3. Energy

Energy-related activities were the primary sources of U.S. anthropogenic greenhouse gas emissions, accounting for 83.8 percent of total greenhouse gas emissions on a carbon dioxide (CO$_2$) equivalent basis in 2016.¹ This included 97, 43, and 10 percent of the nation’s CO$_2$, methane (CH$_4$), and nitrous oxide (N$_2$O) emissions, respectively. Energy-related CO$_2$ emissions alone constituted 78.9 percent of national emissions from all sources on a CO$_2$ equivalent basis, while the non-CO$_2$ emissions from energy-related activities represented a much smaller portion of total national emissions (4.9 percent collectively).

Emissions from fossil fuel combustion comprise the vast majority of energy-related emissions, with CO$_2$ being the primary gas emitted (see Figure 3-1). Globally, approximately 32,294 million metric tons (MMT) of CO$_2$ were added to the atmosphere through the combustion of fossil fuels in 2015, of which the United States accounted for approximately 15 percent.² Due to their relative importance, fossil fuel combustion-related CO$_2$ emissions are considered separately, and in more detail than other energy-related emissions (see Figure 3-2). Fossil fuel combustion also emits CH$_4$ and N$_2$O. Stationary combustion of fossil fuels was the second largest source of N$_2$O emissions in the United States and mobile fossil fuel combustion was the third largest source.

Figure 3-1: 2016 Energy Chapter Greenhouse Gas Sources (MMT CO$_2$ Eq.)

¹ Estimates are presented in units of million metric tons of carbon dioxide equivalent (MMT CO$_2$ Eq.), which weight each gas by its global warming potential, or GWP, value. See section on global warming potentials in the Executive Summary.

Energy-related activities other than fuel combustion, such as the production, transmission, storage, and distribution of fossil fuels, also emit greenhouse gases. These emissions consist primarily of fugitive CH$_4$ from natural gas systems, petroleum systems, and coal mining. Table 3-1 summarizes emissions from the Energy sector in units of MMT CO$_2$ Eq., while unweighted gas emissions in kilotons (kt) are provided in Table 3-2. Overall, emissions due to energy-related activities were 5,455.2 MMT CO$_2$ Eq. in 2016, an increase of 2.4 percent since 1990 and a decrease of 2.0 percent since 2015.

Each year, some emission and sink estimates in the Inventory are recalculated and revised with improved methods and/or data. In general, recalculations are made to the U.S. greenhouse gas emission estimates either to incorporate new methodologies or, most commonly, to update recent historical data. These improvements are implemented consistently across the previous Inventory’s time series (i.e., 1990 to 2015) to ensure that the trend is accurate. Categories in the Energy sector with recalculations resulting in an average change over the time series of greater than 10 MMT CO$_2$ Eq. include Fossil Fuel Combustion (Transportation emissions shifted to Industrial and Commercial), Petroleum Systems, and Natural Gas Systems. For more information on specific methodological updates, please see the Recalculations Discussion for each category, in this chapter.

