Why are Best Operating Practices Important?

- Many facilities have identified practical cost effective methane emissions practices

- Transmission & Distribution Companies have had great success in reducing methane emissions
 - Transmission Partners report saving 79.3 Bcf since 1993, 55% from PRO’s
 - Distribution Partners report saving 10.6 Bcf since 1993, 7.2% from PRO’s
Why Are Best Operating Practices Important?

- Partners share successes to reduce methane emissions and improve profitability

 - BMP's: the consensus best practices
 - PRO's: Partner Reported Opportunities
 - Lessons Learned: expansion on the most advantageous BMP's and PRO's
 - All posted on the GAS STAR website: http://www.epa.gov/gasstar
Transmission & Distribution
Best Management Practices

- BMP 1: Implement Directed Inspection & Maintenance at Gate Stations and Surface Facilities
- BMP 2: Identify & Rehabilitate Leaky Distribution Piping
- BMP 3: Implement Directed Inspection & Maintenance at Compressor Stations
- BMP 4: Use of Turbines at Compressor Stations
- BMP 5: Identify & Replace High-Bleed Pneumatic Devices
- BMP 6: Partner Reported Opportunities (PRO’s)
Gas STAR PRO Fact Sheets

- PRO Fact Sheets from Annual Reports 1994-2002
 - 54 PRO fact sheets posted on website
 - 43 PRO fact sheets applicable to Transmission & Distribution
 - 18 focused on operating practices
 - 25 focused on technology
 - Several new PRO fact sheets under development
Lessons Learned

- 14 Lessons Learned on website
- 9 applicable to Transmission
 - 5 focused on operating practices
 - 4 focused on technology
- 2 applicable to Distribution
 - Both on operating practices
- New Lessons Learned in development
 - Composite Wrap
 - Reducing Pressure in Distribution Systems
Best Operating Practices
Lessons Learned

- Directed Inspection & Maintenance at Compressor Stations
- Directed Inspection & Maintenance at Gate Stations and Surface Facilities
- Reducing Emissions when Taking Compressors Off-line
- Using Hot Taps for In Service Pipeline Connections
- Using Pipeline Pump-Down Techniques to Lower Line Pressure before Maintenance
Some Best Operating Practices

- **Compressors & Engines**
 - Convert Engine Starting to Air
 - SAVES... 1,350 Mcf/yr
 - PAYOUT... < 1 year
 - Convert Engine Starting to Nitrogen
 - SAVES... 1,350 Mcf/yr
 - PAYOUT... < 1yr
 - Lower Purge Pressure for Shutdown
 - SAVES... 500 Mcf/yr
 - PAYOUT... 3-10 yrs
 - Reduce Frequency of Starts with Gas
 - SAVES... 132 Mcf/yr
 - PAYOUT... < 1yr
What is the Problem?

Compressor Starts Vent Methane and Salable Product

- How much methane is emitted?
 - Up to 132 Mcf per start
- How can these losses be reduced?
 - Alternative operating practices
 - use air
 - use nitrogen
 - Alternative technology
 - use electric starters
 - convert to electric drive
Partner Experience

Compressor Starts Vent Methane and Salable Product

- Partners report 1,350 Mcf/yr savings per compressor using air or nitrogen assuming ten starts per year

DISCUSSION

- Availability and cost of air and nitrogen are issues
- Capital costs for electric starters reduce payout
- Coordinating starts and shutdowns with maintenance schedules …
- And modification of purge procedures to recover gas prior to venting can also gain savings with low costs
And More Operating Practices

- **Other**
 - Eliminate Unnecessary Equipment or Systems
 - Saves… 2,000 Mcf/yr
 - Payout… < 1 yr
 - Increase Walking Surveys from 5 to 3 years
 - Saves… 1,500 Mcf/yr
 - Payout… 1-3 year
 - Improve Quality of Gas Receipts
 - Saves… 500 Mcf/yr
 - Payout… 3-10 years

- **Pipelines/Piping**
 - Use Inert Gases and Pigs for Purges
 - Saves… 90 Mcf/yr
 - Payout… > 10 yrs
What is the Problem?

Unnecessary Equipment or Systems provide sources of methane emissions

- How much methane is emitted?
 - DEPENDS: ONE unnecessary process controller vents 1 cfm or 0.5 MMcf/yr
 - Replacing multiple reciprocating compressor engines with one turbine compressor can save >2 MMcf/yr

- Other benefits
 - Increases efficiency
 - Lowers operating & maintenance costs
 - REDUCES METHANE EMISSIONS
Partner Experiences

- One partner reports savings of 7,940 Mcf/yr by eliminating 31 dehydrators with an average of 4 controller loops each
 - Payback was < 1 year!

- One partner reports saving 500 Mcf for each of 3 gasholders removed from service
And More Operating Practices

- **Valves**
 - Close Main & Unit Valves Prior to B/D
 - SAVES... 4,500 Mcf/yr
 - PAYOUT... <1yr
 - Perform Leak Repair during line replacement
 - SAVES... 2,500 Mcf/yr
 - PAYOUT... 1-3 yrs
 - Inspect & Repair Compressor Station Blowdown Valves
 - SAVES...2,000 Mcf/yr
 - PAYOUT... < 1 yr
 - Move Fire Gates to Reduce Venting
 - SAVES ...1,700 Mcf/yr
 - PAYOUT... 3-10 years
 - Test & Repair RV’s
 - SAVES...170 Mcf/yr
 - PAYOUT... < 1 yr
What is the Problem?

Valve Placement

- How much methane is emitted?
 - DEPENDS: on piping geometry and proximity of isolation valves

- How can these losses be reduced?
 - One partner reports methane reductions of nearly 9 MMcf/yr by taking advantage of isolation valves and blowdown procedures
What is the Problem?

Leaking Relief Valves

- How much methane is emitted?
 - DEPENDS: as RV components wear or foul, leakage occurs, estimate 200 Mcf/yr per leaker

- How can these losses be reduced?
 - Leak check & repair on a planned schedule
Partner Experience

Leaking Relief Valves

- One partner reports saving 3,907 Mcf/yr by repairing 7 valves. Payback was immediate.
- Another partner reports saving 853 Mcf/yr by repairing compressor RV’s.
- Another partner reports saving 10 Mcf/yr by using nitrogen to test 120 RV’s versus “popping” off with natural gas.
Discussion Questions

- To what extent are you implementing these PRO’s?
- Do you have other best operating practices to suggest?
- How could these PRO’s be improved upon or altered for use in your operations?
- What are the barriers (economic, lack of information, regulatory, etc.) that are preventing you from implementing these practices?
Emerging Technology: Optical Imaging