USER'S GUIDE FOR ESTIMATING DIRECT CARBON DIOXIDE EMISSIONS FROM FOSSIL FUEL COMBUSTION USING THE STATE INVENTORY TOOL

NOVEMBER 2019

Prepared by: ICF

Prepared for: State Energy and Environment Program, U.S. Environmental Protection Agency

This section of the User's Guide provides instruction on using the CO_2 from Fossil Fuel Combustion (CO_2FFC) module of the State Inventory Tool (SIT), and describes the methodology used for estimating greenhouse gas emissions from fossil fuel combustion at the state level.

TABLE OF CONTENTS

1.1	Getting Started	.2
1.2	Module Overview	4
1.2.1	L Data Requirements	.4
1.2.2	2 Tool Layout	.6
1.3	Methodology	.7
1.4	Uncertainty1	.6
1.5	References	.6

1.1 GETTING STARTED

The Carbon Dioxide from Fossil Fuel Combustion (CO₂FFC) module was developed using Microsoft® Excel 2000. While the module will operate with older versions of Excel, it functions best with Excel 2000 or later. If you are using Excel 2007 or later, instructions for opening the module will vary as outlined in the Excel basics below. Before you use the CO₂FFC module, make sure your computer meets the system requirements. In order to install and run the CO₂FFC module, you must have:

- IBM-PC compatible computer with the Windows 95 operating system or later;
- Microsoft® Excel 1997 or later, with calculation set to automatic and macros enabled;
- Hard drive with at least 20MB free; and
- Monitor display setting of 800 x 600 or greater.

Microsoft Excel Settings

Excel 2003 and Earlier: For the SIT modules to function properly, Excel must be set to automatic calculation. To check this setting, launch Microsoft Excel before opening the CO₂FFC module. Go to the Tools menu and select "Options..." Click on the "Calculations" tab and make sure that the radio button next to "Automatic" is selected, and then click on "OK" to close the window. The security settings (discussed next) can also be adjusted at this time.

Excel 2007 and Later: For the SIT modules to function properly, Excel must be set to automatic calculation. Go to the Formulas ribbon and select "Calculation Options." Make sure that the box next to the "Automatic" option is checked from the pop-up menu.

Microsoft Excel Security

Excel 2003 and Earlier: Since the SIT employs macros, you must have Excel security set to medium (recommended) or low (not recommended). To change this setting, launch Microsoft Excel before opening the CO₂FFC module. Once in Excel, go to the Tools menu, click on the Macro sub-menu, and then select "Security" (see Figure 1). The Security popup box will appear. Click on the "Security Level" tab and select medium. When set to high, macros are automatically disabled; when set to medium, Excel will give you the choice to enable macros; when set to low, macros are always enabled.

When Excel security is set to medium, users are asked upon opening the module whether to enable macros. Macros must be enabled in order for the CO₂FFC module to work. Once they are enabled, the module will open to the control worksheet. A message box will appear welcoming the user to the module. Clicking on the "x" in the upper-right-hand corner of the message box will close it.

Excel 2007 and Later: If Excel's security settings are set at the default level a Security Warning appears above the formula box in Excel when the CO₂FFC module is initially opened. The Security Warning lets the user know that some active content from the spreadsheet has been disabled, meaning that Excel has prevented the macros in the spreadsheet from functioning. Since SIT needs macros in order to function properly, the user must click the "Options" button in the security message and then select, "Enable this content" in the pop-up box. Enabling the macro content for the SIT in this way only enables

macros temporarily in Excel but does not change the macro security settings. Once macros are enabled, a message box will appear welcoming the user to module. Click on the "x" in the upper right-hand corner to close the message box.

If the Security Warning does not appear when the module is first opened, it may be necessary to change the security settings for macros. To change the setting, first exit out of the CO₂FFC module and re-launch Microsoft Excel before opening the CO₂FFC module. Next, click on the Microsoft Excel icon in the top left of the screen. Scroll to the bottom of the menu and select the "Excel Options" button to the right of the main menu. When the Excel Options box appears, select "Trust Center" in left hand menu of the box. Next, click the gray "Trust Center Settings" button. When the Trust Center options box appears, click "Macro Settings" in the left hand menu and select "Disable all macros with notification." Once the security level has been adjusted, open the Stationary Combustion module and enable macros in the manner described in the preceding paragraph.

Viewing and Printing Data and Results

The CO₂FFC module contains some features to allow users to adjust the screen view and the appearance of the worksheets when they are printed. Once a module has been opened, you can adjust the zoom by going to the Module Options Menu, and either typing in a zoom percentage or selecting one from the drop down menu. In addition, data may not all appear on a single screen within each worksheet; if not, you may need to scroll up or down to view additional information.

You may also adjust the print margins of the worksheets to ensure that desired portions of the CO₂FFC module are printed. To do so, go to the File menu, and then select "Print Preview." Click on "Page Break Preview" and drag the blue lines to the desired positions (see Figure 2). To print this view, go to the File menu, and click "Print." To return to the normal view, go to the File menu, click "Print Preview," and then click "Normal View."

Figure 2. Adjusting Print Margins

1.2 MODULE OVERVIEW

This User's Guide accompanies and explains the CO₂FFC module of the SIT. The SIT was developed in conjunction with EPA's Emissions Inventory Improvement Program (EIIP). Prior to the development of the SIT, EPA developed the States Workbook for estimating greenhouse gas emissions. In 1998, EPA revisited the States Workbook and expanded it to follow the format of EIIP guidance documents for criteria air pollutants. The result was a comprehensive, stepwise approach to estimating greenhouse gas emissions at the state level. This detailed methodology was appreciated by states with the capacity to devote considerable time and resources to the development of emission inventories. For other states, the EIIP guidance was overwhelming and impractical for them to follow from scratch. EPA recognized the resource constraints facing the states and developed the SIT. The ten modules of the SIT corresponded to the EIIP chapters and attempted to automate the steps states would need to take in developing their own emission estimates in a manner that was consistent with prevailing national and state guidelines.

