Replacing High-Bleed Pneumatic Devices

Lessons Learned from Natural Gas STAR

Small and Medium Sized Producer Technology Transfer Workshop

Bill Barrett Corporation, Evergreen Resources Inc, Southern Gas Association and EPA’s Natural Gas STAR Program

June 29, 2004
Reducing Emissions, Increasing Efficiency, Maximizing Profits

Pneumatic Devices: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion Questions
What is the Problem?

- Pneumatic devices are major source of methane emissions from the natural gas industry
- Pneumatic devices used throughout the natural gas industry
 - Over 250,000 in production sector
 - ~ 13,000 in processing sector
 - 90,000 to 130,000 in transmission sector
Location of Pneumatic Devices at Production Sites

SOV = Shut-off Valve (Unit Isolation)
LC = Level Control (Separator, Contactor, TEG Regenerator)
TC = Temperature Control (Regenerator Fuel Gas)
FC = Flow Control (TEG Circulation, Compressor Bypass)
PC = Pressure Control (FTS Pressure, Compressor Suction/Discharge)
Methane Emissions

- As part of normal operations, pneumatic devices release natural gas to atmosphere
- High-bleed devices bleed in excess of 6 cf/hr
 - Equates to >50 Mcf/yr
 - Typical high-bleed pneumatic devices bleed an average of 140 Mcf/yr
- Actual bleed rate is largely dependent on device’s design
Pneumatic Device Schematic

Regulator

Gas
100+ psi

Regulated Gas Supply
20 psi

Process Measurement

Weak Pneumatic Signal
3 - 15 psi

Pneumatic Controller

Weak Signal Bleed
Continuous

Strong Signal Vent
Intermittent

Valve Actuator

Process Flow

Control Valve

Reducing Emissions, Increasing Efficiency, Maximizing Profits
Emissions from Pneumatic Devices

<table>
<thead>
<tr>
<th></th>
<th>Gas Industry</th>
<th>Oil Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>34.9 Bcf</td>
<td>21.7 Bcf</td>
</tr>
<tr>
<td>Processing</td>
<td>0.6 Bcf</td>
<td>---</td>
</tr>
<tr>
<td>Transmission</td>
<td>14.1 Bcf</td>
<td>---</td>
</tr>
<tr>
<td>Total</td>
<td>49.6 Bcf</td>
<td>21.7 Bcf</td>
</tr>
</tbody>
</table>

Total Gas/Oil: 71.3 Bcf/yr
How Can Methane Emissions be Reduced?

- Option 1: Replace high-bleed devices with low-bleed devices
- Option 2: Retrofit controller with bleed reduction kits
- Option 3: Maintenance aimed at reducing losses

Field experience shows that up to 80% of all high-bleed devices can be replaced or retrofitted with low-bleed equipment.
Option 1: Replace High-Bleed Devices

- Most applicable to:
 - Controllers: liquid-level and pressure
 - Positioners and transducers
- Suggested action: evaluate replacements
 - Replace at end of device’s economic life
 - Early replacement

Source: www.emersonprocess.com

Norriseal
Pneumatic Liquid
Level Controller

Source: www.norriseal.com

Fisher
Electro-Pneumatic
Transducer

Source: www.emersonprocess.com
Option 1: Replace High-Bleed Devices (cont’d)

- Costs vary with size
 - Typical costs range from $700 to $3,000 per device
 - Incremental costs of low-bleed devices are modest ($150 to $250)
 - Gas savings often pay for replacement costs in short periods of time (5 to 12 months)
Option 2: Retrofit with Bleed Reduction Kits

- Applicable to most high-bleed controllers

- Suggested action: evaluate cost effectiveness as alternative to early replacement

- Retrofit kit costs ~ $500

- Payback time ~ 9 months
Option 3: Maintenance to Reduce Losses

- Applies to all pneumatic devices
- Suggested action: add to routine maintenance procedures
 - Field survey of controllers
 - Where process allows, tune controllers to minimize bleed
Option 3: Maintenance to Reduce Losses (cont’d)

- Suggested action (cont’d)
 - Re-evaluate the need for pneumatic positioners
 - Repair/replace airset regulators
 - Reduce regulated gas supply pressure to minimum
 - Routine maintenance should include repairing/replacing leaking components

- Cost is low

Source: www.bpe950.com

Becker
Single-Acting
Valve Positioner
Five Steps for Reducing Methane Emissions from Pneumatic Devices

1. Locate and INVENTORY high-bleed devices
2. ESTABLISH the technical feasibility and costs of alternatives
3. ESTIMATE the savings
4. EVALUATE economics of alternatives
5. DEVELOP an implementation plan
Suggested Analysis for Replacement

