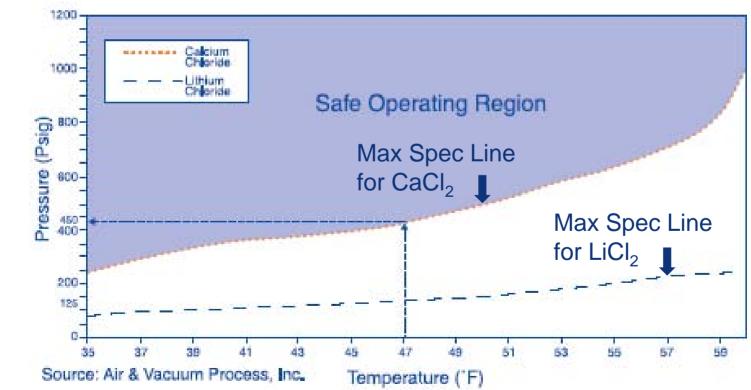
Is Recovery Profitable?

Three Options for Minimizing Glycol Dehydrator Emissions

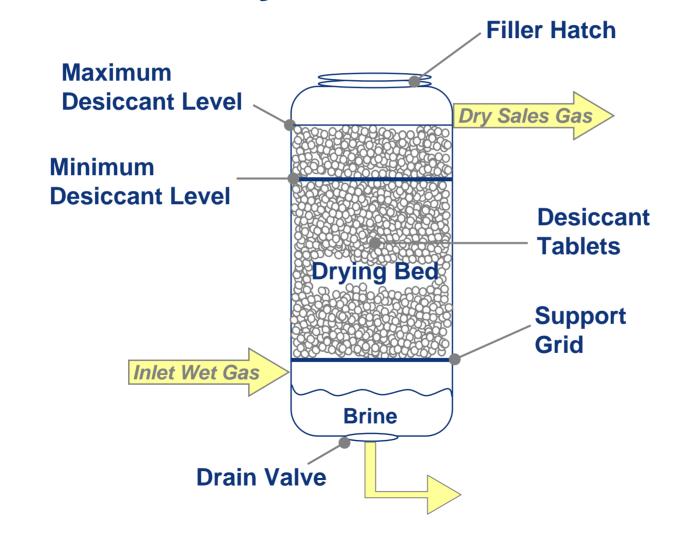
Option	Capital	Annual O&M	Emissions	Payback
	Costs	Costs	Savings	Period ¹
Optimize Circulation Rate	Negligible	Negligible	130 – 13,133 Mcf/year	Immediate
Install Flash	\$5,000 -	Negligible	236 – 7,098	2 months
Tank	\$10,000		Mcf/year	– 6 years
Install Electric Pump	\$4,200 - \$23,400	\$3,600	360 – 36,000 Mcf/year	< 1 month – several years

1 - Gas price of \$7/Mcf

Replace Glycol Unit with Desiccant Dehydrator


- - Wet gasses pass through drying bed of desiccant tablets
 - Tablets absorb moisture from gas and dissolve
- Moisture removal depends on:
 - Type of desiccant (salt)
 - 6 Gas temperature and pressure

Hygroscopic Salts		al T and P eline Spec	Cost	
Calcium chloride	47°F	440 psig	Least expensive	
Lithium chloride	60°F	250 psig	More expensive	


Desiccant Performance

Desiccant Performance Curves at Maximum Pipeline Moisture Spec (7 pounds water / MMcf)

Desiccant Dehydrator Schematic

Estimate Capital Costs

- Oetermine amount of desiccant needed to remove water
- A Determine inside diameter of vessel
- Costs for single vessel desiccant dehydrator
 - Capital cost varies between \$3,000 and \$17,000
 - Gas flow rates from 1 to 20 MMcf/day
 - Capital cost for 20-inch vessel with 1 MMcf/day gas flow is \$6,500
 - Installation cost assumed to be 75% of capital cost

How Much Desiccant Is Needed?

Example:

D = ? F = 1 MMcf/day I = 21 pounds/MMcf O = 7 pounds/MMcf B = 1/3

Where:

- D = Amount of desiccant needed (pounds/day)
- F = Gas flow rate (MMcf/day)
- I = 21 pounds/MMcf I = Inlet water content (pounds/MMcf)
 - O = Outlet water content (pounds/MMcf)
 - B = Desiccant/water ratio vendor rule of thumb

Calculate: D = F * (I - O) * B D = 1 * (21 - 7) * 1/3D = 4.7 pounds desiccant/day

Note: MMcf = Million Cubic Feet

Source: Van Air

Calculate Vessel Inside Diameter

Example:

Where:

- ID = ? D = 4.7 pounds/day T = 7 days B = 55 pounds/cf H = 5 inch
- ID = Inside diameter of the vessel (inch)
- D = Amount of desiccant needed (pounds/day)
- T = Assumed refilling frequency (days)
- B = Desiccant density (pounds/cf)
- H = Height between minimum and maximum bed level (inch)

Calculate:

$$ID = 12^{*} \sqrt{\frac{4^{*}D^{*}T^{*}12}{H^{*}B^{*}\pi}} = 16.2 \text{ inch}$$

Source: Van Air

Commercially ID available = 20 inch

Note: cf = Cubic Feet

Operating Costs

- Operating costs
 - Model Desiccant: \$2,059/year for 1 MMcf/day example
 - \$1.20/pound desiccant cost
 - In Brine Disposal: Negligible
 - \$1/bbl brine or \$14/year
 - Labor: \$1,560/year for 1 MMcf/day example
 - \$30/hour
- Total: ~\$3,633/year

Savings

Gas savings

- Gas vented from glycol dehydrator
- Gas vented from pneumatic controllers
- 6 Gas burned for fuel in glycol reboiler
- Gas burned for fuel in gas heater
- Less gas vented from desiccant dehydrator
- Methane emission savings calculation
 - 6 Glycol vent + Pneumatics vents Desiccant vents
- Operation and maintenance savings
 - & Glycol O&M + Glycol fuel Desiccant O&M

Gas Vented from Glycol Dehydrator

Example:

GV = ?

