Convert Gas Pneumatic Controls to Instrument Air
Lessons Learned from Natural Gas STAR Partners

EPA’s Natural Gas STAR Program,
Pioneer Natural Resources USA, Inc., and
The Gas Processors Association

June 17, 2003
Air Pneumatic Devices

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Spreadsheet-based Analytical Tools
- Industry Experience
- Discussion Questions
Natural Gas Pneumatic System

- Natural Gas from Plant
- Inlet Fluids
- Pressure Controller
- Gas Out
- LLC: Liquid Level Controller
- Liquid Out
- 20-30 PSI Network
- Instrumentation and Control Systems Piping Network
- Utility Services

Reducing Emissions, Increasing Efficiency, Maximizing Profits
Sources of Methane Losses

- As part of normal operations, pneumatic devices release natural gas into the atmosphere.
- High-bleed devices bleed in excess of 6 scf per hour:
 - Equates to >50 Mcf/year
 - Typical high-bleed pneumatic devices bleed an average of 140 Mcf/year.
Magnitude of Methane Losses

- Major source of methane losses from the natural gas industry
- Pneumatic devices are used throughout the natural gas industry
 - Over 13,000 in the processing sector
 - Estimated methane loss of 16 Bcf/year = $48 million!
Convert to Instrument Air devices

- Most applicable to:
 - Large facility with high bleed pneumatic devices and has access to electricity

- Major components of instrument air system
 - Compressor
 - Power Source
 - Air Drier
 - Volume Tank
Instrument Air Decision Process

- Identify possible locations for system installations
- Determine optimal system capacity
- Estimate project costs
- Estimate gas savings
- Evaluate economics
- Develop an implementation plan
Determine Optimal System Capacity

- **Instrument Air Requirements**
 - Volume of the compressed air
 - Meter pneumatic gas supply
 - Rule of Thumb: 1 cfm air/control loop
 - Adjust for air losses
 - 17% of air input is bypassed in drier

- **Utility Air Requirements**
 - Rule of Thumb for pneumatic air systems:
 - 1/3 for instrument air
 - 2/3 for utility air
Calculate Gas Savings

- Determine the Gas Value Saved
 - Value of Gas = \((IA_u + UA_u) \times M \times P/1000\)
 - \(IA_u\) = Instrument Air Use: e.g. 35 control loops
 - \(UA_u\) = Utility Air Use: e.g. assume 10 cfm utility gas
 - \(M\) = Minutes in a year (525,600)
 - \(P\) = Price of Gas: assume $3.00/Mcf
 - Value of Gas = \((35 \times 1 + 10) \times 525,600 \times 3.00 / 1,000\)
 - Value of Gas Saved = $ 71,000/year
Calculate Compressor Size

Determine Air Compressor Capacity

- Air Compressor Capacity = $IA_S + UA_S$
 - $IA_S = \text{Instrument Air Supply}$
 - $= IA_U / (100\% - \% \text{ air bypassed in drier})$
 - $UA_S = \text{Utility Air Supply}$
 - $= IA_U \times (\text{fraction of utility air use}) / (\text{fraction of instrument air use})$

- Air Compressor Capacity
 - $= [(35/\text{(100\% - 17\%)}) + ((35 \times (2/3))/(1/3))] = 112 \text{ cfm}$
Determine Compressor Costs

<table>
<thead>
<tr>
<th>Service Size</th>
<th>Air Volume (cfm)</th>
<th>Compressor Type</th>
<th>Horsepower</th>
<th>Equipment Costs ($)</th>
<th>Annual Service Costs ($/yr)</th>
<th>Service Life (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>30</td>
<td>Reciprocating</td>
<td>10</td>
<td>2,500$1</td>
<td>300</td>
<td>1</td>
</tr>
<tr>
<td>Medium</td>
<td>125</td>
<td>Screw</td>
<td>30</td>
<td>12,500</td>
<td>600</td>
<td>5-6$2</td>
</tr>
<tr>
<td>Large</td>
<td>350</td>
<td>Screw</td>
<td>75</td>
<td>22,000</td>
<td>600</td>
<td>5-6$2</td>
</tr>
</tbody>
</table>

1 Cost included package compressor with a volume tank.

2 Rebuilt compressor costs $3,000 plus $500 labor minus $500 core exchange credit.
Determine Cost of Tank

<table>
<thead>
<tr>
<th>Service Size</th>
<th>Air Volume (gallons)</th>
<th>Equipment Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>80</td>
<td>500</td>
</tr>
<tr>
<td>Medium</td>
<td>400</td>
<td>1,500</td>
</tr>
<tr>
<td>Large</td>
<td>1,000</td>
<td>3,000</td>
</tr>
</tbody>
</table>

