Installing Vapor Recovery Units to Reduce Methane Losses

Lessons Learned from Natural Gas STAR

Producers Technology Transfer Workshop

Devon Energy Corporation
and
EPA’s Natural Gas STAR Program

April 20, 2005
Vapor Recovery Units: Agenda

- Methane Losses
- Methane Savings
- Is Recovery Profitable?
- Industry Experience
- Discussion Questions
Methane Losses from Storage Tanks

- Storage tanks are responsible for 15% of methane emissions
 - 96% of tank losses occur from tanks without vapor recovery

Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 - 2002

- Pneumatic Devices: 60 Bcf
- Storage Tank Venting: 23 Bcf
- Dehydrators and Pumps: 14 Bcf
- Reciprocating Compressors: 3 Bcf
- Well Venting and Flaring: 12 Bcf
- Gas Engine Exhaust: 12 Bcf
- Meters and Pipeline Leaks: 11 Bcf
- Other Sources: 15 Bcf
Sources of Methane Losses

- 23 Bcf methane lost from storage tanks each year from producers*
- Flash losses - occur when crude is transferred from a gas-oil separator at higher pressure to an atmospheric pressure storage tank
- Working losses - occur when crude levels change and when crude in tank is agitated
- Standing losses - occur with daily and seasonal temperature and pressure changes

Methane Savings: Vapor Recovery Units

- Capture up to 95% of hydrocarbon vapors vented from tanks
- Recovered vapors have higher Btu content than pipeline quality natural gas
- Recovered vapors are more valuable than natural gas and have multiple uses
 - Re-inject into sales pipeline
 - Use as on-site fuel
 - Send to processing plants for recovering NGLs
Types of Vapor Recovery Units

- Conventional vapor recovery units (VRUs)
 - Use rotary compressor to suck vapors out of atmospheric pressure storage tanks
 - Require electrical power or engine
- Venturi ejector vapor recovery units (EVRUs™)
 - Use Venturi jet ejector in place of rotary compressor
 - Do not contain any moving parts
 - Require source of high pressure gas and intermediate pressure system
Standard Vapor Recovery Unit

Source: Evans & Nelson (1968)
Venturi Jet Ejector*

- High-Pressure Motive Gas (~850 psig)
- Flow Safety Valve
- Pressure Indicator
- Temp Indicator
- Low-Pressure Vent Gas from Tanks (0.10 to 0.30 psig)
- EVRU™ Suction Pressure (-0.05 to 0 psig)
- Discharge Gas (~40 psia)

*Patented by COMM Engineering
Vapor Recovery with Ejector

5,000 Mcf/d Gas
5,000 Bbl/d Oil

Oil & Gas Well

LP Separator

Compressor

Ejector

Gas to Sales @ 1000 psig

6,200 Mcf/d

900 Mcf/d Net Recovery

Ratio Motive / Vent = 3
= 900/300

900 Mcf/d

300 Mcf/d Gas

Crude Oil Stock Tank

Oil to Sales

Net Recovery

(19 Mcf/d Incr. fuel)

40 psig

3,000 Mcf/d Gas

4,200 Mcf/d

5,000 Mcf/d Gas

5,000 Bbl/d Oil

Oil & Gas Well
Example Facility for EVRU™

- Oil production: 5,000 Bbl/d, 30 Deg API
- Gas production: 5,000 Mcf/d, 1060 Btu/cf
- Separator: 50 psig, 100°F
- Storage tanks: 4 - 1500 Bbls @1.5oz relief
- Gas compressor: Wauk7042GSI/3stgAriel
- Suction pressure: 40 psig
- Discharge pressure: 1000 psig
- Measured tank vent: 300 Mcf/d @ 1,850 Btu/cf
Emissions Before EVRU™
CO₂ Equivalents

- Engine exhaust: 3,950 Tons/yr @ 790 Hp load
- Tank vents: 14,543 Tons/yr
- Total CO₂ equivalents: 18,493 Tons/yr
- Fuel consumption @ 9000 Btu/Hp-hr = 171 MMBtu/d
- Gas sales: 5,129MMBtu/d
- Gas value: $25,645/d @ $5/MMBtu
Emissions After EVRU™