Table 3-1: CO$_2$, CH$_4$, and N$_2$O Emissions from Energy (MMT CO$_2$ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$</td>
<td>4,905.4</td>
<td>5,932.5</td>
<td>5,185.3</td>
<td>5,338.2</td>
<td>5,381.4</td>
<td>5,239.2</td>
<td>5,137.2</td>
</tr>
<tr>
<td>Fossil Fuel Combustion</td>
<td>4,740.3</td>
<td>5,746.9</td>
<td>5,024.4</td>
<td>5,156.9</td>
<td>5,200.3</td>
<td>5,049.3</td>
<td>4,966.0</td>
</tr>
<tr>
<td>Electric Power</td>
<td>1,820.8</td>
<td>2,400.9</td>
<td>2,022.2</td>
<td>2,038.1</td>
<td>2,038.0</td>
<td>1,900.7</td>
<td>1,809.3</td>
</tr>
<tr>
<td>Transportation</td>
<td>1,467.6</td>
<td>1,855.8</td>
<td>1,661.9</td>
<td>1,677.6</td>
<td>1,717.1</td>
<td>1,735.5</td>
<td>1,782.6</td>
</tr>
<tr>
<td>Industrial</td>
<td>858.8</td>
<td>855.7</td>
<td>812.9</td>
<td>843.3</td>
<td>824.9</td>
<td>809.5</td>
<td>809.1</td>
</tr>
<tr>
<td>Residential</td>
<td>338.3</td>
<td>357.8</td>
<td>282.5</td>
<td>329.7</td>
<td>345.3</td>
<td>316.8</td>
<td>292.5</td>
</tr>
<tr>
<td>Commercial</td>
<td>227.2</td>
<td>227.0</td>
<td>201.3</td>
<td>225.7</td>
<td>233.6</td>
<td>245.4</td>
<td>231.3</td>
</tr>
<tr>
<td>U.S. Territories</td>
<td>27.6</td>
<td>49.7</td>
<td>43.5</td>
<td>42.5</td>
<td>41.4</td>
<td>41.4</td>
<td>41.4</td>
</tr>
<tr>
<td>Non-Energy Use of Fuels</td>
<td>119.5</td>
<td>138.9</td>
<td>108.0</td>
<td>123.5</td>
<td>118.9</td>
<td>125.6</td>
<td>112.2</td>
</tr>
<tr>
<td>Natural Gas Systems</td>
<td>29.8</td>
<td>22.5</td>
<td>23.3</td>
<td>24.8</td>
<td>25.3</td>
<td>24.9</td>
<td>25.5</td>
</tr>
<tr>
<td>Petroleum Systems</td>
<td>7.7</td>
<td>11.7</td>
<td>19.3</td>
<td>22.6</td>
<td>26.3</td>
<td>28.8</td>
<td>22.8</td>
</tr>
<tr>
<td>Incineration of Waste</td>
<td>8.0</td>
<td>12.5</td>
<td>10.4</td>
<td>10.4</td>
<td>10.6</td>
<td>10.7</td>
<td>10.7</td>
</tr>
</tbody>
</table>

3 Following the current reporting requirements under the UNFCCC, this Inventory report presents CO$_2$ equivalent values based on the IPCC Fourth Assessment Report (AR4) GWP values. See the Introduction chapter for more information.
Table 3-2: CO₂, CH₄, and N₂O Emissions from Energy (kt)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td></td>
</tr>
<tr>
<td>Abandoned Oil and Gas Wells</td>
<td>4,905.366</td>
<td>4,933.514</td>
<td>5,932.631</td>
<td>5,158.335</td>
<td>5,338.189</td>
<td>5,381.244</td>
<td>5,239.025</td>
<td>5,137.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Energy Use of Fuels</td>
<td>4,740.344</td>
<td>4,746.942</td>
<td>5,024.373</td>
<td>5,156.989</td>
<td>5,200.297</td>
<td>5,049.254</td>
<td>4,966.049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas Systems</td>
<td>119.546</td>
<td>138.885</td>
<td>107.987</td>
<td>123.485</td>
<td>118.877</td>
<td>125.634</td>
<td>112.199</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abandoned Oil and Gas Wells</td>
<td>7.950</td>
<td>12.469</td>
<td>10.392</td>
<td>10.361</td>
<td>10.604</td>
<td>10.670</td>
<td>10.676</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass-Wood</td>
<td>215.186</td>
<td>206.901</td>
<td>206.434</td>
<td>228.200</td>
<td>234.884</td>
<td>217.418</td>
<td>208.354</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Bunker</td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>14,659</td>
<td>11,841</td>
<td>11,375</td>
<td>11,667</td>
<td>11,760</td>
<td>11,635</td>
<td>11,229</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas Systems</td>
<td>7,806</td>
<td>6,765</td>
<td>6,384</td>
<td>6,553</td>
<td>6,572</td>
<td>6,651</td>
<td>6,541</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal Mining</td>
<td>3,860</td>
<td>2,565</td>
<td>2,658</td>
<td>2,584</td>
<td>2,583</td>
<td>2,449</td>
<td>2,153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum Systems</td>
<td>1,592</td>
<td>1,284</td>
<td>1,307</td>
<td>1,463</td>
<td>1,543</td>
<td>1,523</td>
<td>1,544</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abandoned Oil and Gas Wells</td>
<td>345</td>
<td>313</td>
<td>295</td>
<td>351</td>
<td>356</td>
<td>317</td>
<td>293</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td></td>
</tr>
<tr>
<td>Abandoned Oil and Gas Wells</td>
<td>260</td>
<td>275</td>
<td>279</td>
<td>280</td>
<td>282</td>
<td>286</td>
<td>284</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ Does not exceed 0.05 MMT CO₂ Eq.

* Emissions from Wood Biomass, Ethanol, and Biodiesel Consumption are not included specifically in summing Energy sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for LULUCF.

* Emissions from International Bunker Fuels are not included in totals. These values are presented for informational purposes only, in line with the 2006 IPCC Guidelines and UNFCCC reporting obligations.

