

Marine Scrubber Efficiency and NOx Emission from Large Ocean Going Vessels

Presented By: Jiacheng (Joey)Yang

Co-Authors: Kent C. Johnson, J. Wayne Miller, Thomas D. Durbin, Yu Jiang, Georgios Karavalakis, David R. Cocker III

2017 International Emissions Inventory Conference August 14th to August 18th, 2017 Baltimore, MD

Outline

- Background
- Marine Emissions
- **Policy, Control Strategy**

and Challenge

- Sulfur Emission
- Oxides of Nitrogen (NOx)

Emission

Conclusion

Marine Vessels and Global Shipping

Represents 80% of the volume and 70% of the value of international trade¹.
Linked with increased mortality in coastal regions, with an estimated 60,000 deaths from cardiopulmonary and lung cancer per year².

□ Emission effects the people living near the ports and coastlines, and those living hundreds of miles inland³.

2. Corbett, J. J., Winebrake, J. J., Green, E. H., Kasibhatla, P., Eyring, V., & Lauer, A. (2007). Mortality from ship emissions: a global assessment. Environmental science & technology, 41(24), 8512-8518.

 United State Environmental Protection Agency (US EPA), MARPOL Annex VI, accessed on October 5 2016, <u>https://www.epa.gov/enforcement/marpol-annex-vi</u> *Figure is obtained from www.marinetraffic.com.

^{1.} United Nations Conference on Trade and Development (UNCTAD), Review of Maritime Transport 2015

IMO Sulfur Rule and Emissions Control Areas (ECAs)

Global Fuel Sulfur	Limits	ECA Fuel Sulfur Limits			
Before 1 July 2012	4.5% m/m	Before 1 July 2010	1.5% m/m		
1 July 2012 – 1 January 2020	3.5% m/m	1 July 2010 – 1 January 2015	1.0% m/m		
After 1 January 2020	0.5% m/m	After 1 January 2015	0.1% m/m		

- IMO is targeting 0.5% of sulfur in the fuel by 2020 internationally.
- Stricter sulfur limits are in place in ECAs, and potential of increase ECAs.
- □ Aftertreatment (e.g. Scrubber) is allowed to use **if achieves the sulfur emissions equivalence** to low sulfur fuel. ⁴

*Figure is obtained from www.alfalaval.com.

Strategies to Control Sulfur Emissions

Marine Scrubber System

- □ Both open and close loop System
- □ Typical venturi and a cyclone separator
- □ Requires continuous monitoring SO₂, CO₂, PH, PAH, and turbidity

Contaminated gas in Scrubbing liquid in Venturi throat Wetted elbow Utted bow Utted elbow Utted elbow

> □ The excess heat of the hot exhaust gas will be consumed by evaporating scrubbing water until the gas reaches wet bulb temperature.

□ The mist eliminator is designed to remove entrained droplets from the gas stream.

*Figure is obtained from www.alfalaval.com.

Vessels, Engines, Fuels

	Vessel 1	Vessel 2	Vessel 3
Year Build	1987	2006	2015
Vessel Type	Container	Cruise	Ro-Ro
IMO Category	Tier 0	Tier 1	Tier 2
ME Engine	Mitsui Man B&W	Wartsila	Hyundai Man B&W
ME Year Build	1986	2005	2014
ME Model	7L70	4*12V46CR	8S60ME-C8.2
ME Power Capacity (MW)	16.6	4*12.6	15.6
AE Engine	Wartsila	Wartsila	Hyundai HiMSEN
AE Model	2*6R32D	2*8L46CR	2*7H25/33 + 1*6H25/33
AE Power Capacity (MW)	2*2.1	2*8.4	2*1.9 + 1.7
Go Through Scrubber	ME+1*AE	2*ME	ME+3*AE
Test Fuel	HFO (1.9% S)	RMG 380 (2.8% S)	HFO (2.5% S)
Scrubber	Alfa-Laval	n/a	Wartsila

SO₂ Reduction

Vessel 3

□ Scrubber shows a 96-100% of the SO₂ reduction □ SO₂(ppm)/CO₂(%) ratio < 4.3

 \square SO₂ emission reduction makes the fuel equivalent to 0.1% sulfur

 \Box Fuel sulfur rule is being met with scrubber system (on a SO₂ basis)

Sulfate PM (H₂SO₄*6.65H₂0) Reduction Vessel 1 Vessel 3

□ Major Component of PM mass are Sulfate PM.