CO₂ Equivalents

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motive gas required:</td>
<td>900 Mcf/d</td>
</tr>
<tr>
<td>Engine exhaust:</td>
<td>4,897 Tons/yr @ 980 Hp load</td>
</tr>
<tr>
<td>Tank vents:</td>
<td>0 Tons/yr</td>
</tr>
<tr>
<td>Fuel consumption @ 9000Btu/Hp-hr:</td>
<td>190 MMBtu/d</td>
</tr>
<tr>
<td>Total CO₂ equivalents:</td>
<td>4,897 Tons/yr</td>
</tr>
<tr>
<td>Reduction:</td>
<td>13,596 Tons/yr (73.5%)</td>
</tr>
<tr>
<td>Total CO₂ equivalents:</td>
<td>4,897 Tons/yr</td>
</tr>
<tr>
<td>Reduction:</td>
<td>13,596 Tons/yr (73.5%)</td>
</tr>
<tr>
<td>Gas sales:</td>
<td>5,643 MMBtu/d</td>
</tr>
<tr>
<td>Gas value:</td>
<td>$28,215/d @ $5/MMBtu</td>
</tr>
<tr>
<td>Income increase:</td>
<td>$2,570/d = $77,100/mo</td>
</tr>
<tr>
<td>EVRU cost installed:</td>
<td>$75,000</td>
</tr>
<tr>
<td>Installed cost per recovered unit of gas:</td>
<td>$0.73/Mcf/yr</td>
</tr>
<tr>
<td>Payout:</td>
<td><1 month</td>
</tr>
</tbody>
</table>
Vapor Recovery Unit Decision Process

1. IDENTIFY possible locations for VRUs
2. QUANTIFY the volume of losses
3. DETERMINE the value of recoverable losses
4. DETERMINE the cost of a VRU project
5. EVALUATE VRU project economics
Criteria for Vapor Recovery Unit Locations

- Steady source and sufficient quantity of losses
 - Crude oil stock tank
 - Flash tank, heater/treater, water skimmer vents
 - Leaking valve in blanket gas system
- Outlet for recovered gas
 - Access to gas pipeline or on-site fuel use
- Tank batteries not subject to air regulations
Quantify Volume of Losses

- Estimate losses from chart based on oil characteristics, pressure and temperature at each location (± 50%)
- Estimate emissions using the E&P Tank Model (± 20%)
- Measure losses using ultrasonic meter (± 5%)
- Measure losses using recording manometer and orifice well tester (± 100%)
Quantify Volume of Losses

- E&P Tank Model
 - Computer software developed by API and GRI
 - Estimates flash, working and standing losses
 - Calculates losses using specific operating conditions for each tank
 - Provides composition of hydrocarbon losses
What is the Recovered Gas Worth?

- Value depends on Btu content of gas
- Value depends on how gas is used
 - On-site fuel - valued in terms of fuel that is replaced
 - Natural gas pipeline - measured by the higher price for rich (higher Btu) gas
 - Gas processing plant - measured by value of NGLs and methane, which can be separated
Value of Recovered Gas

Gross revenue per year = (Q \times P \times 365) + NGL

Q = \text{Rate of vapor recovery (Mcfd)}
P = \text{Price of natural gas}
NGL = \text{Value of natural gas liquids}
Cost of a VRU

- Major cost items:
 - Capital equipment costs
 - Installation costs
 - Operating costs
Value of NGLs

<table>
<thead>
<tr>
<th></th>
<th>Btu/gal</th>
<th>MMBtu/gal</th>
<th>$/gal</th>
<th>$/MMBtu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>59,755</td>
<td>0.06</td>
<td>0.32</td>
<td>5.32</td>
</tr>
<tr>
<td>Ethane</td>
<td>74,010</td>
<td>0.07</td>
<td>0.42</td>
<td>5.64</td>
</tr>
<tr>
<td>Propane</td>
<td>91,740</td>
<td>0.09</td>
<td>0.59</td>
<td>6.43</td>
</tr>
<tr>
<td>n Butane</td>
<td>103,787</td>
<td>0.10</td>
<td>0.73</td>
<td>7.06</td>
</tr>
<tr>
<td>iso Butane</td>
<td>100,176</td>
<td>0.10</td>
<td>0.78</td>
<td>7.81</td>
</tr>
<tr>
<td>Pentanes+</td>
<td>105,000</td>
<td>0.11</td>
<td>0.85</td>
<td>8.05</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vapor Composition