Note: Totals may not sum due to independent rounding.
Box 3-1: Methodological Approach for Estimating and Reporting U.S. Emissions and Removals

In following the United Nations Framework Convention on Climate Change (UNFCCC) requirement under Article 4.1 to develop and submit national greenhouse gas emission inventories, the emissions and removals presented in this report and this chapter, are organized by source and sink categories and calculated using internationally-accepted methods provided by the Intergovernmental Panel on Climate Change (IPCC) in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC Guidelines). Additionally, the calculated emissions and removals in a given year for the United States are presented in a common manner in line with the UNFCCC reporting guidelines for the reporting of inventories under this international agreement. The use of consistent methods to calculate emissions and removals by all nations providing their inventories to the UNFCCC ensures that these reports are comparable. The presentation of emissions and removals provided in this Inventory do not preclude alternative examinations, but rather, this Inventory presents emissions and removals in a common format consistent with how countries are to report Inventories under the UNFCCC. The report itself, and this chapter, follows this standardized format, and provides an explanation of the application of methods used to calculate emissions and removals.

Box 3-2: Energy Data from EPA’s Greenhouse Gas Reporting Program

On October 30, 2009, the U.S. Environmental Protection Agency (EPA) published a rule requiring annual reporting of greenhouse gas data from large greenhouse gas emission sources in the United States. Implementation of the rule, codified at 40 CFR Part 98, is referred to as EPA’s Greenhouse Gas Reporting Program (GHGRP). The rule applies to direct greenhouse gas emitters, fossil fuel suppliers, industrial gas suppliers, and facilities that inject CO₂ underground for sequestration or other reasons.

EPA’s GHGRP dataset and the data presented in this Inventory are complementary. The GHGRP dataset continues to be an important resource for the Inventory, providing not only annual emissions information, but also other annual information, such as activity data and emission factors that can improve and refine national emission estimates and trends over time. GHGRP data also allow EPA to disaggregate national inventory estimates in new ways that can highlight differences across regions and sub-categories of emissions, along with enhancing application of QA/QC procedures and assessment of uncertainties.
EPA uses annual GHGRP data in a number of categories to improve the national estimates presented in this Inventory consistent with IPCC guidelines (see also Box 3-4). As indicated in the respective Planned Improvements sections for source categories in this chapter, EPA continues to examine the uses of facility-level GHGRP data to improve the national estimates presented in this Inventory. Most methodologies used in EPA’s GHGRP are consistent with IPCC, though for EPA’s GHGRP, facilities collect detailed information specific to their operations according to detailed measurement standards, which may differ with the more aggregated data collected for the Inventory to estimate total national U.S. emissions. It should be noted that the definitions and provisions for reporting fuel types in EPA’s GHGRP may differ from those used in the Inventory in meeting the UNFCCC reporting guidelines. In line with the UNFCCC reporting guidelines, the Inventory report is a comprehensive accounting of all emissions from fuel types identified in the IPCC guidelines and provides a separate reporting of emissions from biomass. Further information on the reporting categorizations in EPA’s GHGRP and specific data caveats associated with monitoring methods in EPA’s GHGRP has been provided on the GHGRP website.

EPA presents the data collected by its GHGRP through a data publication tool that allows data to be viewed in several formats including maps, tables, charts and graphs for individual facilities or groups of facilities.

In addition to using GHGRP data to estimate emissions, EPA also uses the GHGRP fuel consumption activity data in the Energy sector to disaggregate industrial end-use sector emissions in the category of CO₂ Emissions from Fossil Fuel Combustion, for use in reporting emissions in Common Reporting Format (CRF) tables. The industrial end-use sector activity data collected for the Inventory (EIA 2018) represent aggregated data for the industrial end-use sector. EPA’s GHGRP collects industrial fuel consumption activity data by individual categories within the industrial end-use sector. Therefore, the GHGRP data are used to provide a more detailed breakout of total emissions in the industrial end-use sector within that source category.

3.1 Fossil Fuel Combustion (CRF Source Category 1A)

Emissions from the combustion of fossil fuels for energy include the gases CO₂, CH₄, and N₂O. Given that CO₂ is the primary gas emitted from fossil fuel combustion and represents the largest share of U.S. total emissions, CO₂ emissions from fossil fuel combustion are discussed at the beginning of this section. Following that is a discussion of emissions of all three gases from fossil fuel combustion presented by sectoral breakdowns. Methodologies for estimating CO₂ from fossil fuel combustion also differ from the estimation of CH₄ and N₂O emissions from stationary combustion and mobile combustion. Thus, three separate descriptions of methodologies, uncertainties, recalculations, and planned improvements are provided at the end of this section. Total CO₂, CH₄, and N₂O emissions from fossil fuel combustion are presented in Table 3-3 and Table 3-4.

