Natural Gas Dehydration

Lessons Learned from Natural Gas STAR

Producers and Processors Technology Transfer Workshop
Western Gas Resources and EPA’s Natural Gas STAR Program
Gillette and Rock Springs, WY
May 9 & 11, 2006

Natural Gas Dehydration: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion Questions
Methane Losses from Dehydrators

Dehydrators and pumps account for:
1. 17 Bcf of methane emissions in the production, gathering, and boosting sector
2. 1 Bcf of methane emissions in the processing sector

Other Sources
- Storage Tank Venting: 9 Bcf
- Meters and Pipeline Leaks: 10 Bcf
- Gas Engine Exhaust: 12 Bcf
- Dehydrators and Pumps: 17 Bcf
- Well Venting and Flaring: 18 Bcf
- Other Sources: 21 Bcf
- Pneumatic Devices: 61 Bcf

What is the Problem?

Produced gas is saturated with water, which must be removed for gas processing and transmission
- Glycol dehydrators are the most common equipment to remove water from gas
 - 32,000 dehydration systems in natural gas production, gathering, and boosting
 - Most use triethylene glycol (TEG)

Glycol dehydrators create emissions
- Methane, VOCs, HAPs from reboiler vent
- Methane from pneumatic controllers

Source: www.prideofthehill.com
Methane Recovery: Five Options

- Optimize glycol circulation rates
- Flash tank separator (FTS) installation
- Electric pump installation
- Zero emission dehydrator
- Replace glycol unit with desiccant dehydrator
- Flare (no recovery)
Optimizing Glycol Circulation Rate

- Gas well’s initial production rate decreases over its lifespan
 - Glycol circulation rates designed for initial, highest production rate
 - Operators tend to “set it and forget it”
- Glycol overcirculation results in more methane emissions and fuel gas consumption without significant reduction in gas moisture content
 - Partners found circulation rates two to three times higher than necessary
 - Methane emissions and fuel gas consumption are directly proportional to circulation rate

Installing Flash Tank Separator (FTS)

- Flashed methane can be captured using an FTS
- Many units are not using an FTS

Source: API
Methane Recovery

- Recovers ~ 90% of methane emissions
- Reduces VOCs by 10 to 90%
- Must have an outlet for low pressure gas
 - Fuel
 - Compressor suction
 - Vapor recovery unit

Flash Tank Costs

- Lessons Learned study provides guidelines for scoping costs, savings and economics
- Capital and installation costs:
 - Capital costs range from $5,000 to $10,000 per flash tank
 - Installation costs range from $2,400 to $4,300 per flash tank
- Negligible O&M costs
Installing Electric Pump

Overall Benefits

- Financial return on investment through gas savings
- Increased operational efficiency
- Reduced O&M costs
- Reduced compliance costs (HAPs, BTEX)
- Similar footprint as gas assist pump
- Limitation: must have electric power source
Is Recovery Profitable?

Three Options for Minimizing Glycol Dehydrator Emissions

<table>
<thead>
<tr>
<th>Option</th>
<th>Capital Costs</th>
<th>Annual O&M Costs</th>
<th>Emissions Savings</th>
<th>Payback Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimize Circulation Rate</td>
<td>Negligible</td>
<td>Negligible</td>
<td>130 – 13,133 Mcf/year</td>
<td>Immediate</td>
</tr>
<tr>
<td>Install Flash Tank</td>
<td>$5,000 - $10,000</td>
<td>Negligible</td>
<td>236 – 7,098 Mcf/year</td>
<td>2 months – 6 years</td>
</tr>
<tr>
<td>Install Electric Pump</td>
<td>$4,200 - $23,400</td>
<td>$3,600</td>
<td>360 – 36,000 Mcf/year</td>
<td>< 1 month – several years</td>
</tr>
</tbody>
</table>

1 – Gas price of $7/Mcf

Zero Emission Dehydrator

- Combines many emission saving technologies into one unit
- Still gas is vaporized from the rich glycol when it passes through the glycol reboiler
- Condenses the still gas and separates the skimmer gas from the condensate using an eductor
- Skimmer gas is rerouted back to reboiler for use as fuel
Overall Benefits

- Still gas is condensable (heavier hydrocarbons and water) and can be removed from the non-condensable components using a still condenser.
- The condensed liquid will be a mixture of water and hydrocarbons and can be further separated.
- Hydrocarbons (mostly methane) are valuable and can be recovered as fuel or product.
- By collecting the still column vent gas emissions are greatly reduced.