<table>
<thead>
<tr>
<th></th>
<th>Btu/cf</th>
<th>MMBtu/Mcf</th>
<th>$/Mcf</th>
<th>$/MMBtu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>1,012</td>
<td>1.01</td>
<td>$5.37</td>
<td>5.32</td>
</tr>
<tr>
<td>Ethane</td>
<td>1,773</td>
<td>1.77</td>
<td>$9.98</td>
<td>5.64</td>
</tr>
<tr>
<td>Propane</td>
<td>2,524</td>
<td>2.52</td>
<td>$16.21</td>
<td>6.43</td>
</tr>
<tr>
<td>n Butane</td>
<td>3,271</td>
<td>3.27</td>
<td>$23.08</td>
<td>7.06</td>
</tr>
<tr>
<td>iso Butane</td>
<td>3,261</td>
<td>3.26</td>
<td>$25.46</td>
<td>7.81</td>
</tr>
<tr>
<td>Pentanes+</td>
<td>4,380</td>
<td>4.38</td>
<td>$35.25</td>
<td>8.05</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>1.289</td>
</tr>
</tbody>
</table>

1. Natural Gas Price assumed at $5.32/MMBtu as on Mar 5 at Henry Hub
2. Prices of individual NGL components are from Platts Oilgram for Mont Belvieu, TX, March 05, 2004
3. Other NGL information obtained from Oil and Gas Journal, refining Report, March 19, 2001, p-83
Cost of a VRU (cont’d)

<table>
<thead>
<tr>
<th>Capacity (Mcfd)</th>
<th>Compressor Horsepower</th>
<th>Capital Costs ($)</th>
<th>Installation Costs ($)</th>
<th>O&M Costs ($/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>5-10</td>
<td>15,125</td>
<td>7,560 - 15,125</td>
<td>5,250</td>
</tr>
<tr>
<td>50</td>
<td>10-15</td>
<td>19,500</td>
<td>9,750 - 19,500</td>
<td>6,000</td>
</tr>
<tr>
<td>100</td>
<td>15 - 25</td>
<td>23,500</td>
<td>11,750 - 23,500</td>
<td>7,200</td>
</tr>
<tr>
<td>200</td>
<td>30 - 50</td>
<td>31,500</td>
<td>15,750 - 31,500</td>
<td>8,400</td>
</tr>
<tr>
<td>500</td>
<td>60 - 80</td>
<td>44,000</td>
<td>22,000 - 44,000</td>
<td>12,000</td>
</tr>
</tbody>
</table>

Vapor Recovery Unit Sizes and Costs

Note: Cost information provided by Partners and VRU manufacturers.
Is Recovery Profitable?

Financial Analysis for a conventional VRU Project

<table>
<thead>
<tr>
<th>Peak Capacity (Mcfd)</th>
<th>Installation & Capital Costs(^1)</th>
<th>O & M Costs ($/year)</th>
<th>Value of Gas(^2) ($/year)</th>
<th>Annual Savings</th>
<th>Payback period(^3) (months)</th>
<th>Return on Investment(^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>26,470</td>
<td>5,250</td>
<td>$34,242</td>
<td>$28,992</td>
<td>11</td>
<td>107%</td>
</tr>
<tr>
<td>50</td>
<td>34,125</td>
<td>6,000</td>
<td>$68,484</td>
<td>$62,484</td>
<td>7</td>
<td>182%</td>
</tr>
<tr>
<td>100</td>
<td>41,125</td>
<td>7,200</td>
<td>$136,967</td>
<td>$129,767</td>
<td>4</td>
<td>315%</td>
</tr>
<tr>
<td>200</td>
<td>55,125</td>
<td>8,400</td>
<td>$273,935</td>
<td>$265,535</td>
<td>2</td>
<td>482%</td>
</tr>
<tr>
<td>500</td>
<td>77,000</td>
<td>12,000</td>
<td>$684,836</td>
<td>$672,836</td>
<td>1</td>
<td>874%</td>
</tr>
</tbody>
</table>