Since most state inventories developed today rely heavily on the tools, User's Guides have been developed for each of the SIT modules. These User's Guides contain the most up-todate methodologies that are, for the most part, consistent with the Inventory of U.S. Greenhouse Gas Emissions and Sinks. Volume VIII of the EIIP guidance is a historical document that was last updated in August 2004, and while these documents can be a valuable reference, they contain outdated emissions factors and in some cases outdated methodologies. States can refer to Volume VIII of the EIIP guidance documents if they are interested in obtaining additional information not found in the SIT or the companion User's Guide.

The CO_2FFC module calculates carbon dioxide (CO_2) emissions from the fuel types shown in Table 1 by end-use sector. While the module provides default data for fuel types (depending on availability), users are encouraged to use state-specific data, where available. If using outside data sources, or for a more thorough understanding of the tool, please refer to the following discussion for data requirements and methodology.

1.2.1 Data Requirements

To calculate CO₂ emissions from fossil fuel combustion,¹ the following data are required:

- Fossil fuel energy and non-energy consumption by fuel type and sector (non-energy consumption applies only to the industrial sector);
- Carbon content coefficients;
- Carbon stored in products; and
- Percentage of carbon oxidized during combustion.

¹ For this discussion, CO_2 emissions from fossil fuel combustion include all of the carbon in fuels that is either immediately oxidized or oxidized within a short time period (i.e., less than 20 years). It thus includes carbon in the form of gases, like carbon monoxide. It also includes short-lived products that will be burned after use or decompose quickly.

Because the carbon content of fossil fuels varies by fuel type, it is necessary to compile consumption data for each type of fuel (the recommended list of fuels is provided in Table 1).

Energy consumption statistics should be collected on an energy basis—preferably in British thermal units (Btu). Statistics providing energy consumption data in other units, such as barrels or tons, may be used, but require conversion to Btu by using the heat content of the specific fuel. If the conversion to energy units is necessary, the heat contents that were used should be documented (default heat contents are provided in the CO_2FFC module). Please note that even data given in Btu may be preceded by a prefix indicating order of magnitude (i.e. thousand, million, billion). For a better understanding of the quantity prefixes used with Btu, refer to Box 1.

Box 1: Energy Units

A British thermal unit (Btu) is the quantity of heat required to raise the temperature of one pound of water one degree Fahrenheit at or near 39.2° Fahrenheit.

British thermal unit	1 Btu
Thousand Btu	1x10 ³ Btu
Million Btu	1x10 ⁶ Btu
Billion Btu	1x10 ⁹ Btu
Trillion Btu	1x10 ¹² Btu
Quadrillion Btu	1x10 ¹⁵ Btu
	British thermal unit Thousand Btu Million Btu Billion Btu Trillion Btu Quadrillion Btu

Box 2: Caution When Using Non-Default Fuel Consumption Data

If you decide to use fuel consumption data that is different from the default, please be aware of the following possible data problems:

In some cases (e.g., the default EIA's State Energy Consumption, Price, and Expenditure Estimates (EIA/SEDS) data) fuel consumption statistics can include data that is at odds with the methodology used in the CO₂FFC module. For example, SEDS motor gasoline consumption includes ethanol that is blended into gasoline. Ethanol is not a fossil fuel, and thus the default data in the CO₂FFC module has been adjusted to remove the portion of blended gasoline known to be ethanol. If you use external data sources, be sure to determine whether ethanol or other biofuels (e.g., biodiesel) are included in total consumption for any particular fuel type. If so, you must subtract the biofuel portion before entering the data into the CO₂FFC module. State ethanol data can be obtained from FHWA (2018) the Federal Highway Administration's annual Highway Statistics report and are taken into account with default data provided in the CO₂FFC module.

Users should also be aware of double counting. For example, EIA's SEDS data for industrial coal consumption includes coal used to make synthetic natural gas, which is accounted for in both industrial coal and natural gas consumption data. This double-counting issue has been corrected for in the default dataset contained in the CO_2FFC module; similar adjustments may need to be made to outside data sources. State-specific natural gas data can be obtained from Table 12 of EIA's Historical Natural Gas Annual EIA (EIA 2001) and Table 8 of EIA's Natural Gas Annual EIA (EIA 2018) (and is also provided in the CO_2FFC module).

Pesidential	Commercial	Industrial	Transportation	Electric	International Bunker Eucle
Coal	Coal	Coking Coal	Coal	Coal	Dulikei Lueis
Cour	Cour	Other Coal	0001	coul	
Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas	
Petroleum:	Petroleum:	Petroleum:	Petroleum:	Petroleum:	Petroleum:
Distillate	Distillate	Distillate Fuel	Distillate Fuel	Distillate Fuel	Jet Fuel,
Fuel	Fuel	Kerosene	Hydrocarbon	Residual Fuel	Kerosene
Kerosene	Kerosene	LPG	Gas Liquids	Petroleum	Distillate Fuel
Hydrocarbon	Hydrocarbon	Motor Gasoline	Motor Gasoline	Coke	Residual Fuel
Gas	Gas	Residual Fuel	Residual Fuel		
Liquids	Liquids	Lubricants	Lubricants		
	Motor	Asphalt/Road	Aviation		
	Gasoline	Oil	Gasoline		
	Residual Fuel	Crude Oil	Jet Fuel,		
		Feedstocks	Kerosene		
		Misc.	Jet Fuel,		
		Petroleum	Naphtha		
		Products			
		Petroleum			
		Coke			
		Pentanes Plus			
		Still Gas			
		Special			
		Naphthas			
		Unfinished Oils			
		Waxes			
		Aviation			
		Gasoline			
		Blending			
		Components			
		Motor Gasoline			
		Blending			
		Components			
Other	Other	Other	Other	Other	

Table 1. Fuel Types Consumed by Sector

Source: U.S. EPA 2019.

1.2.2 Tool Layout

Since there are multiple steps to complete within the CO_2FFC module, it is important to have an understanding of the module's overall design. The layout of the CO_2FFC module and the purpose of its worksheets are presented in Figure 3.

