Potential Energy and Emissions Benefits of Vehicle Automation and Connectivity

Andrew Eilbert, Lauren Jackson, George Noel, and Scott Smith
2017 International Emission Inventory Conference
Tools and GIS Session

August 17, 2017
Framework for Automated Vehicle Benefits

- “Big picture” of automated vehicle impacts
- Short-term direct impacts
- Longer-term indirect impacts

- Focus on the relationship between the vehicle operations and energy/emissions
- Connected a traffic microsimulation software (PTV Vissim) with EPA’s emission inventory model for highway vehicles (MOVES)
Three-Layered Modeling Framework

Automated Vehicle Technologies in Driving Behavior Models

<table>
<thead>
<tr>
<th>Adaptive Cruise Control (ACC)</th>
<th>Cooperative Adaptive Cruise Control (CACC)</th>
<th>Speed Harmonization</th>
<th>Platooning</th>
</tr>
</thead>
</table>

Microscopic Traffic Simulation Models

i.e. PTV Vissim, Aimsun, INTEGRATION

Modal Vehicle Emissions Models

<table>
<thead>
<tr>
<th>MOVES</th>
<th>CMEM</th>
<th>VT-Micro</th>
</tr>
</thead>
</table>
SAE J3016 Levels of Automation

<table>
<thead>
<tr>
<th>SAE level</th>
<th>Name</th>
<th>Narrative Definition</th>
<th>Execution of Steering and Acceleration/Deceleration</th>
<th>Monitoring of Driving Environment</th>
<th>Fallback Performance of Dynamic Driving Task</th>
<th>System Capability (Driving Modes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Automation</td>
<td>the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Human driver</td>
<td>n/a</td>
</tr>
<tr>
<td>1</td>
<td>Driver Assistance</td>
<td>the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task</td>
<td>Human driver and system</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>2</td>
<td>Partial Automation</td>
<td>the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task</td>
<td>System</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>3</td>
<td>Conditional Automation</td>
<td>the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene</td>
<td>System</td>
<td>System</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>4</td>
<td>High Automation</td>
<td>the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>5</td>
<td>Full Automation</td>
<td>the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>All driving modes</td>
</tr>
</tbody>
</table>

https://www.sae.org/misc/pdfs/automated_driving.pdf
Modeling Approach

- Produce 15 random Vissim seeds from speed distribution
- Process Vissim output to create operating mode distributions
- Apply Vissim modeled roadway network in MOVES
- Run MOVES model and analyze emission results
Scenario Development

- Modeled passenger cars on Interstate 91 northbound near Springfield, MA
 - Speeds and traffic volumes from MassDOT
- Modified CACC Driver Model DLL from Turner-Fairbank Highway Research Center (FHWA)
 - Does not include platooning, lane change, or designated lane
- Ran three different microsimulation scenarios in Vissim:
 1) Baseline with default Wiedemann 99 car-following algorithm
 2) All vehicles using CACC driver model
 3) Default Wiedemann 99 algorithm with traffic oscillations set to zero
- MOVES project-level energy and emissions calculated on a per vehicle basis for each scenario
Weidemann Car Following

- A closer following headway
- The reduction of oscillations in driver car following behavior

Capri (2012), International Journal of Traffic and Transportation Engineering
Map of I-91 Network
Input I-91 Traffic Speeds and Volumes

Cumulative Distribution Function of Speeds on I-91 Northbound in April 2017

- Input Cumulative Distribution
- Normal Cumulative Distribution

Input Volumes for I-91 Northbound Network:

1. Locale_ID: 26_NB
 Volume: 2,562

2. Locale_ID: 252152
 Volume: 714

3. Locale_ID: S14-061-281-24
 Volume: 700

4. Locale_ID: R15509
 Volume: 351

5. Locale_ID: R15510
 Volume: 92

6. Locale_ID: 236286_NB
 Volume: 1,045
Network Performance

- Box plots of speeds for each link
 - 25th percentile, median, 75th percentile, mean (red dot)
MOVES Operating Modes

- Vehicle-specific power (VSP) and emissions are well correlated
- VSP is derived from instantaneous speed and acceleration along with other constants such as vehicle mass and aerodynamic drag
 - Microsimulations run at 10 Hz
- MOVES operating modes assigned according to VSP and speed bins
 - Separate op modes for braking (opModeID 0) and idling (opModeID 1)