- F = 1 MMcf/day
- W = 21-7 pounds $H_2O/MMcf$
- R = 3 gallons/pound
- OC = 150%
- G = 3 cf/gallon

Where:

GV= Gas vented annually (Mcf/year)

- F = Gas flow rate (MMcf/day)
- W = Inlet-outlet H_2O content (pounds/MMcf)
- R = Glycol/water ratio (rule of thumb)
- OC = Percent over-circulation

G = Methane entrainment (rule of thumb)

Calculate:

GV = <u>(F * W * R * OC * G * 365 days/year)</u> 1,000 cf/Mcf

GV = 69 Mcf/year

Glycol Dehydrator Unit Source: GasTech

Gas Vented from Pneumatic Controllers

Example:

- GE = ?
- PD = 4
- EF = 126 Mcf/device/year

Where:

- GE = Annual gas emissions (Mcf/year)
- PD = Number of pneumatic devices per dehydrator
- EF = Emission factor (Mcf natural gas leakage/ pneumatic devices per year)

Calculate: GE = EF * PD GE = 504 Mcf/year

Norriseal Pneumatic Liquid Level Controller

Source: norriseal.com

Gas Lost from Desiccant Dehydrator

Example:

Where:

GLD = ? ID = 20 inch (1.7 feet) H = 76.75 inch (6.4 fe %G = 45% P₁ = 15 Psia P₂ = 450 Psig T = 7 days

- GLD = ? GLD = Desiccant dehydrator gas loss (Mcf/year) ID = 20 inch (1.7 feet) ID = Inside Diameter (feet)
- H = 76.75 inch (6.4 feet) H = Vessel height by vendor specification (feet)
 - %G = Percentage of gas volume in the vessel
 - P_1 = Atmospheric pressure (Psia)
 - P_2 = Gas pressure (Psig)
 - T = Time between refilling (days)

Calculate:

 $GLD = \frac{H * ID^{2} * \pi * P_{2} * \%G * 365 \text{ days/year}}{4 * P_{1} * T * 1,000 \text{ cf/Mcf}}$ GLD = 10 Mcf/year

Desiccant Dehydrator Unit Source: usedcompressors.com

Desiccant Dehydrator and Glycol Dehydrator Cost Comparison

Type of Costs and Savings	Desiccant (\$/yr)	Glycol (\$/yr)	
Implementation Costs			
Capital Costs Desiccant (includes the initial fill) Glycol	13,000	20,000	
Other costs (installation and engineering)	9,750	15,000	
Total Implementation Costs:	22,750	35,000	
Annual Operating and Maintenance Costs			
Desiccant Cost of desiccant refill (\$1.20/pound) Cost of brine disposal Labor cost	2,059 14 1,560		
Glycol			
Cost of glycol refill (\$4.50/gallon) Material and labor cost		167 4,680	
Total Annual Operation and Maintenance Costs:	3,633	4,847	

Based on 1 MMcfd natural gas operating at 450 psig and 47°F. Installation costs assumed at 75% of the equipment cost.

Desiccant Dehydrator Economics

NPV= \$18,236 IRR= 62% Payback= 18 months

Type of Costs						
and Savings	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
Capital costs	-\$22,750					
Avoided O&M						
costs		\$4,847	\$4,847	\$4,847	\$4,847	\$4,847
O&M costs -						
Desiccant		-\$3,633	-\$3,633	-\$3,633	-\$3,633	-\$3,633
Value of gas						
saved ¹		\$7,441	\$7,441	\$7,441	\$7,441	\$7,441
Glycol dehy.						
salvage value ²	\$10,000					
Total	-\$12,750	\$8,655	\$8,655	\$8,655	\$8,655	\$8,655

1 – Gas price = \$7/Mcf, Based on 563 Mcf/yr of gas venting savings and 500 Mcf/yr of fuel gas savings

2 - Salvage value estimated as 50% of glycol dehydrator capital cost

Partner Experience

- One partner routes glycol gas from FTS to fuel gas system, saving 24 Mcf/day (8,760 Mcf/year) at each dehydrator unit
- Texaco has installed FTS
 - A Recovers 98% of methane from the glycol
 - Reduced emissions from 1,232 1,706 Mcf/year to <47 Mcf/year

Zero Emission Dehydrator

- Combines many emission saving technologies into one unit
- Condenses the still gas and separates the skimmer gas from the condensate using an eductor
- Skimmer gas is rerouted back to reboiler for use as fuel
- Still gas is vaporized from the rich glycol when it passes through the glycol reboiler

Overall Benefits

- Still gas is condensable (heavier hydrocarbons and water) and can be removed from the noncondensable components using a still condenser
- The condensed liquid will be a mixture of water and hydrocarbons and can be further separated
- A Hydrocarbons (mostly methane) are valuable and can be recovered to be sold as a product
- Sy collecting the still column vent gas emissions are greatly reduced

Lessons Learned

- Optimizing glycol circulation rates increase gas savings, reduce emissions
 - Negligible cost and effort
- FTS reduces methane emissions by ~ 90 percent
 - Require a gas sink and platform space
- Electric pumps reduce O&M costs, reduce emissions, increase efficiency
 - Require electrical power source
- Desiccant dehydrator reduce O&M costs and reduce emissions compared to glycol
 - Mest for cold gas
- Sero emission dehydrator can virtually eliminate emissions
 - A Requires electrical power source

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies an practices
- Actual costs and benefits