Table 3-3: CO₂, CH₄, and N₂O Emissions from Fossil Fuel Combustion (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>4,740.3</td>
<td>5,746.9</td>
<td>5,024.4</td>
<td>5,156.9</td>
<td>5,200.3</td>
<td>5,049.3</td>
<td>4,966.0</td>
</tr>
<tr>
<td>CH₄</td>
<td>21.3</td>
<td>17.2</td>
<td>12.5</td>
<td>13.5</td>
<td>13.2</td>
<td>11.7</td>
<td>11.0</td>
</tr>
<tr>
<td>N₂O</td>
<td>52.8</td>
<td>56.3</td>
<td>41.2</td>
<td>41.2</td>
<td>39.7</td>
<td>37.4</td>
<td>36.9</td>
</tr>
<tr>
<td>Total</td>
<td>4,814.4</td>
<td>5,820.4</td>
<td>5,078.0</td>
<td>5,211.5</td>
<td>5,253.1</td>
<td>5,098.4</td>
<td>5,014.0</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding

6 See <http://ghgdata.epa.gov>.
Table 3-4: \(\text{CO}_2, \text{CH}_4, \text{and N}_2\text{O} \) Emissions from Fossil Fuel Combustion (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CO}_2)</td>
<td>4,740,344</td>
<td>5,746,942</td>
<td>5,024,373</td>
<td>5,156,898</td>
<td>5,200,297</td>
<td>5,049,254</td>
<td>4,966,049</td>
</tr>
<tr>
<td>(\text{CH}_4)</td>
<td>853</td>
<td>688</td>
<td>499</td>
<td>538</td>
<td>526</td>
<td>470</td>
<td>439</td>
</tr>
<tr>
<td>(\text{N}_2\text{O})</td>
<td>177</td>
<td>189</td>
<td>138</td>
<td>138</td>
<td>133</td>
<td>126</td>
<td>124</td>
</tr>
</tbody>
</table>

CO\textsubscript{2} from Fossil Fuel Combustion

Carbon dioxide is the primary gas emitted from fossil fuel combustion and represents the largest share of U.S. total greenhouse gas emissions. Carbon dioxide emissions from fossil fuel combustion are presented in Table 3-5. In 2016, \(\text{CO}_2\) emissions from fossil fuel combustion decreased by 1.6 percent relative to the previous year. The decrease in \(\text{CO}_2\) emissions from fossil fuel combustion was a result of multiple factors, including: (1) substitution from coal to natural gas and other non-fossil energy sources in the electric power sector; and (2) warmer winter conditions in 2016 resulting in a decreased demand for heating fuel in the residential and commercial sectors. In 2016, \(\text{CO}_2\) emissions from fossil fuel combustion were 4,966.0 MMT \(\text{CO}_2\) Eq., or 4.8 percent above emissions in 1990 (see Table 3-5).^7

