Methane Savings from Compressors

Lessons Learned from Natural Gas STAR

Producers and Processors Technology Transfer Workshop

New Mexico Oil and Gas Association and EPA’s Natural Gas STAR Program
Farmington, NM
February 21, 2006

Compressors: Agenda

- Methane Losses from Reciprocating Compressors
- Methane Savings through Economic Rod Packing Replacement
- Is Rod Packing Replacement Profitable?
- Methane Losses from Centrifugal Compressors
- Methane Savings through Dry Seals
- Is Wet Seal Replacement Profitable?
- Directed Inspection and Maintenance (DI&M) at Compressor Stations
- Discussion Questions
Oil & Gas Methane Emissions Without Gas STAR Program (2003)

- **Production**
 - Emissions: 148 Bcf
 - Reductions: 24 Bcf

- **Transmission / Storage**
 - Emissions: 101 Bcf
 - Reductions: 18 Bcf

- **Distribution**
 - Emissions: 68 Bcf
 - Reductions: 7 Bcf

- **Processing**
 - Emissions: 36 Bcf
 - Reductions: 1 Bcf

- **Oil Downstream**
 - Emissions: 2 Bcf

Compressor Methane Emissions
What is the problem?

- Methane emissions from the ~45,000 compressors in the natural gas industry account for 86 Bcf/yr or about 28% of all methane emissions from the natural gas industry.
Methane Losses from Reciprocating Compressors

- Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 60 cubic feet per hour (cf/hr)
 - Worn packing has been reported to leak up to 900 cf/hr

Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket, between packing cups, around the rings and between rings and shaft
Methane Losses from Rod Packing

Emission from Running Compressor	870 Mcf/year-packing
Emission from Idle/Pressurized Compressor	1270 Mcf/year-packing
Leakage from Packing Cup	690 Mcf/year-packing
Leakage from Distance Piece	300 Mcf/year-packing

<table>
<thead>
<tr>
<th>Leakage from Rod Packing on Running Compressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packing Type</td>
</tr>
<tr>
<td>Leak Rate (Mcf/yr)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leakage from Rod Packing on Idle/Pressurized Compressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packing Type</td>
</tr>
<tr>
<td>Leak Rate (Mcf/yr)</td>
</tr>
</tbody>
</table>

Source: Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations – PRCI/ GRI/ EPA

Methane Savings Through Economic Rod Packing Replacement

- Assess costs of replacements
 - A set of rings: $500 to $800
 - (with cups and case) $1500 to $2500
 - Rods: $1800 to $10000
 - Special coatings such as ceramic, tungsten carbide, or chromium can increase rod costs
- Determine economic replacement threshold
- Partners can determine economic threshold for all replacements

Economic Replacement Threshold (Economic formula): \(OR \cdot DF \cdot 1,000 \)

\[OR = \text{Cost of replacement ($)} \]
\[DF = \frac{H \cdot GF}{(1+I)^H} \]
\[H = \text{Hours of compressor operation per year} \]
\[GF = \text{Gas price ($/Mcf)} \]

Where:

- OR = Cost of replacement ($)
- DF = Discount factor \((I)\) @ interest \(I\)
- H = Hours of compressor operation per year
- GF = Gas price ($/Mcf)
Is Rod Packing Replacement Profitable?

- Periodically measure leakage increase

<table>
<thead>
<tr>
<th></th>
<th>Rings Only</th>
<th>Rod and Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rings:</td>
<td>$1,200</td>
<td>$1,200</td>
</tr>
<tr>
<td>Rod:</td>
<td>$0</td>
<td>$7,000</td>
</tr>
<tr>
<td>Gas:</td>
<td>$10/Mcf</td>
<td>$10/Mcf</td>
</tr>
<tr>
<td>Operating:</td>
<td>8,000 hrs/yr</td>
<td>8,000 hrs/yr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leak Reduction Expected (scfh)</th>
<th>Payback (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.5</td>
</tr>
<tr>
<td>17</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>2.0</td>
</tr>
<tr>
<td>6</td>
<td>3.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leak Reduction Expected (scfh)</th>
<th>Payback (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>0.5</td>
</tr>
<tr>
<td>113</td>
<td>1.0</td>
</tr>
<tr>
<td>59</td>
<td>2.0</td>
</tr>
<tr>
<td>41</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Based on 10% interest rate
Mcf = thousand cubic feet, scfh = standard cubic feet per hour