Figure 3. Flow of Information in the CO₂FFC Module*

* These worksheets are the primary worksheets used in the CO₂FFC module; subsequent worksheets are used to populate the default data and are provided for informational purposes only.

1.3 METHODOLOGY

This section provides a guide to using the CO_2FFC module of the SIT to estimate CO_2 emissions from sectors that consume fossil fuels. Within the CO₂FFC module, these sectors are residential, commercial, industrial, transportation, electric power, and bunker fuels.

Since the methodology is similar in all sectors, a general methodology is discussed and specific examples for each sector are provided.

Box 3: State Energy Data Sources

In-state sources, such as state energy commissions or public utility commissions, should be consulted first. Otherwise, default data provided by the CO₂FFC module may be used. Fossil fuel statistics should be provided on an energy basis (e.g., in Btu).

The CO₂FFC module automatically calculates emissions after you enter energy consumption data (and the

factors on the control worksheet). The tool provides default energy consumption data, which comes from the EIA's State Energy Consumption, Price, and Expenditure Estimates (SEDS) EIA (2019).² However, other more state-specific data may be used if available (see Box 3 for suggestions on where to find data).

The CO₂FFC module follows the general methodology outlined in the EIIP guidance, however because of the automation of the calculations within the tool, the order of steps discussed in this User's Guide do not follow the order of steps discussed within the EIIP quidance document. This User's Guide provides an overview of the estimation methodology used in the CO_2FFC module by walking through the following eleven steps: (1) select a state; (2) fill in the variables used throughout the module; (3) complete the bulk data energy consumption worksheet; (4) complete the residential sector worksheet; (5) complete the commercial sector worksheet; (6) complete the transportation sector worksheet; (7) complete the electric power sector worksheet; (8) complete the bunker fuels sector

² These data are available at <u>https://www.eia.gov/state/seds/</u>.

worksheet; (9) complete the industrial sector worksheet; (10) review summary information; and (11) export data.

The general equation used to calculate CO_2 emissions from fossil fuel combustion is shown in Equation 1. The equation used for fuels in the industrial end-use sector is similar, but includes the non-energy use of fuels, as shown in Equation 2.

Equation 1. General Emission Equation

Emissions (MMTCO₂E) = Consumption (BBtu) × Emission Factor (lbs C/BBtu) × 0.0005 short ton/lbs × Combustion Efficiency (% as a decimal) × 0.9072 (Ratio of Short Tons to Metric Tons) ÷ 1,000,000 × (44/12) (to yield MMTCO₂E)

Equation 2. Emission Equation for the Industrial Sector*

Emissions (MMTCO₂E) =

(Total Consumption (BBtu) – [Non-Energy Consumption (BBtu) × Storage Factor (%)] × Emission Factor (Ibs C/BBtu) × Combustion Efficiency (% as a decimal)) × 0.9072 (Ratio of Short Tons to Metric Tons) ÷ 1,000,000 × (44/12) (to yield MMTCO₂E)

* This equation also applies to lubricants consumed in the transportation end-use sector.

Box 4: Treatment of Biofuels in the SIT

The CO_2 from Fossil Fuel Combustion (CO_2FFC) module relies on EIA's SEDS database for statelevel energy consumption data. The SEDS data provides consumption estimates at the state level for ethanol blended into gasoline. Ethanol is not a fossil fuel, and thus the default data in the CO_2FFC module has been adjusted to remove the portion of blended gasoline known to be ethanol.

Ideally, biodiesel blended into diesel fuel and other biofuels blended into heating fuels, etc. should be treated in the same way to avoid counting emissions from non-fossil fuels. However, due to the lack of state-level data on biofuel consumption, it is not feasible to adjust the default consumption data in the CO_2FFC module to account for these biofuels at this time. The user should note that this may lead to some overestimation of emissions from fuel consumption by not considering all blended biofuels. EPA is continuously monitoring data availability and methodologies that will allow for biofuel adjustments in future versions of the CO_2FFC module.

Users are encouraged to adjust the default data and/or enter their own data for diesel and heating oil consumption if available, especially if the user has access to biodiesel and/or biofuel consumption within their state. Users should refer to the CO_2FFC User's Guide for more guidance on entering non-default fuel consumption data.

Users are also encouraged to refer to EIA's documentation for SEDS energy consumption data for more information regarding the fuels included in the CO₂FFC module.

Step (1) Select a State

To begin, select the state you are interested in evaluating. By selecting a state, the rest of the tool will automatically reset to reflect the appropriate state default data and assumptions for use in subsequent steps of the tool.

Step (2) Fill in the Variables Used Throughout the Module

Step 2 requires users to select appropriate factors for several key variables necessary for estimating CO₂ emissions from fossil fuel combustion. This can be done by selecting the default data provided or entering user-specified, fuel-specific data for combustion efficiencies, carbon contents, and non-energy use storage factors that will be used throughout the tool. To select the default data, select the "Clear/Select All Defaults" button for each group of variables (combustion efficiency, carbon content, and non-energy use storage factors) or check the default box directly to the right of individual yellow input cells. Note that users may select a default value and later override it if better data becomes available. To enter state-specific inputs do not match the default data in the control worksheet (i.e., the default value is overwritten), the text will appear red. See Figure 4 for locations of the "Clear/Select All Defaults" buttons, individual default check boxes, and yellow input cells. Information for combustion efficiencies, carbon contents, and non-energy use storage factors are discussed individually below.

Figure 4. Control Worksheet for the CO₂FFC Module

Combustion Efficiencies

The first type of required data in the control worksheet is combustion efficiency (percent carbon oxidized). This percent is applied if the carbon is not completely oxidized during the combustion of fossil fuels. The fraction oxidized was assumed to be 100 percent for petroleum, coal, natural gas, and LPG based on guidance from IPCC (2006). If values other than module defaults are available for state-level combustion, they should be used and documented. Combustion efficiencies are used throughout the module and are pulled into each sector's worksheet. Figure 5 presents an example of the combustion efficiency used in

the commercial sector worksheet. If the user-specific inputs do not match the default data in the control worksheet (i.e., the default value is overwritten), the text will appear red.

