

Satellite NO₂ for the Evaluation of U.S. NO_x Emissions

Dr. Monica Harkey, UW-Madison Dr. Tracey Holloway, UW-Madison Dr. R. Brad Pierce, NOAA

> in collaboration with Rob Kaleel, LADCO Dr. Alex Cohan, LADCO

Satellites:

Aura

PARASOL

CALIPSO

CloudSat

Aqua

• daily, seasonal patterns and multi-year trends

How can OMI NO₂ help us learn...

- about urban-rural gradients?
- from scaling for near-surface amounts?
- from assimilating OMI NO₂ observations?

urban-rural gradients

July 2011 average modeled

urban-rural gradients

July 2011 average observed

urban-rural gradients

How can OMI NO₂ help us learn...

about urban-rural gradients?

modeled column NO_2 too low in non-urban areas; too high in urban areas uncertainties in LNOx? aviation emissions?

• from scaling for near-surface amounts?

• from assimilating OMI NO₂ observations?

scaling OMI NO₂ for near-surface amounts

scaled OMI surface layer OMI column

Ξ

scaling OMI NO₂ for near-surface amounts

scaling OMI NO₂ for near-surface amounts

How can OMI NO₂ help us learn...

• about urban-rural gradients?

modeled column NO₂ too low in non-urban areas; too high in urban areas uncertainties in LNOx? aviation emissions?

• from scaling for near-surface amounts?

low-bias technique useful for "filling in the gaps" results using month averages similar to using daily values

• from assimilating OMI NO₂ observations?

adjust area NO_x emissions

(NO₂ lifetime too short to use assimilation to constrain tropospheric column amounts)

adjust area NO₂ emissions

- calculate monthly mean NO₂ Jacobian (β) from a 15% NO_x reduction perturbation experiment following Lamsal et al. 2011
- 2) calculate monthly mean NO_2 analysis increment using CMAQ + OMI NO_2 assimilation
- 3) adjust 2011 NEI NO₂ emissions using Jacobian and analysis increment

Lamsal, L. N., et al. (2011), Application of satellite observations for timely updates to global anthropogenic NOx emission inventories, Geophys. Res. Lett., 38, L05810, doi:10.1029/2010GL046476.

adjust area NO₂ emissions

 calculate monthly mean NO₂ Jacobian (β) from a 15% NO_x reduction perturbation experiment following Lamsal et al. 2011

3) adjust 2011 NEI NO₂ emissions using Jacobian and analysis increment

Lamsal, L. N., et al. (2011), Application of satellite observations for timely updates to global anthropogenic NOx emission inventories, Geophys. Res. Lett., 38, L05810, doi:10.1029/2010GL046476.

0.0

0.2

0.4

 $(1e15 \text{ mol/cm}^2)$

0.6

0.8

1.0

CMAQ lightning parameterization July 2011 column average LNO_x contribution

adjust lightning NO_X emissions

adjust lightning NO_X emissions

-2.0 -1.5 -1.0 -0.5 0.0 0.5 (1e15 mol/cm²)

(not) assimilating OMI NO₂

July 2011 average observed

July 2011 average modeled (original emissions)

assimilating OMI NO₂

July 2011 average observed

July 2011 average modeled (adjusted emissions)

assimilating OMI NO₂

How can OMI NO₂ help us learn...

about urban-rural gradients?

modeled column NO₂ too low in non-urban areas; too high in urban areas uncertainties in LNOx? aviation emissions?

• from scaling for near-surface amounts?

low-bias technique useful for "filling in the gaps" results using month averages similar to using daily values

• from assimilating OMI NO₂ observations?

 NO_X emissions may be adjusted downward in most large urban areas emissions of lightning NO_X important adjusted emissions improve model-satellite column NO_2 agreement

What can we learn from OMI NO₂?

- model evaluation and data assimilation show urban $\text{NO}_{\rm X}$ tends to be too high
- uncertainties with lightning NO_{χ} , emissions from aviation at cruising altitude
- scaled-to-surface satellite observations may be helpful in evaluating emissions and trends away from ground-based monitors

