Installing Plunger Lift in Gas Wells

Lessons Learned from Natural Gas STAR

Exploration & Production,

Gulf Coast Environmental Affairs Group,

American Petroleum Institute and

EPA's Natural Gas STAR Program

June 19, 2003

Installing Plunger Lift in Gas Wells

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion Questions

What is the Problem?

- □ There are approximately 316,000 condensate and natural gas wells (on and offshore) in the U.S.
- Accumulation of liquid hydrocarbons or water in the well bores of gas wells reduces and can halt production
- Common practices to temporarily restore production vent significant quantities of methane

Methane Emissions

- By venting, or "blowing" the well to the atmosphere, a high volume of gas entrains accumulated liquids to the surface
- Methane is released to the atmosphere along with the gas
- On average, 50 to 600 Mcf of methane per well may be emitted each year
- □ To date, about 6 Bcf/yr of gas is being saved with plunger lift installations

How Can Plunger Lifts Reduce Methane Emissions?

- □ Plunger lifts automatically produce liquids without blowing the well to the atmosphere
- ☐ Gas pressure stored in the casing annulus periodically pushes the plunger and liquid load from the well bottom to surface vessels
- Wells with the right combination of shut-in pressure, depth and liquid accumulation are kept productive without operator attention
- Other wells can use injected gas lift more efficiently with a plunger lift system

Plunger Lift Schematic

Overall Benefits

- □ Higher gas production
- Reduced methane emissions
- Lower capital cost
- Lower well maintenance cost
- Extends the life of wells
- □ Removes scale, salt, paraffin

Decision Process

Determine the cost of a Determine if a plunger lift is plunger lift technically feasible for the well Estimate the savings achieved by plunger lift installation: capital and operating costs increased production value •gas savings avoided well treatment costs salvage value reduced workover/electricity costs Compare overall costs and benefits of Is a plunger lift traditional remedial techniques vs. plunger lifts cost-effective?

Plunger Lift Applications

- □ Plunger lifts are a long term solution
- □ Common plunger lift applications include
 - Wells with gas-to-liquid ratios of 400 scf/bbl per 1,000 feet of depth
 - Wells with shut-in pressure that is 1.5 times the sales line pressure
 - Gas wells with coiled tubing
 - Wells in need of paraffin and scale control
 - ◆ Oil wells with associated gas

NaturalGas 🛭

- □ Using plunger lift when venting to the atmosphere
 - Wells with shut-in pressure that is 1.5 times atmospheric pressure

Plunger Lift Costs

- Two elements: facilities and set-up costs
- □ Total costs range from \$1,500-\$6,000
- Largest variability is in set-up costs
 - ◆ Tubing gage: check for obstructions/drift
 - Broach to assure free movement
 - Set/check depth of plunger stop bumper
 - Swab to allow plunger to surface reliably

Avoided Emissions

- Estimating gas vented to expel liquids
 - ◆ GRI studied more than 103,000 blowdown events
 - 41% of the 6387 wells analyzed required liquid unloading
 - Frequency ranged from once-per-year to once-per-day, averaging 40 times per year
 - Methane content was 78.8 mole %
 - ExxonMobil averaged savings of 640 Mcf/yr/well for 19 plunger lift installations in Big Piney, WY
- □ A conservative estimate is the well volume at shut-in pressure
 - ◆ 0.37x10⁻⁶ x ID² x Depth x Pressure x Vents/yr (Mcf/yr)
 - 610 Mcf/yr for 8 inch, 10,000 ft well at 200 psig shut-in pressure with monthly venting

Increased Productivity

□ Using a well production plot, assume plunger lift can maintain peak average production rate

Additional Benefits: Plunger Lift Replaces Beam Lift

- Avoided well treatment
 - Chemical treatments (solvents, hot fluids, dispersants, surfactants, etc.) = \$10,000/yr
 - ♦ Microbial cleanups = \$5,000/yr
- Avoided workover costs
 - Decreased need for remedial operations average = \$12,000 to \$30,000 three times in 10 yrs

Economic Analysis

Two Options for continuously unloading a well

	Capital Costs	Annual Operating Costs	Remediation - Chemical	Electrical Costs	Production Increase	Emissions Savings	Payout
Plunger Lift	\$1,500- \$6,000	\$500 - \$1,000	\$0	\$0	3-300 MCFD	75-900 MCF/yr	1 month
Beam Lift	\$20,000 - \$40,000	\$3,000 - \$40,000	\$10,000 +	\$1,000 - \$7,300	3-300 MCFD	75-900 MCF/yr	14 months

Partner Reported Experience

- Partners report methane reduction of 10 -1,650 Mcf/yr per well
- □ Past emission reduction estimates for 120,000 wells using plunger lifts is 6 Bcf/yr or \$18 million/yr
- □ Future emission reduction potential estimated to be 1-5 Bcf/yr for 100,000 additional wells

BP

- Midland Farm Field, replacement of beam lift, rod pump well production equipment with plunger lifts
 - ◆ Initial decision based on paraffin blockage
 - ♦ Installation costs = \$10,000 /well
 - Avoided costs of electricity, workover, and paraffin control = \$20,000 /well/year
 - ◆ Increased production = \$22,548 /well/year
 - Due to success, 190 plunger lifts units have been installed at other locations

ExxonMobil E&P U.S.

- Plunger Lift Installation Program at Big Piney, Wyoming
 - ◆ Between 1995 and 1998 installed 23 plunger lifts (19 during first 3 years)
 - ◆ Total installation costs = \$115,000
 - ◆ Annual emissions reduction = 14,720 Mcf
 - ◆ Average annual value = \$44,160 (at \$3/Mcf)
 - Program continues installing plunger lifts

Annualized Reduction of Methane Emissions

*Total Annualized Reduction = 12,166 Mcf/yr (640 Mcf/yr/well)

Lessons Learned

- Most remedial actions (many of which can be replaced by plunger lifts) are costly, repetitive, and lead to excessive gas emissions
- □ Plunger lift installations reduce the amount of remedial work needed throughout the lifetime of the well, and the amount of methane releases

Lessons Learned

- □ An economic analysis of plunger lift installation should include incremental boost in productivity and associated extension of well life
- □ Plunger lift installations can offer quick paybacks and high return on investments

Discussion Questions

- □ To what extent are you implementing this technology?
- □ How can the Lessons Learned study be improved upon or altered for use in your operation(s)?
- What are the barriers (technological, economic, lack of information, regulatory, etc.) that are preventing you from implementing this technology?