Methane Losses from Centrifugal Compressors

- Centrifugal compressor wet seals leak little gas at the seal face
 - Seal oil degassing may vent 40 to 200 cubic feet per minute (cf/m) to the atmosphere
 - A Natural Gas STAR partner reported wet seal emissions of 75 Mcf/day (52 cf/m)
Centrifugal Compressor Wet Seals

- High pressure seal oil circulates between rings around the compressor shaft
- Gas absorbs in the oil on the inboard side
- Little gas leaks through the oil seal
- Seal oil degassing vents methane to the atmosphere

Gas STAR Partners Reduce Emissions with Dry Seals

- Dry seal springs press the stationary ring in the seal housing against the rotating ring when the compressor is not rotating
- At high rotation speed, gas is pumped between the seal rings creating a high pressure barrier to leakage
- Only a very small amount of gas escapes through the gap
- 2 seals are often used in tandem
- Can operate for compressors up to 3,000 psig safely
Methane Savings through Dry Seals

- Dry seals typically leak at a rate of only 0.5 to 3 cf/m
- Significantly less than the 40 to 200 cf/m emissions from wet seals
- Gas savings translate to approximately $160,000 to $930,000 at $10/Mcf

Economics of Replacing Seals

- Compare costs and savings for a 6-inch shaft beam compressor

<table>
<thead>
<tr>
<th>Cost Category</th>
<th>Dry Seal ($)</th>
<th>Wet Seal ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal costs (2 dry @ $10,000/shaft-inch, w/testing)</td>
<td>$120,000</td>
<td></td>
</tr>
<tr>
<td>Seal costs (2 wet @ $5,000/shaft-inch)</td>
<td>$60,000</td>
<td></td>
</tr>
<tr>
<td>Other costs (engineering, equipment installation)</td>
<td>$120,000</td>
<td>$0</td>
</tr>
<tr>
<td>Total Implementation Costs</td>
<td>$240,000</td>
<td>$60,000</td>
</tr>
<tr>
<td>Annual O&M</td>
<td>$10,000</td>
<td>$73,000</td>
</tr>
<tr>
<td>Annual Methane Emissions (@ $10/Mcf; 8,000 h/yr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 dry seals at a total of 6 scfm</td>
<td>$28,800</td>
<td></td>
</tr>
<tr>
<td>2 wet seals at a total of 100 scfm</td>
<td></td>
<td>$480,000</td>
</tr>
<tr>
<td>Total Costs Over 5-Year Period</td>
<td>$434,000</td>
<td>$2,825,000</td>
</tr>
<tr>
<td>Total Dry Seal Savings Over 5 Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savings</td>
<td>$2,391,000</td>
<td></td>
</tr>
<tr>
<td>Methane Emissions Reductions (Mcf; at 45,120 Mcf/yr)</td>
<td></td>
<td>225,600</td>
</tr>
</tbody>
</table>

1 Flowsserve Corporation
Is Wet Seal Replacement Profitable?

- Replacing wet seals in a 6 inch shaft beam compressor operating 8,000 hr/yr
 - Net Present Value = $1,729,000
 - Assuming a 10% discount over 5 years
 - Internal Rate of Return = 233%
 - Payback Period = 6 months
 - Ranges from 3 to 13 months based on wet seal leakage rates between 40 and 200 cf/m

- Economics are better for new installations
 - Vendors report that 90% of compressors sold to the natural gas industry are centrifugal with dry seals

Directed Inspection and Maintenance at Compressor Stations

- What is the problem?
 - Gas leaks are invisible, unregulated and go unnoticed
 - Gas STAR partners find that valves, connectors, compressor seals and open-ended lines (OELs) are major sources
 - Facility fugitive methane emissions depend on operating practices, equipment age and maintenance
Natural Gas Losses by Equipment Type

- Pressure Relief Valves: 3.5%
- Orifice Meters: 0.1%
- Other Flow Meters: 0.2%
- Open-Ended Lines: 11.1%
- Control Valves: 4.0%
- Compressor Seals: 23.4%
- Crankcase Vents: 4.2%
- Pump Seals: 1.9%
- Pressure Regulators: 0.4%
- Valves: 26.0%
- Blowdowns: 0.8%
- Connectors: 24.4%

