Evaluating the Wildfire Emission estimates in an Air Quality Simulation of the 2016 Southeastern United States Wildfires

George Pouliot
Rob Gilliam
Brian Eder
Ian McDowell
Joe Wilkins
Tom Pierce

International Emissions Inventory Conference
Baltimore MD
August 18, 2017
2016 Wildfires in the Southeast US

- Extreme drought in the SE US during fall of 2016 (AL, GA, TN, NC, SC)
- Tuscaloosa, AL -- longest streak of no precipitation (71 days)
- Birmingham, AL -- longest streak of no precipitation (61 days)
- Montgomery, AL; Atlanta, GA; Charleston, SC - no precipitation for 28 days in November
- Wildfires burned over 72,000 hectares during the month of November in the SE US
- Shifting winds during the wildfire period resulted in regional scale impacts
- Some of the more significant fires included:
 - Gatlinburg Fire (6,936 hectares)
 - Tellico Fire (5,534 hectares) (more details to follow)
 - Party Rock Fire (2,890 hectares)
• Boundary conditions from hemispheric WRF-CMAQ
• Fire INventory from NCAR (FINN) -- a daily fire emissions product for atmospheric chemistry models
• Coupled WRF-CMAQ simulations with and without FINN fire emissions. 24 Hour Simulations similar to standard retrospective simulations (no forecasting).
• CB05E51 mechanism
• Near-real-time (NRT) modeling with CMAQ version 5.2 beta
• WRF version 3.8
• Simulation period Nov 7-17, 2017. Does not include Gatlinburg Fire.
• First implementation of fires in our 12 km NRT modeling system
2016 Wildfires in the Southeast US

- Implementation of fire emissions from FINN in the modeling system
- Download SAPRC99 FINN global emission dataset daily at 2:30 AM local time
- Convert data to SMOKE FF10 format with python script
 - No fuel loading or heat release in FINN data
 - Scale heat flux from PM$_{2.5}$ using constant emission factor for all fires (kg fuel per g emission) (0.14 kg fuel per gram of PM$_{2.5}$ emission)
 - Add FIPS codes to each fire (needed for SMOKE processing and temporal allocation)
 - Sum VOC and CH$_4$ to get TOG and apply wildfire TOG profile to get CB05E51 (or CB6) emissions
- Merge emissions with non-MODIS Hazard Mapping System (HMS) crop residue burning emission estimates (as in 2014 NEI) to avoid double counting.
- Use SMOKE to process fire emissions for CMAQ
- Compare CMAQ results to AIRNOW hourly PM2.5
CMAQ simulation of PM$_{2.5}$ from FINN fires

November 7-17, 2016

Min=-9.97 at (355,136), Max=29.62 at (314,108)
2016 Wildfires in the Southeast US

- Six selected MODIS images comparing model results of PM$_{2.5}$ with observed smoke plumes for November 7, 10, 12, 14, 16, 17
- Days selected because they are mostly cloud free and readily available from the NASA archive (https://lance.modaps.eosdis.nasa.gov)
- 4 monitors near the fires selected for model evaluation
2016 Wildfires in the Southeast US

November 7, 2016 18:30 UTC Aqua/MODIS

PM2.5 CMAQv5.0.2-NRT-FINN

November 7, 2016, 18:00 UTC
2016 Wildfires in the Southeast US

Modeled vs. Observed PM2.5 Values - Nov 7

Daily Mean $\text{PM}_{2.5}$ Model vs Obs November 7
2016 Wildfires in the Southeast US

PM2.5 CMAQv5.0.2-NRT-FINN

Good Qualitative Agreement
2016 Wildfires in the Southeast US

Modeled vs. Observed PM2.5 Values - Nov 10

Daily Mean PM$_{2.5}$ Model vs Obs November 10

ug/m3
2016 Wildfires in the Southeast US

- November 12, 2016 18:50 UTC

Wind direction different between observations and models (High Pressure and light winds)

- November 12, 2016 19:00 UTC
2016 Wildfires in the Southeast US

Daily Mean PM$_{2.5}$ Model vs Obs November 12

Note: Some AIRNOW data missing
EPA

2016 Wildfires in the Southeast US

PM2.5 CMAQv5.0.2-NRT-FINN

November 14, 2016 18:00 UTC

November 14, 2016 18:35 UTC
2016 Wildfires in the Southeast US

Daily Mean PM$_{2.5}$ Model vs Obs November 14
2016 Wildfires in the Southeast US

Modeled vs. Observed PM$_{2.5}$ Values - Nov 16

Daily Mean PM$_{2.5}$ Model vs Obs November 16

 ug/m³
2016 Wildfires in the Southeast US

PM2.5 CMAQv5.0.2-NRT-FINN
2016 Wildfires in the Southeast US

Daily Mean PM$_{2.5}$ Model vs Obs November 16

Modeled vs. Observed PM2.5 Values - Nov 17

- Modeled
- Observed

Harriman, LookRock, Knoxville, Bryson, LongCreek

 ug/m3
Map created Nov 15th, 2016 by the Southern Area Incident Management Team

Source: https://inciweb.nwcg.gov/incident/map/5084/17/61209/
Tellico Fire

Daily Hectares Burned Tellico Fire
FINN vs INCIWEB

INCIWEB (National Wildfire Coordinating Group) vs FINN
Summary of Analysis

- Qualitative agreement between observed SMOKE plumes and WRF-CMAQ fire plumes using FINN data
 - Large fires produce plumes that have similar shape characteristics between the model and MODIS images (Nov 10)
- Poor model performance for magnitude of PM$_{2.5}$. Possible explanations:
 - Emissions too low or missing on cloudy days (emission factor, fuel loading, area burned)
 - Plume rise possibly too high, so emissions are transported away from the source
 - Model Resolution of 12 km cannot resolve the small details
 - Tellico Fire area burned underestimated by a factor of 4
- Not all fires produce a plume from satellite
- Wind direction sometimes incorrect (Nov 12)
Future Directions:

- **Sensitivity of model results to plume heights**
 - Use the 11-day period as a test case for future modeling improvements to plume rise
- **Extend simulations forward and backward into October/December**
- **Sensitivity of model results to filling in missing data on cloudy days**
- **Sensitivity of model to retrospective analysis of daily burn area**
- **Compare emissions with SMARTFIRE/Bluesky estimates**
- **Model evaluation of each emission and/or change to the system**
- **Compare Model AOD estimates with MODIS AOD**
2016 Wildfires in the Southeast US

• Reference

• Disclaimer – The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.