Table 3-5: \(\text{CO}_2\) Emissions from Fossil Fuel Combustion by Fuel Type and Sector (MMT \(\text{CO}_2\) Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>1,718.4</td>
<td>2,112.3</td>
<td>1,592.8</td>
<td>1,653.8</td>
<td>1,652.6</td>
<td>1,423.3</td>
<td>1,306.4</td>
</tr>
<tr>
<td>Commercial</td>
<td>3.0</td>
<td>0.8</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Industrial</td>
<td>12.0</td>
<td>9.3</td>
<td>4.1</td>
<td>3.9</td>
<td>3.8</td>
<td>2.9</td>
<td>2.2</td>
</tr>
<tr>
<td>Transportation</td>
<td>NE</td>
<td>115.3</td>
<td>74.1</td>
<td>75.7</td>
<td>75.6</td>
<td>65.9</td>
<td>58.7</td>
</tr>
<tr>
<td>Electric Power</td>
<td>1,547.6</td>
<td>1,983.8</td>
<td>1,511.2</td>
<td>1,571.3</td>
<td>1,569.1</td>
<td>1,350.5</td>
<td>1,241.4</td>
</tr>
<tr>
<td>U.S. Territories</td>
<td>0.6</td>
<td>3.0</td>
<td>3.4</td>
<td>2.8</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1,000.3</td>
<td>1,166.7</td>
<td>1,352.6</td>
<td>1,391.2</td>
<td>1,422.0</td>
<td>1,463.9</td>
<td>1,476.1</td>
</tr>
<tr>
<td>Residential</td>
<td>238.0</td>
<td>262.2</td>
<td>224.8</td>
<td>266.2</td>
<td>277.9</td>
<td>253.2</td>
<td>238.3</td>
</tr>
<tr>
<td>Commercial</td>
<td>142.1</td>
<td>162.9</td>
<td>156.9</td>
<td>179.1</td>
<td>189.3</td>
<td>175.7</td>
<td>170.3</td>
</tr>
<tr>
<td>Industrial</td>
<td>408.9</td>
<td>388.5</td>
<td>434.8</td>
<td>451.9</td>
<td>468.4</td>
<td>466.4</td>
<td>477.9</td>
</tr>
<tr>
<td>Transportation</td>
<td>36.0</td>
<td>33.1</td>
<td>41.3</td>
<td>47.0</td>
<td>40.3</td>
<td>39.5</td>
<td>40.6</td>
</tr>
<tr>
<td>Electric Power</td>
<td>175.3</td>
<td>318.8</td>
<td>492.2</td>
<td>444.0</td>
<td>443.2</td>
<td>526.1</td>
<td>546.0</td>
</tr>
<tr>
<td>U.S. Territories</td>
<td>NO</td>
<td>1.3</td>
<td>2.6</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Petroleum</td>
<td>2,021.2</td>
<td>2,467.6</td>
<td>2,078.5</td>
<td>2,111.5</td>
<td>2,125.3</td>
<td>2,161.6</td>
<td>2,183.1</td>
</tr>
<tr>
<td>Residential</td>
<td>97.4</td>
<td>94.9</td>
<td>57.7</td>
<td>63.5</td>
<td>67.4</td>
<td>63.6</td>
<td>54.2</td>
</tr>
<tr>
<td>Commercial</td>
<td>73.1</td>
<td>54.9</td>
<td>40.4</td>
<td>42.7</td>
<td>40.4</td>
<td>66.7</td>
<td>58.7</td>
</tr>
<tr>
<td>Industrial</td>
<td>294.7</td>
<td>351.9</td>
<td>304.1</td>
<td>315.7</td>
<td>280.9</td>
<td>277.3</td>
<td>272.5</td>
</tr>
<tr>
<td>Transportation</td>
<td>1,431.5</td>
<td>1,822.7</td>
<td>1,620.6</td>
<td>1,630.6</td>
<td>1,676.9</td>
<td>1,696.0</td>
<td>1,741.9</td>
</tr>
<tr>
<td>Electric Power</td>
<td>97.5</td>
<td>97.9</td>
<td>18.3</td>
<td>22.4</td>
<td>25.3</td>
<td>23.7</td>
<td>21.4</td>
</tr>
<tr>
<td>U.S. Territories</td>
<td>26.9</td>
<td>45.4</td>
<td>37.5</td>
<td>36.6</td>
<td>34.3</td>
<td>34.3</td>
<td>34.3</td>
</tr>
<tr>
<td>Geothermal</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

| Total | 4,740.3 | 5,746.9 | 5,024.4 | 5,156.9 | 5,200.3 | 5,049.3 | 4,966.0 |

NE (Not Estimated)

NO (Not Occurring)

A Although not technically a fossil fuel, geothermal energy-related \(\text{CO}_2\) emissions are included for reporting purposes.

Note: Totals may not sum due to independent rounding.

Trends in \(\text{CO}_2\) emissions from fossil fuel combustion are influenced by many long-term and short-term factors. On a year-to-year basis, the overall demand for fossil fuels in the United States and other countries generally fluctuates in

response to changes in general economic conditions, energy prices, weather, and the availability of non-fossil alternatives. For example, in a year with increased consumption of goods and services, low fuel prices, severe summer and winter weather conditions, nuclear plant closures, and lower precipitation feeding hydroelectric dams, there would likely be proportionally greater fossil fuel consumption than a year with poor economic performance, high fuel prices, mild temperatures, and increased output from nuclear and hydroelectric plants.

Longer-term changes in energy usage patterns, however, tend to be more a function of aggregate societal trends that affect the scale of energy use (e.g., population, number of cars, size of houses, and number of houses), the efficiency with which energy is used in equipment (e.g., cars, power plants, steel mills, and light bulbs), and social planning and consumer behavior (e.g., walking, bicycling, or telecommuting to work instead of driving).