Small reciprocating air compressors, 10 horsepower and less, are commonly supplied with a volume tank.
Determine Cost of Drier

<table>
<thead>
<tr>
<th>Service Size</th>
<th>Air Volume (cfm)</th>
<th>Drier Type</th>
<th>Equipment Cost ($)</th>
<th>Annual Service ($/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>30</td>
<td>membrane</td>
<td>1,500</td>
<td>500</td>
</tr>
<tr>
<td>Medium</td>
<td>60</td>
<td>membrane</td>
<td>4,500</td>
<td>2,000</td>
</tr>
<tr>
<td>Large</td>
<td>350</td>
<td>alumina</td>
<td>10,000</td>
<td>3,000</td>
</tr>
</tbody>
</table>

1 Largest membrane size; use multiple units larger volumes.
Calculate Capital and Operating Costs

- **Determine Capital Cost**
 - Equipment Cost = Compressors Cost (2) + Tank Cost (2) + Dryer Cost
 \[= 2 \times $12,500 + 2 \times $500 + 1 \times $4,500\]
 - Equipment Cost * Installation Cost Factor
 Total Capital Cost = $30,500 \times 1.5 = $45,750

- **Determine Operating Cost**
 - Electrical Power = $13,140
 - Engine Power * Operating Factor * Electricity Cost
Economics of Replacement

<table>
<thead>
<tr>
<th></th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Cost ($)</td>
<td>(45,750)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O&M Cost ($)</td>
<td>0</td>
<td>(13,140)²</td>
<td>(13,140)</td>
<td>(13,140)</td>
<td>(13,140)</td>
<td>(13,140)</td>
</tr>
<tr>
<td></td>
<td>(3,200)²</td>
<td>(3,200)</td>
<td>(3,200)</td>
<td>(3,200)</td>
<td>(3,200)</td>
<td>(3,200)</td>
</tr>
<tr>
<td>Overhaul Cost ($)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4,800)³</td>
</tr>
<tr>
<td>Total Cost ($)</td>
<td>(45,750)</td>
<td>(16,340)</td>
<td>(16,340)</td>
<td>(16,340)</td>
<td>(16,340)</td>
<td>(21,140)</td>
</tr>
<tr>
<td>Gas Savings ($)</td>
<td>0</td>
<td>71,000⁴</td>
<td>71,000</td>
<td>71,000</td>
<td>71,000</td>
<td>71,000</td>
</tr>
<tr>
<td>Annual Cash Flow ($)</td>
<td>(45,750)</td>
<td>54,660</td>
<td>54,660</td>
<td>54,660</td>
<td>54,660</td>
<td>49,860</td>
</tr>
<tr>
<td>Cumulative Cash Flow ($)</td>
<td>(45,750)</td>
<td>8,910</td>
<td>63,570</td>
<td>118,230</td>
<td>172,890</td>
<td>222,750</td>
</tr>
<tr>
<td>Payback Period (months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>IRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>117 %</td>
</tr>
<tr>
<td>NPV ⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$158,454</td>
</tr>
</tbody>
</table>

¹ Electrical Power at 7.5 cents/kWh.
² Maintenance costs include $1,200 compressor service and $2,000 air drier membrane replacement
³ Compressor overhaul cost of $3,000, inflated at 10% per year
⁴ Value of gas = $3.00/Mcf
⁵ Net Present Value (NPV) based on 10% discount rate for 5 years
Partner Experience: Spirit Energy ‘76

- Installed air compression system in its Fresh Water Bayou facility
- Project Cost = $60,000
- Emissions Reductions = 69,350 Mcf/year
- Savings = $208,050 /year
- Payback Period < 4 months
Partner Experience : Texaco

- Installed compressed air system to drive pneumatic devices in 10 South Louisiana facilities
- Project Cost = $40,000
- Emissions Reductions = 23,000 Mcf/year
- Savings = $69,000 / year
- Payback Period ~ 7 months
Lessons Learned

- Instrument air system has potential to increase revenue and cut methane emissions
- It may extend the life of system equipment
- Installing low-bleed devices in conjunction with switch to instrument air is economical
- Existing infrastructure can be used
- Rotary air compressors lubricated with oil must be filtered ahead of membrane dryer
Other Technologies

- Liquid nitrogen system
 - Expensive and potential safety hazard
- Mechanical controls and instrumentation system
 - No power source needed
 - Limited application, frequent calibration required
- Electric and electro-pneumatic devices
Discussion Questions

- To what extent are you implementing this BMP?
- How can this Lessons Learned study be improved upon or altered for use in your operation(s)?
- What are the barriers (technological, economic, lack of information, etc.) that are preventing you from implementing this technology?