Figure 5. Example of Combustion Efficiency Data Applied in the Commercial Worksheet

State Inventory Tool - CO2 Emissions from Combustion of Fossil Fuel														
通) Elle Edit Module Options														
A	В	C D E	F	G H	I J	K L	M N	0 P	Q					
4. Commercia	l Consumpt	ion and CO	2 Emission	s in Colorado				Go to the Control Sheet						
Click here for possible data sources. Click here for	Click here for Click here for Click here for the build default ensistin factors is a process for ensistin factors is a subsequently ears (2009 through 2020). Ensistion factors for 2020, and summed. Note that default ensistin factors are available through 2020. To factor factors for 2020 and beyond will be updated as factors as process for ensistin factors in subsequently ears (2009 through 2020). Ensistion factors for 2020 and beyond will be updated as factors as process for ensistin factors in subsequently ears (2009 through 2020). Ensistion factors for 2020 and beyond will be updated as factors as process for ensistin factors in subsequently ears (2009 through 2020). Ensistion factors for 2020 and beyond will be updated as													
the bulk data soon as new data become available. For further detail on this method, refer to CO_FFC Chapter in the User's Guide. Click on the orange "Click here for the bulk data worksheet."														
3 Commercial S	bector 🛛	1990				6		F66 - 1						
4 5 6 Fuel Type 7 Coal	Consumption (Billion Btu)	Emission Factor (Ibs C/Million Btu	Combustion Efficiency (%)	Emissions (short tons carbon)	Emissions (MMTCE)	Data	Dustion	Efficiency						
8 Distillate Fuel 9 Kerosene	2,576	x 44.43 x x 43.97 x	100.0%	57.219	= 0.052	= 0.190								
10 LPG 11 Motor Gasoline	1,100	* <u>37.18</u> * * <u>42.83</u> *	100.02	20,445 29,669	= 0.019 = 0.027	= 0.068								
12 Residual Fuel 13 Natural Gas 14 Other 15	66,489	z 45.11 z z 31.87 z z z z	100.0%	= <u>1,059,494</u> = .	= 0.000 = 0.961 = 0.000	= 0.000 = 3.524 = 0.000								
16 Commercial S	ector	1991												
17 18 19 Fuel Type	Consumption (Billion Btu)	Emission Factor (Ibs C/Million Btu	Combustion Efficiency (%)	Emissions (short tons carbon)	Emissions (MMTCE)	Emissions (MMTCO2E)								
20 Coal 21 Distillate Fuel 22 Kerosene	1,143 2,772 60	x 57.93 x x 44.43 x x 43.97	100.0%	= 33,115 = 61,591 = 1,323	= 0.030 = 0.056	= 0.110 = 0.205								
22 LPG 24 Motor Gasoline	1,228	x 40.57 x x 37.11 x x 42.86 x	100.0%	= <u>1,523</u> = <u>22,774</u> = <u>37,604</u>	= 0.021 = 0.034	= 0.076								
25 Residual Fuel 26 Natural Gas	70,965	* 45.11 * * 31.87 *	100.0%	= . = 1,130,827	= 0.000 = 1.026	= 0.000								
27 Other 28		x x			= 0.000	= 0.000								
29 Commercial S	bector	1992												
30	Consumption	Emission Factor	Combustion	Emissions	Emissions	Emissions	•							
32 Fuel Type	(Billion Btu)	(lbs C/Million Btu	Efficiency (%)	(short tons carbon)	(MMTCE)	(MMTCO ₂ E)	-							
33 Coal	1,004	z 57.55 z	100.0%	= 28,887	= 0.026	= 0.096								
34 Distillate Fuel	4,016	z 44.43 z	100.0%	= 89,221	= 0.081	= 0.297	-							
36 LPG	1097	* 43.97 *	100.0%	= 837	= 0.001	= 0.003								
37 Motor Gasoline	840	x 42.98 x	100.0%	= 18,060	= 0.016	= 0.060	1							
38 Residual Fuel	1	z 45.11 z	100.0%	= 34	= 0.000	= 0.000								

Carbon Contents

The second type of data required for the control worksheet is the carbon content data, which is also pulled into the individual sector worksheets (depending on whether the fuel type is represented in the sector). The carbon content coefficients used in the CO₂FFC module are from the *EPA's Inventory of GHG Emissions* (EPA 2019). States are encouraged to use more detailed data if it is available and well documented. If the user-specific inputs do not match the default data in the control worksheet (i.e., the default value is overwritten), the text will appear red.

Carbon content represents the maximum amount of carbon emitted per unit of energy released, assuming 100 percent combustion efficiency. Coal has the highest carbon content of the major fuel types, petroleum has roughly 75 percent of carbon per energy as compared to coal, and natural gas has about 55 percent. However, carbon contents also vary within the major fuel types, as noted below:

• Carbon emissions per ton of coal vary considerably depending on the coal's composition of carbon, hydrogen, sulfur, ash, oxygen, and nitrogen. While variability of carbon emissions on a mass basis can be considerable, carbon emissions per unit of energy (e.g., per Btu) vary less.

- The carbon/energy ratio of different petroleum fractions generally correlates with API (American Petroleum Institute) gravity (Marland and Rotty 1984).³ Lighter fractions (e.g., gasoline) usually have less carbon per unit energy than heavier fractions (e.g., residual fuel oil).
- Natural gas is a mixture of several gases, and the carbon content depends on the relative proportions of methane, ethane, propane, other hydrocarbons, CO₂, and other gases, which vary from one gas production site to another.

Non-Energy Use Storage Factors

The third and final type of data requested in the control worksheet is the percent of carbon in each fuel that is stored from non-energy uses. Many fossil fuels have potential nonenergy uses. For example, LPG is used for production of solvents and synthetic rubber; oil is used to produce asphalt, naphthas, and lubricants; and coal is used to produce coke, yielding crude light oil and crude tar as by-products that are used in the chemical industry.

