Gas STAR Technologies and Practices for DI&M and Compressor Seals

(Opportunities for Cost Effective Methane Sensors)

EPA’s Natural Gas STAR Program,
El Paso Corporation, and
Southern Gas Association
October 27, 2003
Agenda

- **Equipment leaks**
 - What is the problem?
 - Where are the leaks?
 - What Gas STAR Partners are doing.
 - A low-cost sensor option.

- **Compressor seals**
 - What is the problem?
 - Where are the leaks?
 - What Gas STAR Partners are doing.
 - A low-cost sensor option.
Equipment leaks
What is the Problem?

- STAR partners find that valves, connectors, compressors and open-ended lines (OEL) are major leak sources
 - 50.7 Bcf/yr of methane are emitted by compressors and facility components
 - 1% of the leakers contribute 90% of the emissions
- Fugitive emissions depend on operating practices, equipment age and maintenance
Distribution of Natural Gas Losses by Source Category

- Leaking Components: 53.1%
- Flare Systems: 24.4%
- Storage Tanks: 11.8%
- Non-leaking Components: 0.1%
- NRU Vents: 0.3%
- Amine Vents: 0.5%
- Combustion Equipment: 9.9%

Source: Clearstone Engineering, 2002
Natural Gas Losses from Equipment Leaks by Type of Component

- Control Valves: 4.0%
- Open-Ended Lines: 11.1%
- Other Flow Meters: 0.2%
- Orifice Meters: 0.1%
- Pressure Relief Valves: 3.5%
- Valve Blows: 0.8%
- Connectors: 24.4%
- Compressor Seals: 23.4%
- Crankcase Vents: 4.2%
- Pump Seals: 1.9%
- Pressure Regulators: 0.4%
- Valves: 26.0%

Source: Clearstone Engineering, 2002

Reducing Emissions, Increasing Efficiency, Maximizing Profits
Where are the leaks?

- Valves account for 30%
 - Block valves = 26%
 - Control valves = 4%
- Stem seal leaks are the primary source
 - Balance between packing pressure and valve movement force
 - Packing wears, requiring either more pressure or replacement
Where are the leaks?

- Open ended lines (OEL) account for 11%
 - Block valves
 - Blowdown vents, motor starters, vent and drain connections

- Through-valve leakage is the primary source
 - Often from vent stacks
 - Valve seat wears or fouls, requiring either more pressure, cleaning or replacement
Where are the leaks?

- Pressure Relief Valves (PRV) account for 3.5%
 - Fewer of them, so higher individual leakage
 - Protect equipment from over-pressure
- Through-valve leakage is the primary source
 - Often from vent stacks
 - Valve seat wears or fouls, requiring either cleaning or replacement
What Gas STAR Partners are doing?

- Implementing a Directed Inspection and Maintenance Program (DI&M)
 - Voluntary program to identify and fix leaks that are cost effective to repair
 - Survey cost will pay out in the first year
 - Provides valuable data on leakers

Acoustic Leak Detection

Leak Measurement Using a High Volume Sampler
Current DI&M Techniques

<table>
<thead>
<tr>
<th>Instrument/Technique</th>
<th>Effectiveness</th>
<th>Approximate Capital Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soap Solution</td>
<td>★ ★</td>
<td>$</td>
</tr>
<tr>
<td>Electronic Gas Detectors</td>
<td>★</td>
<td>$$</td>
</tr>
<tr>
<td>Acoustic Detection/ Ultrasound Detection</td>
<td>★ ★</td>
<td>$$$</td>
</tr>
<tr>
<td>TVA (FID)</td>
<td>★</td>
<td>$$$</td>
</tr>
<tr>
<td>Bagging</td>
<td>★</td>
<td>$$$</td>
</tr>
<tr>
<td>High Volume Sampler</td>
<td>★ ★ ★</td>
<td>$$$</td>
</tr>
<tr>
<td>Rotameter</td>
<td>★ ★</td>
<td>$$</td>
</tr>
</tbody>
</table>

Source: EPA's Lessons Learned Study
Cost-Effective Repair Examples

<table>
<thead>
<tr>
<th>Component</th>
<th>Value of Lost gas(^1) ($)</th>
<th>Estimated Repair cost ($)</th>
<th>Payback (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug Valve: Valve Body</td>
<td>12,641</td>
<td>200</td>
<td>0.2</td>
</tr>
<tr>
<td>Open-Ended Line</td>
<td>6,959</td>
<td>60</td>
<td>0.1</td>
</tr>
<tr>
<td>Pressure Relief Valve</td>
<td>982</td>
<td>293</td>
<td>3.5</td>
</tr>
<tr>
<td>Gate Valve</td>
<td>4,729</td>
<td>60</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Source: Hydrocarbon Processing, May 2002