Replace Glycol Unit with Desiccant Dehydrator

- Desiccant Dehydrator
 - Wet gases pass through drying bed of desiccant tablets.
 - Tablets absorb moisture from gas and dissolve.
- Moisture removal depends on:
 - Type of desiccant (salt)
 - Gas temperature and pressure.

<table>
<thead>
<tr>
<th>Hygroscopic Salts</th>
<th>Typical T and P for Pipeline Spec</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium chloride</td>
<td>47°F 440 psig</td>
<td>Least expensive</td>
</tr>
<tr>
<td>Lithium chloride</td>
<td>60°F 250 psig</td>
<td>More expensive</td>
</tr>
</tbody>
</table>
Desiccant Performance

Desiccant Performance Curves at Maximum Pipeline Moisture Spec (7 pounds water / MMcf)

Desiccant Dehydrator Schematic

Maximum Desiccant Level
Minimum Desiccant Level
Drying Bed
Drain Valve
Inlet Wet Gas
Desiccant Tablets
Support Grid
Dry Sales Gas
Filler Hatch
Brine
Estimate Capital Costs

- Determine amount of desiccant needed to remove water
- Determine diameter of vessel
- Costs for single vessel desiccant dehydrator
 - Capital cost varies between $3,000 and $17,000
 - Gas flow rates from 1 to 20 MMcf/day
 - Capital cost for 20-inch vessel with 1 MMcf/day gas flow is $6,500
 - Installation cost assumed to be 75% of capital cost
- Normally installed in pairs
 - One drying, one refilled for standby

Note:
MMcf = Million Cubic Feet

How Much Desiccant Is Needed?

Example:

- D = ?
- F = 1 MMcf/day
- I = 21 pounds/MMcf
- O = 7 pounds/MMcf
- B = 1/3

Calculate:

\[D = F \times (I - O) \times B \]

\[D = 1 \times (21 - 7) \times \frac{1}{3} \]

\[D = 4.7 \text{ pounds desiccant/day} \]

Note:
MMcf = Million Cubic Feet

Source: Van Air
Calculate Vessel Diameter

Example:
ID = ?
D = 4.7 pounds/day
T = 7 days
B = 55 pounds/cf
H = 5 inch

Where:
ID = Inside diameter of the vessel (inch)
D = Amount of desiccant needed (pounds/day)
T = Assumed refilling frequency (days)
B = Desiccant density (pounds/cf)
H = Height between minimum and maximum bed level (inch)

Calculate:
\[ID = 12\sqrt[3]{\frac{4*D*T*12}{H*B*\pi}} = 16.2 \text{ inch} \]

Standard ID available = 20 inch

Note:
cf = Cubic Feet

Source: Van Air

Operating Costs

- Operating costs
 - Desiccant: $2,059/year for 1 MMcf/day example
 - $1.20/pound desiccant cost
 - Brine Disposal: Negligible
 - $1/bbl brine or $14/year
 - Labor: $1,560/year for 1 MMcf/day example
 - $30/hour

Total: ~$3,633/year
Savings

- Gas savings
 - Gas vented from glycol dehydrator
 - Gas vented from pneumatic controllers
 - Gas burner for fuel in glycol reboiler
 - Gas burner for fuel in gas heater
- Less gas vented from desiccant dehydrator
- Methane emission savings calculation
 - Glycol vent + Pneumatics vents – Desiccant vents
- Operation and maintenance savings
 - Glycol O&M + Glycol fuel – Desiccant O&M

Gas Vented from Glycol Dehydrator

Example:

Where:
- \(GV = \) Gas vented annually (Mcf/year)
- \(F = \) Gas flow rate (MMcf/day)
- \(W = 21-7 \) pounds \(H_2O/MMcf \)
- \(R = 3 \) gallons/pound
- \(OC = 150\% \)
- \(G = 3 \) cf/gallon

Calculate:

\[
GV = \left(\frac{F \times W \times R \times OC \times G \times 365 \text{ days/year}}{1,000 \text{ cf/Mcf}} \right)
\]

\(GV = 69 \) Mcf/year

Source: GasTech
Gas Vented from Pneumatic Controllers

Example:
GE = ?
PD = 4
EF = 126 Mcf/device/year

Where:
GE = Annual gas emissions (Mcf/year)
PD = Number of pneumatic devices per dehydrator
EF = Emission factor (Mcf natural gas bleed/pneumatic devices per year)