However, not all non-energy uses of fossil fuels result in carbon storage. For example, the carbon from natural gas used in ammonia production is oxidized quickly; many products from the chemical and refining industries are burned or decompose within a few years; and the carbon in coke is oxidized when the coke is used. The CO₂FFC module provides national default values for storage factors, but state-level fractions may differ depending on the type of non-energy uses. Where state-specific estimates are available, their use is preferred, if adequate supporting documentation is available. If the user-specific inputs do not match the default data in the control worksheet (i.e., the default value is overwritten), the text will appear red. Data on the non-energy use storage factor is used in the industrial sector worksheet (Step 9).

Step (3) Complete the Bulk Energy Consumption Data Worksheet

The energy consumption data entered in the "Bulk Energy Consumption Data" (bulk data) worksheet feed into the calculation worksheets for each sector. Modifying the consumption data in this worksheet will change the consumption estimates on each sector calculation sheet. The default data will automatically be populated in the yellow cells by sector and fuel type for the selected state. On the bulk data worksheet, presented as an example in Figure 6, the yellow cells indicate where the required energy activity data are entered either manually or automatically from default data. Default data in the yellow cells on this worksheet can be overwritten with state-specific data. To revert to default data for all sectors and fuel types, click on the "Refresh Default Data" button at the top of the worksheet. Click on the "Proceed to Calculation Worksheet" to begin/continue estimating emissions, or click on the "Return to Control" button to return to the control worksheet.

³ Variations in petroleum are most often expressed in terms of specific gravity at 15 degrees Celsius. The API gravity, where API gravity = 141.5/specific gravity - 131.5, is an indication of the molecular size, carbon/hydrogen ratio, and hence carbon content of a crude oil.

Figure 6. Example of the Required Energy Consumption Data in the Bulk Data Worksheet

Step (4) through Step (7) View Emission Estimates on Individual Sector Worksheets (Excluding International Bunker Fuels and Industrial Sector)

With the exception of industrial sector, the worksheets for each sector have the same basic set-up. On the residential sector worksheet, presented as an example in Figure 7, the cells in the first column indicate where the required energy activity data were entered from the bulk data worksheet. These activity data are converted into CO_2 emissions using the factors entered on the control worksheet, the energy consumption data entered on the bulk data worksheet, and the formula presented in Equation 1. Click on the orange "Click here for the bulk data worksheet." button to return to the energy consumption data entry worksheet.

The activity data used to populate the energy consumption input cells is annual fuel consumption based on *primary fuel type* (e.g., coal, petroleum, and natural gas) and *secondary fuel type* (e.g., gasoline, residual oil, natural gas, etc.) by *sector* (e.g., residential, commercial, industrial, transportation, and electric utilities). A list of potential fuel types consumed in each sector is provided in Table 1 and is included in the CO₂FFC module.

The CO₂FFC module calculates emissions for each sector by multiplying consumption by the carbon content and the combustion efficiency to obtain the total carbon oxidized. Then, the total tons of carbon oxidized are converted into MMTCO₂E, by multiplying by the ratio of metric tons per short ton (0.9072) to obtain metric tons and dividing by 10^6 and multiplying by 44/12 to express emissions in MMTCO₂E (Equation 1).

Figure 7. Example of the Required Energy Data Applied in the Residential Worksheet

×	State Inventory Too	ol - CO2 Emissions f	rom Combustion of	Fossil Fuel												
1	Ele Edit Module	Options														
	A	в	C D E	F (ЭН	I J	K	L	м	N	0	Р	Q	R	S	T
	3. Residentia	l Consumption	and CO2 Emi	ssions in (Colorado											
	Click here for possible data sources. Click here for the bulk data worksheet.	CO ₂ emissions from fo coefficients for each resulting fuel emission million metric tons of or calculations for later y 2009 and beyond will on the orange "Click h According to the meth not counted in greenh rom the atmosphere i	ssi fuel combustion in th uel. These quantities ar values, in pounds of co- arbon dioxide equivalent ears, the tool utilizes 200 be updated as soon as r are for the built data wor ods developed by the init puse gas inventories, pr y photosynthesis, and 1	he residential sect e then multiplied by rbon, are then co (MMTCO_E), and 3e enission facto are data become ksheet." button to ernational Panel o ovided that those under natural conv	or are calculated by y fuel-specific perce- nverted to short tons summed. Note that or rs as proxies for emi- available. For further or return to the energy on Climate Change, O sources are harvest itions, it would cycle	multiplying energy or ntages of carbon ox of carbon and million lefault emission factor soin factors in subs r detail on this methor consumption data e O ₂ emissions from th ed on a sustainable I back to the atmosph	insumption indized dur in metric to ors are av equent ye d, refer to ntry work e combust pasis. The iere event	n (in the reside ing combustio ns of carbon allable through ears (2009 thr o the CO ₂ FFC sheet. tion of biogeni e carbon in wo tually as CO ₂ (ential secto in ("combus equivalent (h 2008. To rough 2020) Chapter in t cod fuel wa due to degra	r) by carbo tion efficie MMTCE), ti facilitate e L. Emission he User's (c.g., fuel v s originally addition pro	in content ncy"). The nen to mission i factors for Guide. Click wood) are removed cesses.	Go to Go Comme Clea	the Control Sheet to the rcial Sheet r All Data	>		
		For processes with C considered to close th	O ₂ emissions, if the emis e loop in the natural cart	sions are from bio oon cycle.	ogenic materials and	the materials are gro	wn on a s	ustainable ba	sis, then th	ose emissi	ons are					
1	Decidential C	actor	1000													
3	Residential S	ector.	1990													
4	-	Consumption	Emission Factor	Combustion	Emissions	Emissions	F	missions								
6	Fuel Type	(Billion Btu)	(lbs C/Million Btu)	Efficiency (%)	(short tons carbon)	(MMTCE)	0	MMTCO ₂ E)								
- 7	Coal	248	x 57.93 x	100.0%	= 7,180 =	= 0.007	-	0.024								
8	Distillate Fuel	160	x 44.43 x	100.0%	3,558	0.003		0.012								
10	LPG	6.136	8 37.18 8	100.0%	114.061	- 0.103	-	0.003								
11	Natural Gas	92,191	x 31.87 x	100.0%	1,469,057	= 1.333	-	4.887								
12	Other		x 📃 x	-	•	- 0.000	-	0.000]							
13	3															
14	Residential S	ector	1991													
15	5															
16		Consumption	Emission Factor	Combustion	Emissions	Emissions	E	missions								
17	Fuel Type	(Billion Btu)	(Ibs C/Million Btu)	Efficiency (%)	(short tons carbon	(MMTCE)		MMTCU2EJ								
10	Dictilato Eugl	201	× 07.34 ×	100.0%												
2	Kerosene			100.0%		arbon C	οπτ	επτ υ	ata							
21	LPG		8 37.11 8	100.0%	• - L											
22	Natural Gas	100,504	31.87 ×	100.0%	1,598,349	1.450	-	5.317								
23	Other					0.000	-	0.000								
24	: Residential S	ector	lequired	Energy	Data											
26	3															
27		Consumption	Emission Factor	Combustion	Emissions	Emissions	E	Emissions								
20	Fuel Igpe	(Billion Btu)	(Ibs C/Million Btu)	Efficiency (%)	(short tons carbon	(MMTCE)		MMICO ₂ EJ	1							
3	Distillate Fuel	104	× 57.55 ×	100.05	2.304	0.002		0.021								
31	Kerosene	209	x 43.97 x	100.0%	= 4,601	= 0.004		0.015								
32	LPG	6,119	8 37.16 8	100.0%	113,671	0.103		0.378								
33	Natural Gas	96,440	x 31.87 x	100.0%	= 1,536,775 -	= 1.394	=	5.112								
34	Other		x 🛛 🛛		• • • •	0.000	-	0.000	J							
35	5				_											
н	 Click here to begin 	Default State Energy	Data Table Resid	lential / Comm	nercial / Transpor	tation / Electric I	Power (Bunker Fue	els / Indu	istrial 🖌 🤅	Summary-M	MTCO2E	/ Summar	y-MMTCE	/ Uncer	tainty /