Clearstone Engineering, 2002

Methane Losses

<table>
<thead>
<tr>
<th>Plant No.</th>
<th>Gas Losses From Top 10 Leakers (Mcf/d)</th>
<th>Gas Losses From All Equipment Leakers (Mcf/d)</th>
<th>Contribution By Top 10 Leakers (%)</th>
<th>Percent of Plant Components that Leak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43.8</td>
<td>122.5</td>
<td>35.7</td>
<td>1.78</td>
</tr>
<tr>
<td>2</td>
<td>133.4</td>
<td>206.5</td>
<td>64.6</td>
<td>2.32</td>
</tr>
<tr>
<td>3</td>
<td>224.1</td>
<td>352.5</td>
<td>63.6</td>
<td>1.66</td>
</tr>
<tr>
<td>4</td>
<td>76.5</td>
<td>211.3</td>
<td>36.2</td>
<td>1.75</td>
</tr>
<tr>
<td>Combined</td>
<td>477.8</td>
<td>892.84</td>
<td>53.5</td>
<td>1.85</td>
</tr>
</tbody>
</table>

Excluding leakage into flare system
How Can These Losses Be Reduced?

- Implementing a Directed Inspection and Maintenance (DI&M) Program

What is a DI&M Program?

- Voluntary program to identify and fix leaks that are cost-effective to repair
- Outside of mandatory LDAR
- Survey cost will pay out in the first year
- Provides valuable data on leakers
Screening and Measurement

Summary of Screening and Measurement Techniques

<table>
<thead>
<tr>
<th>Instrument/Technique</th>
<th>Effectiveness</th>
<th>Approximate Capital Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soap Solution</td>
<td>**</td>
<td>$</td>
</tr>
<tr>
<td>Electronic Gas Detectors</td>
<td>*</td>
<td>$$</td>
</tr>
<tr>
<td>Acoustic Detection/ Ultrasound Detection</td>
<td>**</td>
<td>$$$</td>
</tr>
<tr>
<td>TVA (FID)</td>
<td>*</td>
<td>$$$</td>
</tr>
<tr>
<td>Bagging</td>
<td>*</td>
<td>$$$</td>
</tr>
<tr>
<td>High Volume Sampler</td>
<td>**</td>
<td>$$$</td>
</tr>
<tr>
<td>Rotameter</td>
<td>**</td>
<td>$</td>
</tr>
<tr>
<td>Infrared Detection</td>
<td>***</td>
<td>$$$</td>
</tr>
</tbody>
</table>

* - Least effective at screening/measurement
** - Most effective at screening/measurement
$ - Smallest capital cost
$$ - Largest capital cost

Cost-Effective Repairs

Repair the Cost Effective Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Value of Lost Gas ($)</th>
<th>Estimated Repair Cost ($)</th>
<th>Payback (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug Valve: Valve Body</td>
<td>42,137</td>
<td>200</td>
<td>0.1</td>
</tr>
<tr>
<td>Union: Fuel Gas Line</td>
<td>40,517</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td>Threaded Connection</td>
<td>34,820</td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>Distance Piece: Rod Packing</td>
<td>25,496</td>
<td>2,000</td>
<td>0.9</td>
</tr>
<tr>
<td>Open-Ended Line</td>
<td>23,197</td>
<td>60</td>
<td>0.0</td>
</tr>
<tr>
<td>Compressor Seals</td>
<td>19,276</td>
<td>2,000</td>
<td>1.2</td>
</tr>
<tr>
<td>Gate Valve</td>
<td>15,763</td>
<td>60</td>
<td>0.0</td>
</tr>
</tbody>
</table>

*Based on $10/Mcf gas price
How Much Gas Can Be Saved?

Natural Gas STAR Lessons Learned study for DI&M at compressor stations estimates

- Potential Average Gas Savings ~ 29,000 Mcf/yr/compressor station
- Value of gas saved ~ $290,000 per compressor station (at gas price of $10/Mcf)
- Average initial implementation cost ~ $26,000 per compressor station

Discussion Questions

- To what extent are you implementing these opportunities?
- How could these opportunities be improved upon or altered for use in your operation?
- Can you suggest other methods for reducing emissions from compressors?
- What are the barriers (technological, economic, lack of information, regulatory, focus, manpower, etc.) that are preventing you from implementing these practices?