Replacing Glycol Dehydrators with Desiccant Dehydrators

Lessons Learned from Natural Gas STAR Partners

Small and Medium Sized Producer Technology Transfer Workshop

Bill Barrett Corporation, Evergreen Resources Inc, Southern Gas Association and EPA’s Natural Gas STAR Program

June 29, 2004
Desiccant Dehydrators: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion Questions
What is the Problem?

- Produced gas is saturated with water, which must be removed for gas transmission
- Glycol dehydrators are the most-common equipment to remove water from gas
 - 38,000 dehydration systems in the natural gas production sector
 - Most use triethylene glycol (TEG)
- Glycol dehydrators create emissions
 - Methane, VOCs, HAPs from reboiler vent
 - Methane from pneumatic controllers
 - CO$_2$ from reboiler fuel
 - CO$_2$ from wet gas heater

Source: www.prideofthehill.com
Reducing Emissions, Increasing Efficiency, Maximizing Profits

Dehydrator Schematic

- Glycol Contactor
- Dry Sales Gas
- Inlet Wet Gas
- Gas Bypass
- Glycol Energy Exchange Pump
- Driver
- Rich TEG
- Lean TEG
- Pump
- Glycol Reboiler/Regenerator
- Water/Methane/VOCs/HAPs To Atmosphere
- Fuel Gas
Methane Recovery Alternative

- Desiccant Dehydrator
 - Very simple process
 - No moving parts
- Moisture removed depends on
 - Type of desiccant (salt)
 - Gas temperature and pressure
- Desiccants gradually dissolve into brine

<table>
<thead>
<tr>
<th>Hygroscopic Salts</th>
<th>Typical T and P for Pipeline Spec</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium chloride</td>
<td>47°F 440 psig</td>
<td>Least expensive</td>
</tr>
<tr>
<td>Lithium chloride</td>
<td>60°F 250 psig</td>
<td>More expensive</td>
</tr>
</tbody>
</table>
Desiccant Performance

Desiccant Performance Curves at Maximum Pipeline Moisture Spec (7 lb water / MMcf)

Max Spec Line for CaCl₂

Max Spec Line for LiCl₂
Desiccant Dehydrator Schematic

- Filler Hatch
- Maximum Desiccant Level
- Minimum Desiccant Level
- Dry Sales Gas
- Desiccant Tablets
- Support Grid
- Inlet Wet Gas
- Brine
- Drain Valve

Reducing Emissions, Increasing Efficiency, Maximizing Profits
Economic and Environmental Benefits

- Reduce capital cost
 - Only capital cost is the vessel
 - Desiccant dehydrators do not use pumps or fired reboiler/regenotador
- Reduce maintenance costs
- Less methane, VOCs and HAPs emissions
 - Desiccant tablets only absorb water
 - No hydrocarbons vented to atmosphere by brine

Desiccant Dehydrator Unit
Source: GasTech
Reducing Emissions, Increasing Efficiency, Maximizing Profits

Five Steps for Implementing a Desiccant Dehydrator

1. **IDENTIFY** possible locations for desiccant dehydrators
2. **DETERMINE** dehydrator capacity
3. **ESTIMATE** capital and operating costs
4. **ESTIMATE** savings
5. **CONDUCT** economic analysis
Optimum Operating Conditions

- Works best in high pressure and low temperature conditions

<table>
<thead>
<tr>
<th></th>
<th>Low Pressure (<300 psig)</th>
<th>High Pressure (>300 psig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Temperature</td>
<td>Desiccant/Glycol(^1)</td>
<td>Desiccant</td>
</tr>
<tr>
<td>(<70 °F)</td>
<td>Glycol(^1)</td>
<td></td>
</tr>
<tr>
<td>High Temperature</td>
<td>Glycol</td>
<td>Glycol/Desiccant(^2)</td>
</tr>
<tr>
<td>(>70 °F)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) The gas needs to be heated to apply glycol dehydrators or the gas has to be compressed to apply desiccant dehydrators.

\(^2\) The gas needs to be cooled to apply desiccant dehydrator.
Estimate Capital Costs

- Determine amount of desiccant needed to remove water
- Determine inside diameter of vessel
- Costs for single vessel desiccant dehydrator
 - Capital cost varies between $3,000 and $17,000
 - Gas flow rates from 1 to 20 MMcf/d
 - Capital cost for 20-inch vessel with 1 MMcf/d gas flow is $6,500
 - Installation cost assumed to be 75% of capital cost
How Much Desiccant Is Needed?