Step (8) View Estimates on Bunker Fuels Worksheet

Emissions from international bunker fuels are calculated in step 7. International bunker fuels are fuels used in marine and aviation transport originating in the United States with international destinations. According to the Revised 1996 IPCC Guidelines, emissions from international transport should be reported separately as a memo item, instead of allocating them to a particular country.

Step (9) Complete Non-Energy Use Activity Data on the Industrial Sector Worksheet

The industrial worksheet is unique because both total energy consumption and total nonenergy consumption are required as inputs to calculate CO_2 emissions, seen in Figure 8 (input cells are shown in green). Including activity data on non-energy use allows calculation of the amount of carbon from these fuels that is stored in non-energy products for a significant period of time (i.e., more than 20 years). The CO_2FFC module estimates carbon stored in non-energy uses for each state by multiplying the total number of Btu consumed by the default percent of that fuel type that is used for non-energy purposes, and then by a storage factor (i.e., the amount of carbon in non-energy uses that typically remains stored for longer than 20 years, entered in Step 2). This non-energy consumption is then subtracted from the total consumption to yield the net combustible consumption. From this point forward, the industrial worksheet functions in the same manner as the other sector worksheets. The net combustible consumption is multiplied by the carbon content and the combustion efficiency to obtain the total carbon oxidized. Then, the total tons of carbon oxidized are converted into MMTCO₂E, by multiplying by the ratio of metric tons per short ton (0.9072) to obtain metric tons and dividing by 10^6 and multiplying by 44/12 to express emissions in MMTCO₂E (Equation 2). Click on the orange "Click here for the bulk data worksheet." button to return to the energy consumption data entry worksheet.

Figure 8. Example of Energy and Non-Energy Consumption Data Applied in the Industrial Worksheet