Calculate:
GE = EF * PD
GE = 504 Mcf/year

Source: norrisenal.com

Gas Lost from Desiccant Dehydrator

Example:
GLD = ?
ID = 20 inch (1.7 feet)
H = 76.75 inch (6.4 feet)
%G = 45%
P_1 = 15 Psia
P_2 = 450 Psig
T = 7 days

Where:
GLD = Desiccant dehydrator gas loss (Mcf/year)
ID = Inside Diameter (feet)
H = Vessel height by vendor specification (feet)
%G = Percentage of gas volume in the vessel
P_1 = Atmospheric pressure (Psia)
P_2 = Gas pressure (Psig)
T = Time between refilling (days)

Calculate:
GLD = H * ID^2 * π * P_2 * %G * 365 days/year
4 * P_1 * T * 1,000 cf/Mcf

GLD = 10 Mcf/year

Source: usedcompressors.com
Desiccant Dehydrator Economics

- NPV = $18,236 IRR= 62% Payback= 18 months

<table>
<thead>
<tr>
<th>Type of Costs and Savings</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital costs</td>
<td>-$22,750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoided O&M costs</td>
<td></td>
<td>$4,847</td>
<td>$4,847</td>
<td>$4,847</td>
<td>$4,847</td>
<td>$4,847</td>
</tr>
<tr>
<td>Value of gas saved 1</td>
<td></td>
<td>$7,441</td>
<td>$7,441</td>
<td>$7,441</td>
<td>$7,441</td>
<td>$7,441</td>
</tr>
<tr>
<td>Glycol dehy. salvage value 2</td>
<td></td>
<td>$10,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-$12,750</td>
<td>$8,655</td>
<td>$8,655</td>
<td>$8,655</td>
<td>$8,655</td>
<td>$8,655</td>
</tr>
</tbody>
</table>

1 – Gas price = $7/Mcf. Based on 563 Mcf/yr of gas venting savings and 500 Mcf/yr of fuel gas savings
2 – Salvaage value estimated as 50% of glycol dehydrator capital cost

Desiccant Dehydrator and Glycol Dehydrator Cost Comparison

<table>
<thead>
<tr>
<th>Type of Costs and Savings</th>
<th>Desiccant ($/yr)</th>
<th>Glycol ($/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desiccant (includes the initial fill)</td>
<td>13,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Glycol</td>
<td>9,750</td>
<td>15,000</td>
</tr>
<tr>
<td>Other costs (installation and engineering)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Implementation Costs:</td>
<td>22,750</td>
<td>35,000</td>
</tr>
<tr>
<td>Annual Operating and Maintenance Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desiccant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of desiccant refill ($1.20/pound)</td>
<td>2,059</td>
<td></td>
</tr>
<tr>
<td>Cost of brine disposal</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Labor cost</td>
<td>1,560</td>
<td></td>
</tr>
<tr>
<td>Glycol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of glycol refill ($4.50/gallon)</td>
<td></td>
<td>167</td>
</tr>
<tr>
<td>Material and labor cost</td>
<td>4,680</td>
<td></td>
</tr>
<tr>
<td>Total Annual Operation and Maintenance Costs:</td>
<td>3,633</td>
<td>4,847</td>
</tr>
</tbody>
</table>

Based on 1 MMcf/d natural gas operating at 450 psig and 47°F
Installation costs assumed at 75% of the equipment cost
Partner Experience

- One partner routes glycol gas from FTS to fuel gas system, saving 24 Mcf/day (8,760 Mcf/year) at each dehydrator unit
- Texaco has installed FTS
 - Recovered 98% of methane from the glycol
 - Reduced emissions from 1,232 - 1,706 Mcf/year to <47 Mcf/year

Lessons Learned

- Optimizing glycol circulation rates increase gas savings, reduce emissions
 - Negligible cost and effort
- FTS reduces methane emissions by ~ 90 percent
 - Require a low pressure gas outlet
- Electric pumps reduce O&M costs, reduce emissions, increase efficiency
 - Require electrical power source
- Zero emission dehydrator can virtually eliminate emissions
 - Requires electrical power source
- Desiccant dehydrator reduce O&M costs and reduce emissions compared to glycol
 - Best for cold gas
Discussion Questions

- To what extent are you implementing these technologies?
- How can the Lessons Learned studies be improved upon or altered for use in your operation(s)?
- What are the barriers (technological, economic, lack of information, regulatory, focus, manpower, etc.) that are preventing you from implementing this technology?