□ There is no PM reduction with scrubber, and potentially more sulfate PM formation due to the scrubber.

□ Sulfate PM reduction were not equivalent to the use of low sulfur fuel.

Why no PM reduction?

FIGURE 1. Schematic of the emissions and particle formation mechanisms in diesel exhaust. Solid lines indicate well-established processes, dotted lines indicate processes under discussion.

- Why our results are different from European?
- What does the cold sea water scrubber impact on the particle formation?
- What does the challenge of particle formation to particulate sampling methodology?

10

Schneider, J., Hock, N., Weimer, S., Borrmann, S., Kirchner, U., Vogt, R., & Scheer, V. (2005). Nucleation particles in diesel exhaust: Composition inferred from in situ mass spectrometric analysis. *Environmental science & technology*, *39*(16), 6153-6161.

Lemmetty, M., Pirjola, L., Mäkelä, J. M., Rönkkö, T., & Keskinen, J. (2006). Computation of maximum rate of water–sulphuric acid nucleation in diesel exhaust. Journal of aerosol Science, 37(11), 1596-1604.

Particulate Emission Sampling System

US and Europe Sampling Comparison-Scrubber

Fridell, E., & Salo, K. (2016). Measurements of abatement of particles and exhaust gases in a marine gas scrubber. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 230(1), 154-162.

Schneider, J., Hock, N., Weimer, S., Borrmann, S., Kirchner, U., Vogt, R., & Scheer, V. (2005). Nucleation particles in diesel exhaust: Composition inferred from in situ mass spectrometric analysis. *Environmental science & technology*, 39(16), 6153-6161.

US and Europe Sampling Comparison-Scrubber

Fridell, E., & Salo, K. (2016). Measurements of abatement of particles and exhaust gases in a marine gas scrubber. *Proceedings of the Institution of Mechanical Engineers, Part M:* Journal of Engineering for the Maritime Environment, 230(1), 154-162.

Schneider, J., Hock, N., Weimer, S., Borrmann, S., Kirchner, U., Vogt, R., & Scheer, V. (2005). Nucleation particles in diesel exhaust: Composition inferred from in situ mass spectrometric analysis. *Environmental science & technology*, 39(16), 6153-6161.

US and Europe Sampling Comparison-Scrubber

Fridell, E., & Salo, K. (2016). Measurements of abatement of particles and exhaust gases in a marine gas scrubber. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 230(1), 154-162.

Schneider, J., Hock, N., Weimer, S., Borrmann, S., Kirchner, U., Vogt, R., & Scheer, V. (2005). Nucleation particles in diesel exhaust: Composition inferred from in situ mass spectrometric analysis. *Environmental science & technology*, 39(16), 6153-6161.

Dilution Ratio above 20 (~50)

Above 250°C tunnel

isokinetic sampling

US and Europe Sampling Comparison-Scrubber

>

Europe ISO

- > US CFR and ISO
 - Dilution Ratio 6-20
 - Filter temperature 47°C ± 5°C
 - Gas and Particulate Partitioning

Fridell, E., & Salo, K. (2016). Measurements of abatement of particles and exhaust gases in a marine gas scrubber. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 230(1), 154-162.

Schneider, J., Hock, N., Weimer, S., Borrmann, S., Kirchner, U., Vogt, R., & Scheer, V. (2005). Nucleation particles in diesel exhaust: Composition inferred from in situ mass spectrometric analysis. Environmental science & technology, 39(16), 6153-6161.

H₂O

Equivalent Sulfur In the Fuel to 0.1% Sulfur Rule Vessel 1 Vessel 3

 \Box Fuel sulfur rule is being met with scrubber system (on a regulated SO₂ basis).

Overall sulfur reductions are potentially post challenge to fuel sulfur rule (gas and particulate).

Outcome from this study will contribute to regulation development.

Particle Size Distribution for Vessel 3

Post Scrubber

Pre Scrubber particles peak size are around 30-40 nm.