×	State Inventory Tool - CO2 Emissions from Combustion of Fossil Fuel																
: 🖻	IS) Ele Edit Module Options																
_			C	D	5	E C		-			м	M	0	D	0	P	c
-	~	U	0	0	L.	1 0		- <u>-</u>	JUN	- L	m	14	v		G.	N.	3
1	8. Industrial Consumption and CO2 Emissions in Colorado																
	Click here for	CO ₂ emission	ns fr	om fossil fuel co	mbus	tion in the industrial	sector are calcula	ted by	/ first subtracting	non-energy ci	onsumptio	n multiplied by	carbor	n storage	Got	o the MMTCO_E	
	sources	factors from	the	energy consump	tion 1	or each fuel type.	The resulting comb	ustible	e consumption fo	r each fuel is th	nen multip	lied by a carbo	n cont	ent	Su	immary sneet	
	Jources.	then convert	ted to	y the percentage short tops of c	e ur c erhor	and million metric t	ing compusion (co	inicus Maleri	(MMTCE) then t	o milion metric	toos of ci	auns, in puuna arboo diovide e	s ur ca cuival	ndun, are		1	
		(MMTCO-E).	and	summed. Note t	hat d	efault emission fact	ors are available th	rouah	2008. To facilita	ate emission ca	Iculations	for later years	the to	ol utilizes	Che	zck All Boxes	
	Click new tor 2008 emission factors as proxies for emission factors in subsequent years (2009 through 2020). Emission factors for 2009 and beyond will be updated as Clear All Data																
	the build data soon as new data become available. For further detail on this method, refer to CO_FFC Chapter in the User's Oude. Click on the orange "Click here for the Clear All Data																
	worksheet bulk data worksheet." button to return to the energy consumption data entry worksheet.																
3																	
4	Industrial Sector 1990 🖻 Default Non-Energy Consumption Data?																
5		Total		Non-Energy			Net combustible										
6		Concumption		Concumption			Concumption	Ε.	niccion Exetor	Combuction				Emissions		Emissions	
7	Fuel Tune	(Billion Btu)		(Billion Btu)	S	torage Factor (%)	(Billion Btu)	116	s C/Million Btu)	Efficience (2) (sho	t tons earbon	a	(MMTCE)		(MMTCO-E)	
8	Coking Coal		-f			10%]=			0.00	100.0%	=			0.000		0.000	
9	Other Coal	15,383	-È	77	x	0%)=	15,383	Σ	57.82 #	100.0%	-	444,709	=	0.403	=	1479	
10	Asphalt and Road Oil	21,614	-(21,614	x	100%			45.63	100.000		1 .	=	0.000	=	0.000	
	Aviation Gasoline Blending						Denuin		Non F								
11	Components Cauda Ož	1	-1		×	0%	Requir	eu	NON-E	inergy	/	25	-	0.000	-	0.000	
12	Crude OII	1E 700	-1		*	50%	Consur	np	tion D	ata		249.007		0.000		1964	
15	Feedstocks, Naphtha less than	10,100	-(101	^							343,001	-	0.017	-		
14	401F		•(x	58%							=	0.000	=	0.000	
10	Feedstocks, Other Oils greater																
10	vian 401F	- 102	-1	· · ·	8	98% 1=	102		49,43	100.074	-	2,262	-	0.000	-	0.000	
17	IPG	3 533	-1	2.459		02	2.096		37.46	100.0%	1 H	2,202		0.002		0.008	
18	Lubricants	1481	-1	1481	×	3/1	1347		43.97	100.0%		29,625	-	0.027	-	0.039	
19	Motor Gasoline	2,135	-È		/	0%]=	2,135		42.83	100.0%		45,728	=	0.041	-	0.152	
~	Motor Gasoline Blending																
20	Components	273	-(×	0%]=	273	2	42.83	100.0%	: H	5,842	-	0.005	-	0.019	
21	Misc. Petro Products Retroleum Coko	1700	-(×	0%)=	1000	2	61.94	100.0%	: H	51.750	-	0.000		0.000	
23	Pentanes Plus	1,132	-1	206	×	582 1-	1,663	2	42.06	100.0%	- E	31,735	-	0.047	-	0.072	
24	Residual Fuel	79	-1		×	50% 1=	79		45.11 #	100.0%		1,775	-	0.002		0.006	
25	Still Gas	7,485	-(108	x	80%)=	7,398	2	40.08	100.0%		148,261	=	0.134	-	0.493	
26	Special Naphthas	398	-(374	х	0%)=	398	ε	43.47 #	100.0%	- [8,643	=	0.008	=	0.029	
27	Unfinished Oils	(1,875)	• (х	0%)=	(1,875)	x	44.42 #	100.0%	-	(41,636)	=	-0.038	=	-0.138	
28	Vates		۰(×	58%]=	· ·	z	43.60 #	100.0%	-		-	0.000	-	0.000	
29	Natural Gas	66,493	۰(2,283	х	58%)=	65,160	Σ	31.87 #	100.0%	- -	1,038,319	=	0.942	=	3.454	
30	Uther		-(×)=	· ·	z	3		-		=	0.000	-	0.000	
51	31																
32	Industrial Sect	or		1991		Default No	on-Energy Consum	ption	Data?								
33		Total		Non-Energy			Net combustible										
34		Consumption		Consumption			Consumption	F	nission Factor	Combustion		missions		Emissions		Emissions	
35	Fuel Type	(Billion Btu)		(Billion Btu)	S	torage Factor (%)	(Billion Btu)	(16	s C/Million Btu)	Efficiency (%) (sho	rt tons carbon)	(MMTCE)		(MMTCO2E)	
1 00		<u> </u>		<u> </u>			<u> </u>		<u> </u>					<u> </u>		<u> </u>	

Step (10) Review Summary Information

The steps above provide estimates of total carbon in fossil fuels consumed, carbon stored in non-energy products, and amount of carbon oxidized to CO_2 . Total carbon emissions are equal to the total carbon content in fuel, minus carbon stored in non-energy uses, adjusted for the carbon not oxidized during combustion, and summed over all fuel types and sectors, for each year. The information is collected on the summary worksheet, displaying results in MMTCO₂E. Figure 9 shows the summary worksheet that sums the emissions from all sectors in the CO_2FFC module. In addition, the results are displayed in graphical format at the bottom of the summary worksheets.