Example:
D = ?
F = 1 MMcf/d
I = 21 lb/MMcf
O = 7 lb/MMcf
B = 1/3

Calculate:
D = F * (I - O) * B
D = 1 * (21 - 7) * 1/3
D = 4.7 lb desiccant/d

Where:
D = Amount of desiccant needed (lb/d)
F = Gas flow rate (MMcf/d)
I = Inlet water content (lb/MMcf)
O = Outlet water content (lb/MMcf)
B = Desiccant/water ratio vendor rule of thumb

Source: Van Air
Calculate Vessel Inside Diameter

Example:

<table>
<thead>
<tr>
<th>ID</th>
<th>D</th>
<th>T</th>
<th>B</th>
<th>H</th>
<th>Calculate:</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>4.7</td>
<td>7</td>
<td>55</td>
<td>5</td>
<td>ID = 12* √(4DT12 / HB*11) = 16.2 in</td>
</tr>
</tbody>
</table>

Where:

- ID = Inside diameter of the vessel (in)
- D = Amount of desiccant needed (lb/d)
- T = Assumed refilling frequency (days)
- B = Desiccant density (lb/cf)
- H = Height between minimum and maximum bed level (in)

Commerically ID available = 20 in.

Source: Van Air
Operating Costs

- Operating costs
 - Desiccant: $2,059/yr for 1 MMcf/d example
 - $1.20/lb desiccant cost
 - Brine Disposal: negligible
 - $1/bbl brine or $14/yr
 - Labor: $1,560/yr for 1 MMcf/d example
 - $30/hr
- Total: ~$3,633/yr
Savings

Gas savings
- Gas vented from glycol dehydrator
- Gas vented from pneumatic controllers
- Gas burner for fuel in glycol reboiler
- Gas burner for fuel in gas heater

Less gas vented from desiccant dehydrator

Methane emission savings calculation
- Glycol vent + Pneumatics vents - Desiccant vents

Operation and maintenance savings
- Glycol O&M + Glycol fuel - Desiccant O&M
Gas Vented from Glycol Dehydrator

Example:
GV = ?
F = 1 MMcf/d
W = 21 – 7 lb water/MMcf
R = 3 gal/lb
OC = 150%
G = 3 cf/gal

Calculate:
GV = \(\frac{F \times W \times R \times OC \times G \times 365 \text{ days/yr}}{1,000 \text{ cf/Mcf}} \)
GV = 69 Mcf/yr

Where:
GV = Gas vented annually (Mcf/yr)
F = Gas flow rate (MMcf/d)
W = Inlet – outlet water content (lb/MMcf)
R = Glycol/water ratio (rule of thumb)
OC = Percent over-circulation
G = Methane entrainment (rule of thumb)

Glycol Dehydrator Unit
Source: GasTech
Gas Vented from Pneumatic Controllers

Example:

Where:

GE = ?
PD = 4
EF = 126 Mcf/device/yr

GE = Annual gas emissions (Mcf/yr)
PD = Number of pneumatic devices per dehydrator
EF = Emission factor
(Mcf natural gas leakage/pneumatic devices per year)

Calculate:

GE = EF * PD
GE = 504 Mcf/yr

Source: www.norriseal.com

Norriseal Pneumatic Liquid Level Controller
Example:

GLD = ?
ID = 20 in (1.7 ft)
H = 76.75 in (6.4 ft)
%G = 45%
P₁ = 15 Psia
P₂ = 450 Psig
T = 7 days

Where:
GLD = Desiccant dehydrator gas loss (Mcf/yr)
ID = Inside Diameter (ft)
H = Vessel height by vendor specification (ft)
%G = Percentage of gas volume in the vessel
P₁ = Atmospheric pressure (Psia)
P₂ = Gas pressure (Psig)
T = Time between refilling (days)

Calculate:

GLD = \frac{H \times ID^2 \times \pi \times P₂ \times %G \times 365 \text{ days/yr}}{4 \times P₁ \times T \times 1,000 \text{ cf/Mcf}}

GLD = 10 Mcf.yr

Desiccant Dehydrator Unit
Source: www.usedcompressors.com

Reducing Emissions, Increasing Efficiency, Maximizing Profits
Desiccant Dehydrator and Glycol Dehydrator Cost Comparison

Gas savings for 1 MMcf/d example

- **Glycol:** 69 Mcf/yr vented + 504 Mcf/yr pneumatics
- **Desiccant:** 10 Mcf/yr
 - 563 Mcf/yr savings, or $2,292/yr gas savings
- **Glycol:** fuel gas savings of 500 Mcf/yr
 - 500 Mcf/yr savings, or $2,000/yr fuel savings
- **Total gas savings:** ~ $4,252/yr

Based on $4/Mcf
Desiccant Dehydrator - Lessons Learned

- Example calculations of gas savings
 - Glycol dehydration vent
 - Glycol dehydration pneumatic bleed
 - Glycol dehydration reboiler fuel gas
 - Gas heater fuel for glycol dehydration

- Other savings
 - Make-up glycol
 - Glycol dehydration O&M
 - Glycol dehydrator surplus equipment value
Discussion Questions

- To what extent are you implementing this BMP?
- How can this BMP be improved upon or altered for use in your operation(s)?
- What are the barriers (technological, economic, lack of information, regulatory, etc.) that are preventing you from implementing this technology?