Post Scrubber particles peak size are around 80-90 nm.

 Issue: particle did not grow big enough to remove with cyclone design.
Challenge: sulfate particles are so small in nature, very hard to grow big enough.

Schneider, J., Hock, N., Weimer, S., Borrmann, S., Kirchner, U., Vogt, R., & Scheer, V. (2005). Nucleation particles in diesel exhaust: Composition inferred from in situ mass spectrometric analysis. *Environmental science & technology*, *39*(16), 6153-6161.

Lemmetty, M., Pirjola, L., Mäkelä, J. M., Rönkkö, T., & Keskinen, J. (2006). Computation of maximum rate of water-sulphuric acid nucleation in diesel exhaust. Journal of aerosol Science, 37(11), 1596-1604.

Novel Method on Removing the Sulfuric Acid Particles from ships

□ Particle phase sulfur reduction were in the range of 47-68%, made it sufficient to meet IMO sulfur equivalent regulation. Also, 50% more BC reduction.

Further improvement could be achieved by increasing exhaust residence time in scrubber.

Demonstration on a ship by 2018.

IMO NOx Emissions Regulation

Table 1. MARPOL Annex VI NOx Emission Limits						
		NOx Limit, g/kWh				
Tier	Date	n < 130	$130 \le n < 2000$	$n \ge 2000$		
Tier I	2000	17	$45 \cdot n^{-0.2}$	9.8		
Tier II	2011	14.4	$44 \cdot n^{-0.23}$	7.7		
Tier III	2016†	3.4	$9 \cdot n^{-0.2}$	1.96		
† In NOx Emission Control Areas (Tier II standards apply						
outside ECAs).						

- It is more of a concern since the NOx emissions has been reduced significant by the application of SCR system for on road heavy duty diesel trucks and large off road equipment.
- Under the IMO low sulfur regulation and the upcoming NOx technical code, as well as the 'saving fuel' of the marine shipping, advanced engine technologies (electronic controlled fuel and lube oil injection, EGR, turbocharger cutoff operation) and advance aftertreatment technologies (scrubber, SCR, DPF) has been start commercializing. Little studies has been done on these area to understand the NOx performance of these advanced engine and aftertreatment technologies.

Vessel and Engine Details

	Vessel Type	IMO Category	ME Engine	Year Build	Model	Power Capacity (MW)	Test Fuel	Special Technology on ME	NOx (g/kwhr)	Sources
1	Container	Tier 0	Man B&W	1995	11K90MC-C	5.03	HFO (2.05% S)	None	18.21	CECERT: Harshit_2008_AE
2	Container_RoRo	Tier 0	Kincaid B&W	1985	6L90 GBE	20.20	HFO (1.97% S)	None	14.22	Moldanova_2009_AE
3	Crude Oil Tanker	Tier 0	Sulzer	NA	6RTA72	15.75	HFO (2.85% S)	None	19.87	CECERT: Harshit_2008_EST
4	Container	Tier 0	Hitachi Man B&W	1998	12K90MC	5.48	HFO (3.01% S)	None	19.77	CECERT: Harshit_2010_JGR
5	container	Tier 0	Sulzer	1997	9RTA84C	36.74	HFO (2.15-3.14% S)	None	19.45	CECERT: Khan_2013_JAWMA
6	Container	Tier 0	Samsung Man B&W	2000	12K90MC	55.66	HFO (0.95% S) and MGO (0.3% S)	None	20.25	CECERT_Yang
7	Container	Tier 0	Mitsui B&W	1987	7L70	16.58	HFO (1.88% S)	Scubber	15.82	CECERT_Yang
8	Container	Tier 0	NA	1985	NA	17.50	HFO (2.4% S)	NA	15.42	Fridell_2008_AE
9	Container	Tier 1	Hyundai B&W	2009	11K98ME7	68.53	HFO (2.51% S) and MGO (0.17% S)	None	16.1	CECERT: Khan_2012_EST
10	Crude Oil Tanker	Tier 1	Man B&W	2006	6L48/60	6.30	LSHFO and MGO (<0.1% S)	Variable Injection Timing (VVT)	10.45	CECERT: Gysel_2017_EST
11	RoRo	Tier 1	NA	2004	NA	20.07	HFO (2.2% S)	None	14.71	Fridell_2008_AE
12	RoRo	Tier 1	Man B&W	2006	9L60MC-C	21.06	HFO (2.3% S)	Scrubber	15.7-13.8	Fridell_2014_JEME
12*	RoRo	Tier 1	Man B&W	2006	9L60MC-C	21.06	HFO (2.2% S)	Scrubber	14.3	Danish EPA_2012
13	RoRo	Tier 2	Hyundai B&W	2014	8S60ME-C8	15.56	HFO (2.5% S)	Electronic Controlled Fuel and Oil Injection; Scrubber	13.1	CECERT_Yang
14	Container	Tier 2	Man B&W	2011	12K98ME6.1	69.68	MGO <(0.1% S)	Electronic Controlled Fuel and Oil Injection; Turbocharger cut off fuel economy operation	15.5 or 17.8	CECERT_Yang