Beardsley (2011), MOVES Workshop
Vehicle-Specific Power (VSP)

\[P_{V,t} = \frac{A v_t + B v_t^2 + C v_t^3 + m v_t a_t}{m} \]

In this form, VSP \((P_{V,t}, \text{kW/Mg})\) is estimated in terms of vehicles’:

- speed at time \(t\) \((v_t, \text{m/sec})\),
- acceleration \(a_t\), defined as \(v_t - v_{t-1}\), \((\text{m/sec}^2)\),
- mass \(m\) \((\text{Mg})\) (usually referred to as “weight”),
- track-road load coefficients \(A\), \(B\) and \(C\), representing rolling resistance, rotational resistance and aerodynamic drag, in units of kW-sec/m, kW-sec\(^2\)/m\(^2\) and kW-sec\(^3\)/m\(^3\), respectively.\(^3\)
Operating Mode Distributions

I-91 Springfield Link 101
Link-Level Emission and Energy Impacts

Energy/CO$_2$

PM2.5

Scenario
Baseline
CACC
Wiedemann

Energy Rate (MMBTU/veh/hr)

PM2.5 Emission Rate (g/veh/hr)
Network Emissions and Energy Impacts

Energy/CO₂

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Energy Rate (MMBTU/veh/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>CACC</td>
<td></td>
</tr>
<tr>
<td>Wiedemann</td>
<td></td>
</tr>
</tbody>
</table>

PM2.5

<table>
<thead>
<tr>
<th>Scenario</th>
<th>PM 2.5 Emission Rate (g/veh/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>CACC</td>
<td></td>
</tr>
<tr>
<td>Wiedemann</td>
<td></td>
</tr>
</tbody>
</table>
Minimum/Maximum Impacts

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CACC from Baseline</th>
<th>Wiedemann from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>THC</td>
<td>-2.2%</td>
<td>22.1%</td>
</tr>
<tr>
<td>CO</td>
<td>2.5%</td>
<td>33.9%</td>
</tr>
<tr>
<td>NOx</td>
<td>-5.6%</td>
<td>10.4%</td>
</tr>
<tr>
<td>VOC</td>
<td>-2.2%</td>
<td>21.2%</td>
</tr>
<tr>
<td>Energy/CO₂</td>
<td>-4.7%</td>
<td>4.7%</td>
</tr>
<tr>
<td>PM2.5</td>
<td>6.8%</td>
<td>39.2%</td>
</tr>
</tbody>
</table>

- **CACC scenario shows mostly benefits from baseline**
 - CO and PM2.5 only have reductions
- **Wiedemann scenario without oscillations often has disbenefits**
 - Possible benefits and disbenefits are approximately equal for NOx, VOC, and Energy/CO₂
Conclusions and Future Work

- **Results**
 - Automated vehicles generally show **less braking**, leave **less headway**, and have **less fluctuations in speed and acceleration** than baseline
 - CACC has less of an effect on energy and emissions in freely flowing traffic
 - Wiedemann oscillation smoothing does not produce much benefit
 - DLL needs to be thoroughly tested and validated

- **Next Steps**
 - **Vary traffic volumes** to simulate more heavily congested scenarios
 - Experiment with **different penetrations of CACC**-enabled vehicles
 - Investigate lane changing capabilities to accommodate merging
Discussion

- **Modeling Recommendations**
 - Update tools to reflect connected and automated vehicle (CAV) technologies
 - Integrate CAV technologies into MOVES driving behavior
 - Add custom operating mode distributions for regulatory analysis

- **Broader Issues**
 - Travel behavior
 - Shared vehicles
 - Shared trips
 - Effect on VMT
 - Parking
 - Vehicle operations
 - Drivetrain technologies (fossil fuel vs. electric)
 - Emission sources (mobile vs. stationary)
For More Information

http://www.dot.gov/

Kevin Dopart
US DOT / ITS JPO
Kevin.Dopart@dot.gov

Scott Smith
US DOT / Volpe Center
Scott.Smith@dot.gov

Andrew Eilbert
US DOT / Volpe Center
Andrew.Eilbert@dot.gov

Sponsorship through US DOT Intelligent Transportation Systems Joint Program Office (ITS JPO)