- Replacing high-bleed controllers at end of economic life
 - Determine incremental cost of low-bleed device over high-bleed equivalent
 - Determine gas saved with low-bleed device using manufacturer specifications
 - Compare savings and cost
- Early replacement of high-bleed controllers
 - Compare gas savings of low-bleed device with full cost of replacement
Economics of Replacement

<table>
<thead>
<tr>
<th>Implementation<sup>a</sup></th>
<th>Replace at End of Life</th>
<th>Early Replacements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Level Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pressure Control</td>
</tr>
<tr>
<td>Cost ($)</td>
<td>150 – 250<sup>b</sup></td>
<td>380</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,340</td>
</tr>
<tr>
<td>Annual Gas Savings (Mcf)</td>
<td>50 – 200</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td></td>
<td>228</td>
</tr>
<tr>
<td>Annual Value of Saved Gas ($)<sup>c</sup></td>
<td>150 – 600</td>
<td>498</td>
</tr>
<tr>
<td></td>
<td></td>
<td>684</td>
</tr>
<tr>
<td>IRR (%)</td>
<td>97 – 239</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>Payback (months)</td>
<td>5 – 12</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

^a All data based on Partners’ experiences. See Lessons Learned for more information.

^b Range of incremental costs of low-bleed over high bleed equipment

^c Gas price is assumed to be $3/Mcf.
Suggested Analysis for Retrofit

- Retrofit of low-bleed kit
 - Compare savings of low-bleed device with cost of conversion kit
 - Retrofitting reduces emissions by average of 90%
Economics of Retrofit

<table>
<thead>
<tr>
<th></th>
<th>Retrofit<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation Costs<sup>b</sup></td>
<td>$500</td>
</tr>
<tr>
<td>Bleed rate reduction (Mcf/device/yr)</td>
<td>219</td>
</tr>
<tr>
<td>Value of gas saved ($/yr)<sup>c</sup></td>
<td>657</td>
</tr>
<tr>
<td>Payback (months)</td>
<td>9</td>
</tr>
<tr>
<td>IRR</td>
<td>129%</td>
</tr>
</tbody>
</table>

^a On high-bleed controllers
^b All data based on Partners’ experiences. See Lessons Learned for more information.
^c Gas price is assumed to be $3/Mcf.
Suggested Analysis for Maintenance

- For maintenance aimed at reducing gas losses
 - Measure gas loss before and after procedure
 - Compare savings with labor (and parts) required for activity
Economics of Maintenance

<table>
<thead>
<tr>
<th></th>
<th>Reduce supply pressure</th>
<th>Repair & retune</th>
<th>Change settings</th>
<th>Remove valve positioners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation Cost ($)^a</td>
<td>153</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gas savings (Mcf/yr)</td>
<td>175</td>
<td>44</td>
<td>88</td>
<td>158</td>
</tr>
<tr>
<td>Value of gas saved ($/yr)^b</td>
<td>525</td>
<td>132</td>
<td>264</td>
<td>474</td>
</tr>
<tr>
<td>Payback (months)</td>
<td>3.5</td>
<td>2</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>IRR</td>
<td>343%</td>
<td>574%</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

^a All data based on Partners’ experiences. See Lessons Learned for more information.

^b Gas price is assumed to be $3/Mcf.
Pneumatic Devices

- Factors affecting economics of replacement
 - Operating cost differential and capital costs
 - Estimated leak rate reduction per new device
 - Price of gas ($/Mcf)

Source: www.eia.doe.gov
Lessons Learned

- Most high-bleed pneumatics can be replaced with lower bleed models.
- Replacement options save the most gas and are often economic.
- Retrofit kits are available and can be highly cost-effective.
- Maintenance is low-cost and reduces gas loss.
Case Study – Marathon

- Surveyed 158 pneumatic devices at 50 production sites
- Half of the controllers were low-bleed
- High-bleed devices included
 - 35 of 67 level controllers
 - 5 of 76 pressure controllers
 - 1 of 15 temperature controllers
Marathon Study:
Hear It? Feel It? Replace It!

- Measured gas losses total 5.1 MMcf/yr
- Level controllers account for 86% of losses
 - Losses averaged 7.6 cf/hr
 - Losses ranged up to 48 cf/hr
- Concluded that excessive losses can be heard or felt
Recommendations

- Evaluate all pneumatics to identify candidates for replacement and retrofit
- Choose lower bleed models at change-out where feasible
- Identify candidates for early replacement and retrofits by doing economic analysis
- Improve maintenance
- Develop an implementation plan
Discussion Questions

- To what extent are you implementing this BMP?
- How can this BMP be improved upon or altered for use in your operation(s)?
- What are the barriers (technological, economic, lack of information, regulatory, etc.) that are preventing you from implementing this technology?