Large Ocean Going Vessels (rpm<130) NOx Emissions Rate

Vessel and Engine Details

	Vessel Type	IMO Category	ME Engine	Year Build	Model	Power Capacity (MW)	Test Fuel	Special Technology on ME	NOx (g/kwhr)	Sources
1	Container	Tier 0	Man B&W	1995	11K90MC-C	5.03	HFO (2.05% S)	None	18.21	CECERT: Harshit_2008_AE
2	Container_RoRo	Tier 0	Kincaid B&W	1985	6L90 GBE	20.20	HFO (1.97% S)	None	14.22	Moldanova_2009_AE
3	Crude Oil Tanker	Tier 0	Sulzer	NA	6RTA72	15.75	HFO (2.85% S)	None	19.87	CECERT: Harshit_2008_EST
4	Container	Tier 0	Hitachi Man B&W	1998	12K90MC	5.48	HFO (3.01% S)	None	19.77	CECERT: Harshit_2010_JGR
5	container	Tier 0	Sulzer	1997	9RTA84C	36.74	HFO (2.15-3.14% S)	None	19.45	CECERT: Khan_2013_JAWMA
6	Container	Tier 0	Samsung Man B&W	2000	12K90MC	55.66	HFO (0.95% S) and MGO (0.3% S)	None	20.25	CECERT_Yang
7	Container	Tier 0	Mitsui B&W	1987	7L70	16.58	HFO (1.88% S)	Scubber	15.82	CECERT_Yang
8	Container	Tier 0	NA	1985	NA	17.50	HFO (2.4% S)	NA	15.42	Fridell_2008_AE
9	Container	Tier 1	Hyundai B&W	2009	11K98ME7	68.53	HFO (2.51% S) and MGO (0.17% S)	None	16.1	CECERT: Khan_2012_EST
10	Crude Oil Tanker	Tier 1	Man B&W	2006	6L48/60	6.30	LSHFO and MGO (<0.1% S)	Variable Injection Timing (VVT)	10.45	CECERT: Gysel_2017_EST
11	RoRo	Tier 1	NA	2004	NA	20.07	HFO (2.2% S)	None	14.71	Fridell_2008_AE
12	RoRo	Tier 1	Man B&W	2006	9L60MC-C	21.06	HFO (2.3% S)	Scrubber	15.7-13.8	Fridell_2014_JEME
12*	RoRo	Tier 1	Man B&W	2006	9L60MC-C	21.06	HFO (2.2% S)	Scrubber	14.3	Danish EPA_2012
13	RoRo	Tier 2	Hyundai B&W	2014	8560ME-C8	15.56	HFO (2.5% S)	Electronic Controlled Fuel and Oil Injection; Scrubber	13.1	CECERT_Yang
14	Container	Tier 2	Man B&W	2011	12K98ME6.1	69.68	MGO <(0.1% S)	Electronic Controlled Fuel and Oil Injection; Turbocharger cut off fuel economy operation	15.5 or 17.8	CECERT_Yang

Slow Steaming and Turbocharger Cut Off

- **Slow Steaming:** The easiest way to reduce this cost is to reduce the ship's speed.
- **Turbocharger (T/C) Cut Off Operation for Slow Steaming:** When the engine is operating at part load, one of the turbochargers is intentionally cut off to increase scavenging air pressure, compression air pressure, and maximum combustion pressure. This pressure increase boosts thermal efficiency.

