Natural Gas STAR Program

Innovative Technologies for the Oil & Gas Industry: Product Capture, Process Optimization, and Pollution Prevention

Producers and Processors Technology Transfer Workshop

New Mexico Oil and Gas Association and EPA's Natural Gas STAR Program

Farmington, NM

February 21, 2006

Agenda

- Background – U.S. Methane Emissions
- Methane Emissions in the U.S. Oil and Gas Industry
- Gas STAR Program Overview & Accomplishments
- Opportunities for Maximizing Efficiency and Profits Through Methane Reduction Projects
- Gas STAR Program Resources
The “So What” – Why are we here?

- Reducing methane emissions from the U.S. oil and gas industry has cross-cutting impacts
 - Addressing environmental and global warming concerns
 - Potential for increased profits and operational efficiency in the oil & gas sector
 - Increasing domestic natural gas supply

U.S. Greenhouse Gas Emissions – All Sources

- CO₂: 85%
- CH₄: 8%
- N₂O: 5%
- HFCs, PCs, & SF₆: 2%

Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2003, USEPA, April, 2005
U.S. Methane Emissions

- Landfills: 24%
- Oil & Natural Gas Systems: 26%
- Coal Mining: 10%
- Enteric Fermentation: 21%
- Other: 19%

Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2003, USEPA, April, 2005

U.S. Oil & Natural Gas Industry

- Methane losses from the U.S. oil & natural gas industry total 355 Bcf
- Accounts for 2% of total U.S. greenhouse gas emissions

U.S. Oil & Natural Gas Opportunities

- 355 Bcf of methane emissions per year amounts to
 - $3.55B in lost revenue at $10/Mcf natural gas
 - Global warming equivalent of putting over 31 million additional cars on the road in the U.S.
 - Gas supply capable of heating over 5 million U.S. households for a year
- U.S. oil and gas industry has an opportunity to cost effectively reduce these impacts

Natural Gas STAR Program

The Natural Gas STAR Program is a flexible, voluntary partnership between EPA and the oil and natural gas industry designed to cost-effectively reduce methane emissions from natural gas operations.
Gas STAR Partners & Endorsers

- 110 Program Partners across all four sectors
 - Recommended technologies and practices come directly from partner companies and industry experts
- 17 endorser associations, including
 - American Petroleum Institute (API)
 - Domestic Petroleum Council (DPC)
 - Gas Processors Association (GPA)
 - Independent Producers Association of Mountain States (IPAMS)
 - Interstate Oil & Gas Compact Commission (IOGCC)
 - Southern Gas Association
 - Colorado Oil & Gas Association (COGA)
 - Petroleum Association of Wyoming (PAW)
 - Petroleum Technology Transfer Council (PTTC)
 - Independent Producer’s Association of America (IPAA)

Natural Gas STAR Partner Accomplishments

- Natural Gas STAR Partners have reduced methane emissions by 403 Bcf
- Methane emissions from U.S. oil and gas sector below 1990 levels
Oil & Gas Methane Emissions Without Gas STAR Program (2003)

- **Production**
 - Emissions: 148 Bcf
 - Reductions: 24 Bcf

- **Transmission / Storage**
 - Emissions: 101 Bcf
 - Reductions: 18 Bcf

- **Distribution**
 - Emissions: 68 Bcf
 - Reductions: 7 Bcf

- **Processing**
 - Emissions: 36 Bcf
 - Reductions: 1 Bcf

- **Oil Downstream**
 - Emissions: 2 Bcf

Methane Emission Reduction Opportunities

- Partners have reported over 80 technologies and practices for achieving cost effective methane emission reductions

<table>
<thead>
<tr>
<th>Best Practices - Production</th>
<th>Best Practices - Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform reduced emission completions</td>
<td>Conduct helicopter leak surveys</td>
</tr>
<tr>
<td>Install vapor recovery units</td>
<td>Conduct infrared leak surveys</td>
</tr>
<tr>
<td>Install plunger lifts</td>
<td>Replace glycol dehydration units with methanol injection</td>
</tr>
<tr>
<td>Install instrument air systems</td>
<td>Install electric compressors</td>
</tr>
<tr>
<td>Eliminate unnecessary equipment and/or systems</td>
<td>Use hot taps for in-service pipeline connections</td>
</tr>
<tr>
<td>Install electric compressors</td>
<td></td>
</tr>
</tbody>
</table>
Maximizing Efficiency of Glycol Dehydrators

- Triethylene Glycol is the common technology for removing moisture from produced natural gas
- Glycol also absorbs methane, VOCs and HAPs
- Glycol reboilers vent absorbed water, methane, VOCs, HAPs to the atmosphere
 - Wastes gas, costs money, reduces air quality
- Levels of glycol circulated are often 2-3 times higher than needed
 - Results in higher methane emissions and fuel use
- On average, 600 Mcf methane per glycol dehydrator is emitted each year

Emission Reduction Options

- Install flash tank separator (FTS)
 - Recovers all methane bypassed and most methane absorbed by glycol
- Optimize glycol circulation rate
 - Methane emissions are directly proportional to glycol circulation rate
Is Recovery Profitable?