\(^1\) Unit Cost plus estimated installation at 75% of unit cost

\(^2\) $7.51 \times 1/2 \text{ capacity} \times 365, \text{ Assumed price includes Btu enriched gas (1.289 MMBtu/Mcf)}

\(^3\) Based on 10% Discount rate for future savings. Excludes value of recovered NGLs

\(^4\) Calculated for 5 years
Trade Offs

<table>
<thead>
<tr>
<th></th>
<th>Conventional VRU</th>
<th>Ejector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel for electricity (Mcf/yr)</td>
<td>2,281</td>
<td>_</td>
</tr>
<tr>
<td>Fuel (Mcf/yr)</td>
<td>_</td>
<td>6,935</td>
</tr>
<tr>
<td>Operating factor</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>Maintenance</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Installed cost per recovered unit of gas ($/Mcf/yr)</td>
<td>$1.21</td>
<td>$0.73</td>
</tr>
<tr>
<td>Payback (excl. maintenance)</td>
<td>3 to 27 months</td>
<td><1 month</td>
</tr>
</tbody>
</table>
Technology Comparison

- Mechanical VRU advantages
 - Gas recovery
 - Readily available

- Mechanical VRU disadvantages
 - Maintenance costs
 - Operation costs
 - Lube oil contamination
 - ~ 70% runtime
 - Sizing/turndown

- EVRU advantages
 - Gas recovery
 - Readily available
 - Simple technology
 - 100% runtime
 - Low O&M costs
 - Sizing/turndown (100%)
 - Minimal space required

- EVRU disadvantages
 - Need HP Motive Gas
 - Recompression of motive gas
Lessons Learned

- Vapor recovery can yield generous returns when there are market outlets for recovered gas
 - Recovered high Btu gas or liquids have extra value
 - VRU technology can be highly cost-effective
 - EVRU™ technology has extra O&M savings, higher operating factor

- Potential for reduced compliance costs can be considered when evaluating economics of VRU/EVRU™
Lessons Learned (cont’d)

- VRU should be sized for maximum volume expected from storage tanks (rule-of-thumb is to double daily average volume)

- Rotary vane or screw type compressors recommended for VRUs where there is no source of high-pressure gas and/or no intermediate pressure system

- EVRUs™ recommended where there is gas compressor with excess capacity
Top Gas STAR Partners for VRUs

Top five companies for emissions reductions using VRUs in 2003

<table>
<thead>
<tr>
<th>Company</th>
<th>2003 Annual Reductions (Mcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partner 1</td>
<td>1,333,484</td>
</tr>
<tr>
<td>Partner 2</td>
<td>962,078</td>
</tr>
<tr>
<td>Partner 3</td>
<td>661,381</td>
</tr>
<tr>
<td>Partner 4</td>
<td>521,549</td>
</tr>
<tr>
<td>Partner 5</td>
<td>403,454</td>
</tr>
</tbody>
</table>
Industry Experience: Chevron

- Chevron installed eight VRUs at crude oil stock tanks in 1996

<table>
<thead>
<tr>
<th>Methane Loss Reduction (Mcf/unit/yr)</th>
<th>Approximate Savings per Unit(^1)</th>
<th>Total Savings</th>
<th>Total Capital and Installation Costs</th>
<th>Payback</th>
</tr>
</thead>
<tbody>
<tr>
<td>21,900</td>
<td>$43,800</td>
<td>$525,600</td>
<td>$240,000</td>
<td><1 yr</td>
</tr>
</tbody>
</table>

\(^1\) Assumes a $3 per Mcf gas price; excludes value of recovered NGLs. Refer to the Lessons Learned for more information.
Vapor Recovery Units

- Profitable technology to reduce gas losses
- Can help reduce regulatory requirements and costs
- Additional value of NGLs further improves cost-effectiveness
- Exemplifies profitable conservation
Discussion Questions

- To what extent are you implementing this BMP?
- How can this BMP be improved upon or altered for use in your operation(s)?
- What is stopping you from implementing this technology (technological, economic, lack of information, focus, manpower, etc.)?