Engine Load 0% 9% 28% 41% 57% 7

Summary and Conclusion

Nucleation mode sulfuric acid particles were formed through combustion from high sulfur fuel and cooling effect, which is not able to be removed by conventional scrubber system.

 Some marine engine technology/operation may lead to higher NOx emissions to save fuel.
Attention needed for new marine engine technologies.
Marine Emission Inventory development needs more data input and a more standardized measurement protocol.

Acknowledgment

Environment Environnement Canada Canada

NRC-Canada: Kevin Thomson, Stephanie Gagne ant AVL: Monica Tutuianu

MAN B&W Diesel A/S, Copenhagen

Port of Los Angeles, Long Beach, Tacoma, Anchorage

MAN Diesel & Turbo

Funding and Participation: US Environmental Protection Agency (EPA) California Air Resource Board (CARB) United States Maritime Administration (MARAD)

Climate & Clean Air Coalition (CCAC) International Council for Clean Transportation (ICCT)

UCR Staff: Eddie O'Neil, Mark Villela, and Don Pacocha

ICCT: Dan Rutherford, Bryan Comer

Environmental Canada: Tak Chan

Gagne

UCR

Participate Shipping Lines!!

AGENC

California Environmental Protection Agency

ENVIRONMEN

AL PROT

Emissions Studies are also Important to Port Policies

Port LON The Gri	of IG BEACH een Port					
About Us Commissio	n Finance Trade Environment Community Contact Us How Do I Find					
Bigging Servironment Servironment Service Provident Prov	uality > Vessels 🧭 Email) 🔯 Print					
Navigation Menu	Vessel Emissions					
Air Quality Shore Power Shore Power FAQ	Ships calling on the Port of Long Beach are a significant source of emissions that cause air pollution. The Port is working to reduce these emissions through: Green Ship Incentive Program The Green Ship Incentive Program is a voluntary clean-air initiative targeting the reduction of smog- causing nitrogen oxides (NOx). It rewards qualifying vessel operators for deploying today's greenest ships to the Port of Long Beach and accelerating the use of tomorrow's greenest ships. Vessels with main engines meeting 2011 Tier 2 standards established by the International Maritime Organization (IMO) will be eligible for an incentive of \$2,500 per ship call. For still cleaner vessels meeting 2016 Tier 3 standards, the incentive will increase to \$6,000 per ship call.					
Air Monitoring						
Vessels						
Grants						
Air Quality Documents						
Emissions Inventory Documents	For more information on the program, go to <u>www.polb.com/greenship</u> .					
Green Ship Incentive Program	Main Engine Low-Sulfur Fuel Incentive Program From July 1, 2008 through June 30, 2009, the Port committed up to \$10 million for a one-year incentive program to ancourage vessel operators to use low sulfur (0.2 percent sulfur or loss) Marine					
Green Flag Incentive Program	Gas Oil (MGO) or Marine Diesel Oil (MDO) in their main engines during their approach or departure, out to 20 or 40 nautical miles (nm) from Point Fermin. During the one-year program, the Port provided funding to cover the cost differential between the cleaner burning low-sulfur fuel and the heavy bunker fuel typically used in vessel main engines. To receive the incentive, vessel operators were required to be compliant with the Vessel Speed Reduction Program speed limit of 12 knots over					

the distance they wished to receive the incentive (40 nm or 20 nm) and use low sulfur fuel in their

Large Ocean Going Vessels (rpm<130) NOx Emissions Rate

Strategies to Reduce Oxides of Nitrogen Emissions: Tier 3

Effect of turbocharger cut out on two-stroke marine diesel engine performance and NOx emissions at part load operation

and without T/C cut-out at low load operation.

Hountalas, D. T., Sakellaridis, N. F., Pariotis, E., Antonopoulos, A. K., Zissimatos, L., & Papadakis, N. (2014, July). Effect of turbocharger cut out on two-stroke marine diesel engine performance and NOx emissions at part load operation. In *ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis* (pp. V002T09A020-V002T09A020). American Society of Mechanical Engineers.