X 9	State Inventory Tool - CO2 Emissions from Combustion of Fossil Fuel													
: 🖻	Eile Edit Module Options											Тур	e a questio	n for help
	A B	С	D	E	F	G	н	1	J	к	L	M	N	0
1 2 3	1 California Emissions Summary (MMTCO2E) Go to the Control Review discussion of uncertainty associated with these results 2 3													
4	MMTCO2E	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
6	Residential	29.59	29.40	27.30	28.89	29.46	26.85	27.03	26.81	32.38	32.04	27.63	28.74	27.85
7	Coal	0.01	0.02	0.00	0.05	0.05	0.04	0.05	0.03	0.03	0.01	0.01	0.00	0.00
8	Petroleum	1.44	1.70	1.21	1.27	1.26	1.22	1.03	0.96	1.56	1.46	1.43	1.10	1.12
9	Natural Gas	28.15	27.68	26.10	27.57	28.15	25.59	25.95	25.82	30.79	30.58	26.20	27.63	26.73
10	Commercial	18.78	18.89	17.26	15.34	15.74	16.83	14.60	15.21	17.55	14.71	14.18	14.73	13.68
11	Coal	0.04	0.08	0.00	0.25	0.30	0.25	0.34	0.21	0.22	0.05	0.05	0.00	0.00
12	Petroleum	3.14	3.17	1.75	1.32	1.29	1.64	1.37	1.31	1.52	1.50	1.64	1.49	1.21
13	Natural Gas	15.60	15.65	15.51	13.77	14.15	14.94	12.89	13.69	15.80	13.16	12.49	13.25	12.47
14	Industrial	71.91	72.99	73.35	70.79	71.09	69.89	72.51	77.43	74.89	72.85	72.57	74.84	75.22
15	Coal	6.01	5.85	6.00	4.96	5.02	5.36	5.20	5.76	4.02	4.34	4.40	4.34	4.37
16	Petroleum	34.40	29.46	30.62	28.05	30.37	27.94	29.66	29.86	26.22	27.11	26.81	32.94	30.92
17	Natural Gas	31.50	37.68	36.73	37.77	35.70	36.59	37.65	41.81	44.65	41.40	41.36	37.57	39.93
18	Transportation	203.70	192.56	192.13	189.31	197.85	201.67	204.75	199.11	199.68	204.47	215.57	211.31	223.24
19	Coal	-	-	-	-	-	-	-	-	-	-	-	-	-
20	Petroleum	202.60	191.56	191.31	188.63	197.16	200.61	203.69	197.81	199.11	203.85	214.96	210.57	222.59
21	Natural Gas	1.10	1.01	0.83	0.68	0.69	1.06	1.06	1.30	0.58	0.62	0.61	0.73	0.65
22	Electric Power	40.34	37.98	45.54	42.00	49.43	37.09	32.77	35.75	39.29	43.22	52.82	57.64	43.65
23	Coal	1.78	2.41	2.53	2.63	2.52	2.21	1.89	1.70	1.86	2.05	2.05	1.96	2.13
24	Petroleum	4.16	1.30	1.21	2.58	2.66	2.01	2.33	1.82	2.23	1.98	2.47	2.79	2.18
25	Natural Gas	34.40	34.27	41.80	36.80	44.26	32.86	28.55	32.23	35.20	39.18	48.30	52.88	39.35
26	International Bunker Fuels		0.23	0.13	0.11	0.09	0.11	0.11	0.11	0.10	0.11	0.08	0.10	0.10
27	Petroleum	-	0.23	0.13	0.11	0.09	0.11	0.11	0.11	0.10	0.11	0.08	0.10	0.10
28	TOTAL	364.32	351.81	355.59	346.34	363.57	352.33	351.67	354.30	363.79	367.29	382.77	387.25	383.64
29	Coal	7.84	8.35	8.53	7.90	7.89	7.86	7.48	7.69	6.14	6.46	6.50	6.30	6.50
30	Petroleum	245.74	227.18	226.09	221.85	232.74	233.43	238.09	231.77	230.64	235.90	247.32	248.89	258.02
31	Natural Gas	110.74	116.28	120.96	116.59	122.95	111.04	106.10	114.84	127.02	124.94	128.96	132.06	119.12
32 33 34 35		<u>Multi-</u>	Sector	Chart	5			ſ		Indivic	lual Se	ctor C	<u>harts</u>	
	(→ → \ Control / Residential / C	ommercial	/ Industri	al / Tran	sportation	/ Electri	: Power &	/ Bunker F	uels / Su	mmary-MN	TCE λ Su	ımmary-№	1MTCO2E	

Figure 9. Example of the Emissions Summary Worksheet in the CO₂FFC Module

Step (11) Export Data

The final step is to export the summary data. Exporting data allows the estimates from each module to be combined later by the Synthesis Module to produce a comprehensive greenhouse gas inventory for the state.

To access the "Export Data" button, return to the control sheet and scroll down to the bottom (11). Click on the "Export Data" button and a message box will open that reminds the user to make sure all steps of the module have been completed. If you make any changes to the CO₂FFC module later, you will then need to re-export the results.

Note: the resulting export file should not be modified. The export file contains a summary worksheet where users can view the results, as well as a separate data worksheet with an unformatted version of the results; this data worksheet contains the information that is exported to the Synthesis Tool, and it is especially important that users do not modify it. Adding/removing rows, moving data, or making other modifications jeopardize the ability of the Synthesis Module to accurately analyze the data.

Clicking "OK" prompts you to save the file.

The file is already named, so you only need to choose a convenient place to save the file. After the file is saved, a message box will appear indicating that the data was successfully exported. While completing the modules, you are encouraged to save each completed module; doing so will enable you to easily make changes without re-running it entirely.

Following data export, the module may be reset and run for an additional state. Alternatively, you may run the remaining modules of the State Inventory Tool to obtain a comprehensive profile of emissions for your state.

1.4 UNCERTAINTY

In the upper right-hand corner of the summary worksheet is a button: "Review discussion of uncertainty associated with these results." By clicking on this button, you are taken to a worksheet that discusses the uncertainty surrounding the activity data and emission factors, and how the uncertainty estimates for this source category affect the uncertainty of the emission estimates for your state.

1.5 REFERENCES

EIA. 2019. *State Energy Data 2017 Consumption*. Energy Information Administration, U.S. Department of Energy. DOE/EIA-0214(2017). Available at: https://www.eia.gov/state/seds/.

EIA. 2018. Natural Gas Annual 2017. Energy Information Administration, U.S. Department of Energy, Washington, DC. DOE/EIA-0131(17). Available at: https://www.eia.gov/naturalgas/annual/. EIA. 2001. Historical Natural Gas Annual 1930-2000. Energy Information Administration, U.S. Department of Energy. DOE/EIA-0110(00). Available at: http://www.eia.doe.gov/oil_gas/natural_gas/data_publications/historical_natural_gas_a_nnual/hnga.html.

- IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas Inventories Programme, H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, eds.; Institute for Global Environmental Strategies (IGES). Hayama, Kanagawa, Japan.
- Marland, G., and R.M. Rotty. 1984. "Carbon Dioxide Emissions from Fossil Fuels: A Procedure for Estimation and Results for 1950-1982," *Tellus* 36b:232-261.
- FHWA. 2018. Highway Statistics 1992-2016, Federal Highway Administration, U.S. Department of Transportation. Available at: <u>https://www.fhwa.dot.gov/policyinformation/statistics.cfm</u>.
- U.S. EPA. 2019. *Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 2017*. Office of Atmospheric Programs, U.S. Environmental Protection Agency. EPA 430-R-19-001. Available: <u>https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-</u> <u>emissions-and-sinks-1990-2017</u>.