Two Options for Minimizing Glycol Dehydrator Emissions

<table>
<thead>
<tr>
<th>Option</th>
<th>Capital Costs</th>
<th>Annual O&M Costs</th>
<th>Emissions Savings</th>
<th>Payback Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimize Circulation Rate</td>
<td>Negligible</td>
<td>Negligible</td>
<td>130 – 1,133 Mcf/year</td>
<td>Immediate</td>
</tr>
<tr>
<td>Install FTS</td>
<td>$5,000 - $10,000</td>
<td>Negligible</td>
<td>236 – 7,098 Mcf/year</td>
<td>1 month – 4 years</td>
</tr>
</tbody>
</table>

Partner Experience

- Texaco (now Chevron) has installed FTS on dehydrators in Southern Texas and Louisiana
 - Recovers 98% of methane from the glycol
 - Reduced emissions from 1,232 - 1,706 Mcf/year to <47 Mcf/year
- One partner routes glycol gas from FTS to fuel gas system, saving 24 Mcf/day (8,760 Mcf/year) at each dehydrator unit

More information available in the “Optimize Glycol Circulation and Install of Flash Tank Separators in Dehydrators” Lessons Learned document at www.epa.gov/gasstar/
Methane Losses from Storage Tank Venting

- Flash losses occur when crude is transferred from a gas-oil separator at higher pressure to an atmospheric pressure storage tank.
- Working losses - occur when crude levels change and when crude in tank is agitated.
- Standing losses - occur with daily and seasonal temperature and pressure changes.

Maximizing Efficiency Through Use of Vapor Recovery Units (VRU’s)

- Capture up to 95% of hydrocarbon vapors vented from tanks.
- Recovered vapors have higher Btu content than pipeline quality natural gas.
- Recovered vapors are more valuable than natural gas and have multiple uses:
 - Re-inject into sales pipeline
 - Use as on-site fuel
 - Send to processing plants for recovering NGLs.
Types of Vapor Recovery Units

- Conventional vapor recovery units (VRUs)
 - Use rotary compressor to suck vapors out of atmospheric pressure storage tanks
 - Require electrical power or engine
- Venturi ejector vapor recovery units (EVRU™) or Vapor Jet
 - Use Venturi jet ejectors in place of rotary compressors
 - Do not contain any moving parts
 - EVRU™ requires source of high pressure gas and intermediate pressure system
 - Vapor Jet requires high pressure water motive

Industry Experience: Chevron

- Chevron installed eight conventional VRUs at crude oil stock tanks in 1996
- At today’s gas prices, economics are very attractive

<table>
<thead>
<tr>
<th>Project Economics – Chevron</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane Loss Reduction (Mcf/unit/year)</td>
<td>Approximate Savings per Unit</td>
</tr>
<tr>
<td>21,900</td>
<td>$219,000</td>
</tr>
</tbody>
</table>

*Assumes a $10 per Mcf gas price; excludes value of recovered natural gas liquids. Refer to the Gas STAR Lessons Learned for more information.
Lessons Learned

- Vapor recovery can yield generous returns when there are market outlets for recovered gas
 - Recovered high heat content gas has extra value
 - VRU technology can be highly cost-effective in most general applications
 - Venturi jet models work well in certain niche applications, with reduced operating and maintenance costs
- Potential for reduced compliance costs can be considered when evaluating economics of VRU, EVRU™, or Vapor Jet

More information available in the “Installing Vapor Recovery Units on Crude Oil Storage Tanks” Lessons Learned document at www.epa.gov/gasstar/

Program Resources

- Guidance on recommended practices & technologies
 - Detailed implementation guides, including partner case studies
 - Economic analysis tools
 - Communication tools
- Available on www.epa.gov/gasstar
- Technology Transfer workshops
 - Free and open to the public
- Annual record of Partner methane savings
- One-on-one technical assistance
Workshops

- Technology Transfer Workshops (5 to 6 per year)
 - Producers and Processors Technology Transfer Workshop
 February 21, 2006
 Farmington, New Mexico, San Juan College
 - Producers and Processors Technology Transfer Workshop
 Sponsored by Western Gas Resources & Petroleum Association of WY
 May 9, 2006,
 Gillette, Wyoming
 - Producers and Processors Technology Transfer Workshop
 Sponsored by Western Gas Resources & Petroleum Association of WY
 May 11, 2006
 Rock Springs, Wyoming
 - Producers and Processors Technology Transfer Workshop
 Sponsored by ConocoPhillips
 May 25, 2006
 Alaska

White House “Methane to Markets” Initiative

- Five year activity to develop verifiable methane emissions reduction projects at landfills, coal mines and natural gas systems.
- Goal is to build long-term capacity within developing countries and economies in transition.
- Countries include: Argentina, Australia, Brazil, China, Colombia, India, Italy, Japan, Mexico, Nigeria, Russia, Ukraine and UK.
- Gas STAR will lead natural gas system-related activities, including upcoming launch of international program
- www.methanetomarkets.org
Contact Information

Carey Bylin
202-343-9669
bylin.carey@epa.gov

epa.gov/gasstar