DI&M: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion Questions
Natural Gas Industry Emissions

- Production sector responsible for largest portion of emissions

Emissions
- Transmission & Storage: 101 Bcf
- Production: 148 Bcf
- Processing: 36 Bcf
- Distribution: 68 Bcf
- Oil Downstream: 2 Bcf
- Transmission & Storage: 1 Bcf
- Oil Downstream: 2 Bcf

Reductions
- Oil Downstream: 7 Bcf
- Production: 24 Bcf
- Processing: 18 Bcf
- Distribution: 68 Bcf

Reducing Emissions, Increasing Efficiency, Maximizing Profits
The production sector has several large methane emission sources that can be targeted for reductions:

- Storage Tank Venting: 9 Bcf
- Meters and Pipeline Leaks: 10 Bcf
- Gas Engine Exhaust: 12 Bcf
- Dehydrators and Pumps: 17 Bcf
- Well Venting and Flaring: 18 Bcf
- Pneumatic Devices: 61 Bcf
- Other Sources: 21 Bcf

Reducing Emissions, Increasing Efficiency, Maximizing Profits
Methane Losses by Equipment Type

- Valves: 26.0%
- Connectors: 24.4%
- Crankcase Vents: 4.2%
- Compressor Seals: 23.4%
- Open-Ended Lines: 11.1%
- Control Valves: 4.0%
- Pressure Relief Valves: 3.5%
- Orifice Meters: 0.1%
- Other Flow Meters: 0.2%
- Pump Seals: 1.9%
- Pressure Regulators: 0.4%
- Blowdowns: 0.8%

Source: Clearstone Engineering, 2002

Reducing Emissions, Increasing Efficiency, Maximizing Profits
What is the Problem?

★ Gas leaks are **invisible, unregulated** and **go unnoticed**

★ Gas STAR Partners find that valves, connectors, compressor seals and open-ended lines (OELs) are major sources

◆ 27 Bcf of methane emitted per year by reciprocating compressors seals and OELs, each contributing equally to the emissions
What are the Sources of Emissions?
How Much Methane is Emitted?

Methane Emissions from Leaking Components

<table>
<thead>
<tr>
<th>Component Type</th>
<th>% of Total Methane Emissions</th>
<th>% Leaks</th>
<th>Estimated Average Methane Emissions per Leaking Component (Mcf/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valves (Block & Control)</td>
<td>26.0%</td>
<td>7.4%</td>
<td>66</td>
</tr>
<tr>
<td>Connectors</td>
<td>24.4%</td>
<td>1.2%</td>
<td>80</td>
</tr>
<tr>
<td>Open-Ended Lines</td>
<td>11.1%</td>
<td>8.1%</td>
<td>186</td>
</tr>
<tr>
<td>Pressure Relief Valves</td>
<td>3.5%</td>
<td>2.9%</td>
<td>844</td>
</tr>
</tbody>
</table>

How Much Methane is Emitted?

Summary of Natural Gas Losses from the Top Ten Leakers

<table>
<thead>
<tr>
<th>Plant No.</th>
<th>Gas Losses From Top 10 Leakers (Mcfd)</th>
<th>Gas Losses From All Equipment Leakers (Mcfd)</th>
<th>Contribution By Top 10 Leakers (%)</th>
<th>Contribution By Total Leakers (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43.8</td>
<td>122.5</td>
<td>35.7</td>
<td>1.78</td>
</tr>
<tr>
<td>2</td>
<td>133.4</td>
<td>206.5</td>
<td>64.6</td>
<td>2.32</td>
</tr>
<tr>
<td>3</td>
<td>224.1</td>
<td>352.5</td>
<td>63.6</td>
<td>1.66</td>
</tr>
<tr>
<td>4</td>
<td>76.5</td>
<td>211.3</td>
<td>36.2</td>
<td>1.75</td>
</tr>
<tr>
<td>Combined</td>
<td>477.8</td>
<td>892.84</td>
<td>53.5</td>
<td>1.85</td>
</tr>
</tbody>
</table>

1. Excluding leakage into flare system
Fugitive losses can be dramatically reduced by implementing a DI&M program:

- Voluntary program to identify and fix leaks that are cost effective to repair
- Survey cost will pay out in the first year
- Provides valuable data on leakers with information of where to look
What is DI&M?

Direct Inspection and Maintenance
- Cost-effective practice by definition
- Find and fix significant leaks
- Choice of leak detection technologies
- Strictly tailored to company’s needs

DI&M is NOT the regulated volatile organic compound (VOC) leak detection and repair program (LDAR)
How Do You Implement DI&M?

- CONDUCT baseline survey
- SCREEN and MEASURE leaks
- FIX on the spot leaks
- ESTIMATE repair cost, fix to a payback criteria
- DEVELOP a plan for future DI&M
- RECORD savings/REPORT to Gas STAR

Reducing Emissions, Increasing Efficiency, Maximizing Profits
How Do You Implement DI&M?

★ Screening - finding leaks
 - Soap bubble screening
 - Electronic screening (sniffer)
 - Toxic Vapor Analyzer (TVA)
 - Organic Vapor Analyzer (OVA)
 - Ultrasound Leak Detection
 - Acoustic Leak Detection
 - Optical Leak Imaging
How Do You Implement DI&M?

☆ Evaluate the leaks detected - measure results

♦ High Volume Sampler

♦ Toxic Vapor Analyzer (correlation factors)

♦ Rotameters
DI&M by Leak Imaging

- Real-time visual image of gas leaks
 - Quicker identification & repair of leaks
 - Screen hundreds of components an hour
 - Screen inaccessible areas simply by viewing them
Is Recovery Profitable?

Repair the Cost Effective Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Value of Lost gas (^1) ($)</th>
<th>Estimated Repair cost ($)</th>
<th>Payback (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug Valve: Valve Body</td>
<td>12,641</td>
<td>200</td>
<td>0.2</td>
</tr>
<tr>
<td>Union: Fuel Gas Line</td>
<td>12,155</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>Threaded Connection</td>
<td>10,446</td>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>Distance Piece: Rod Packing</td>
<td>7,649</td>
<td>2,000</td>
<td>3.1</td>
</tr>
<tr>
<td>Open-Ended Line</td>
<td>6,959</td>
<td>60</td>
<td>0.1</td>
</tr>
<tr>
<td>Compressor Seals</td>
<td>5,783</td>
<td>2,000</td>
<td>4.2</td>
</tr>
<tr>
<td>Gate Valve</td>
<td>4,729</td>
<td>60</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Source: Hydrocarbon Processing, May 2002

\(^1\) Based on $3/Mcf gas price
A successful, cost-effective DI&M program requires measurement of the leaks.

A high volume sampler is an effective tool for quantifying leaks and identifying cost-effective repairs.

Open-ended lines, compressor seals, blowdown, engine-starter and pressure relief valves represent <3% of components but >60% of methane emissions.

The business of leak detection is about to change dramatically with new technology.
DI&M - Partner Experience

★ Partner A: Leaking cylinder head was tightened, which reduced the methane emissions from almost 64,000 Mcf/yr to 3,300 Mcf/yr
 ◆ Repair required 9 man-hours of labor
 ◆ Gas savings were approximately 60,700 Mcf/yr
 ◆ Value of gas saved was $182,100/year at $3/Mcf

★ Partner B: One-inch pressure relief valve emitted almost 36,774 Mcf/yr
 ◆ Required five man-hours of labor and $125 of materials
 ◆ Value of the gas saved was $110,300 at $3/Mcf