\(^1\)Based on $3/Mcf gas price
Opportunities for Inexpensive Leak Sensors

- **Application:** Valves, Open-Ended Lines (OELs), Pressure Relief Valves (PRVs)

- **Objective:** Automated detection of LARGE leaks that are cost-effective to repair

- **Potential application:**

 - Business as usual site visit
 - Equipment alerts operator to cost-effective leak
 - Operator directs repairs on the spot
DI&M – Transmission Partner Experience

Partner A: 15 Stations surveyed annually
- Survey and repairs averaged $350/station
- Methane savings averaged 11,067 Mcf/station

 - Total Gas Savings $498,030
 - Total DI&M Cost $(5,250)
 - SAVINGS $492,780

Partner B: 2 Stations surveyed quarterly
- Survey costs $200/station
- 24 leaks detected & repaired; 23 repaired at average $50 each

 - Total Gas Savings $51,240
 - Total DI&M Cost $(2,750)
 - SAVINGS $48,490
Compressor seals
What is the problem?

- Compressor seals account for 23.4% of emissions
 - 11.9 Bcf/yr of methane are emitted by compressors
 - Over 8,500 compressors in gas transmission sector
Where are the leaks?

- Reciprocating compressor rod packing
 - Fourth largest gas industry emissions at 16 Bcf/yr
- Leakage typically occurs from:
 - Nose gasket
 - Between cups
 - Ring movement
 - Down shaft
- All packings leak
 - ~60 scfh new
 - >900 scfh worn
Where are the leaks?

- **Centrifugal compressor wet seals**
 - 90% of new compressors for transmission are centrifugal

- **Leakage typically occurs from**:
 - Labyrinth seal into seal oil
 - Seal oil degassing vent
 - Very little leakage from seal face

- **Seal oil vents emit**
 - 40-200 scfm

Reducing Emissions, Increasing Efficiency, Maximizing Profits
Where are the leaks?

- **Centrifugal compressor dry seals**
 - Most new compressors are supplied with dry seals

- **Leakage typically occurs from:**
 - Labyrinth seal into static barrier
 - Seal vent after tandem seal
 - Little leakage from seal face

- **Seal vents emit**
 - 0.5-3 scfm
What Gas STAR Partners are doing.

- Leakage is reduced through routine monitoring and seal maintenance
 - Conventional rod packing rings require replacement every 3 to 5 years
- An economic leak rate is determined based on costs and gas savings
- Replace rings when it is economical
 - Saves gas and money
 - Extends the life of the piston rod
 - Reduces methane emissions
Best Practice Compressor Emissions Control
Compressor Rod Packing Systems

- Partners develop an “economic replacement threshold” that defines the point when it is cost-effective to replace rings and rods

\[
\text{Economic Replacement Threshold (scfh)} = \frac{(CR \times DF)}{[(H \times GP) / 1,000]}
\]

where:

- \(CR \) = cost of replacement ($)
- \(DF \) = company discount factor (%)
- \(H \) = hours of compressor operation
- \(GP \) = gas price ($/Mcf)
Economic Analysis
Compressor Rod Packing System

Economic Replacement Threshold for Packing Rings

<table>
<thead>
<tr>
<th>LRE (scfh)</th>
<th>Payback Period<sup>1</sup> (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>

¹ Assumes packing ring replacement costs of $1,200, $3.00/Mcf gas and 8,000 hr/yr

Economic Replacement Threshold for Rod and Rings

<table>
<thead>
<tr>
<th>LRE (scfh)</th>
<th>Payback Period<sup>1</sup> (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>564</td>
<td>1</td>
</tr>
<tr>
<td>295</td>
<td>2</td>
</tr>
<tr>
<td>206</td>
<td>3</td>
</tr>
<tr>
<td>162</td>
<td>4</td>
</tr>
<tr>
<td>135</td>
<td>5</td>
</tr>
</tbody>
</table>

¹ Assumes packing ring replacement costs of $1,200, rod replacement cost of $7,000, $3.00/Mcf gas and 8,000 hr/yr
Opportunities for Inexpensive Leak Sensors

- Application: Compressor seal and seal oil vents
- Objective: Automated detection of LARGE leaks that are cost-effective to repair
- Potential application:
 - Business as usual site visit
 - Equipment alerts operator to cost-effective leak
 - Operator schedules cost-effective repairs
Company Experience

- One partner conducted semi-annual inspections of compressor rod packing
 - Replaced packing cases at eight stations costing $1,050 per case, installed
 - Saved 55 MMcf/yr valued at $165,000
Discussion Questions

- How accurate would sensors need to be in quantifying methane emissions?
- Would methane emissions sensor outputs need to be transmitted to a SCADA center?
- To what degree are candidate sites for low cost fugitive sensors non-electrified?
- What are other applications for inexpensive methane emissions sensors?