Carbon dioxide emissions also depend on the source of energy and its carbon (C) intensity. The amount of C in fuels varies significantly by fuel type. For example, coal contains the highest amount of C per unit of useful energy. Petroleum has roughly 75 percent of the C per unit of energy as coal, and natural gas has only about 55 percent. Table 3-6 shows annual changes in emissions during the last five years for coal, petroleum, and natural gas in selected sectors.

Table 3-6: Annual Change in CO₂ Emissions and Total 2016 Emissions from Fossil Fuel Combustion for Selected Fuels and Sectors (MMT CO₂ Eq. and Percent)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Power</td>
<td>Coal</td>
<td>60.1%</td>
<td>-2.2%</td>
<td>-128.7%</td>
<td>-109.1%</td>
<td>1,241.4</td>
</tr>
<tr>
<td>Electric Power</td>
<td>Natural Gas</td>
<td>-48.3%</td>
<td>-0.8%</td>
<td>82.9%</td>
<td>19.9%</td>
<td>546.0</td>
</tr>
<tr>
<td>Electric Power</td>
<td>Petroleum</td>
<td>4.1%</td>
<td>2.9%</td>
<td>-1.6%</td>
<td>-2.2%</td>
<td>21.4</td>
</tr>
<tr>
<td>Transportation</td>
<td>Petroleum</td>
<td>10.0%</td>
<td>46.3%</td>
<td>19.1%</td>
<td>46.6%</td>
<td>1,741.9</td>
</tr>
<tr>
<td>Residential</td>
<td>Natural Gas</td>
<td>41.4%</td>
<td>11.6%</td>
<td>-24.7%</td>
<td>-14.9%</td>
<td>238.3</td>
</tr>
<tr>
<td>Commercial</td>
<td>Natural Gas</td>
<td>22.3%</td>
<td>10.2%</td>
<td>-13.6%</td>
<td>-5.4%</td>
<td>170.3</td>
</tr>
<tr>
<td>Industrial</td>
<td>Coal</td>
<td>1.7%</td>
<td>-0.1%</td>
<td>-9.8%</td>
<td>-7.1%</td>
<td>58.7</td>
</tr>
<tr>
<td>Industrial</td>
<td>Natural Gas</td>
<td>17.1%</td>
<td>16.5%</td>
<td>-2.0%</td>
<td>11.5%</td>
<td>477.9</td>
</tr>
<tr>
<td>All Sectors</td>
<td>All Fuels</td>
<td>132.5%</td>
<td>43.4%</td>
<td>-151.0%</td>
<td>-83.2%</td>
<td>4,966.0</td>
</tr>
</tbody>
</table>

As shown in Table 3-6, recent trends in CO₂ emissions from fossil fuel combustion show a 2.6 percent increase from 2012 to 2013, then a 0.8 percent increase from 2013 to 2014, then a 2.9 percent decrease from 2014 to 2015, and a 1.6 percent decrease from 2015 to 2016. Total electric power generation remained relatively flat over that time period but emission trends generally mirror the trends in the amount of coal used to generate electricity. The consumption of coal used to generate electricity increased by roughly 4 percent from 2012 to 2013, stayed relatively flat from 2013 to 2014, decreased by 14 percent from 2014 to 2015, and decreased by 8 percent from 2015 to 2016. The overall CO₂ emission trends from fossil fuel combustion also follow closely changes in heating degree days over that time period. Heating degree days increased by 18 percent from 2012 to 2013, increased by 2 percent from 2013 to 2014, decreased by 10 percent from 2014 to 2015, and decreased by 5 percent from 2015 to 2016. A decrease in heating degree days leads to decreased demand for heating fuel and electricity for heat in the residential and commercial sector, primarily in winter months. The overall CO₂ emission trends from fossil fuel combustion also generally follow changes in overall petroleum use and emissions. Carbon dioxide emissions from petroleum increased by 1.6 percent from 2012 to 2013, increased by 0.7 percent from 2013 to 2014, increased by 1.7 percent from 2014 to 2015, and increased by 1.0 percent from 2015 to 2016. The increase in petroleum CO₂ emissions from 2015 to 2016 somewhat offsets emission reductions from other sources like decreased coal use in the electricity sector.

In the United States, 81 percent of the energy used in 2016 was produced through the combustion of fossil fuels such as coal, natural gas, and petroleum (see Figure 3-3 and Figure 3-4). The remaining portion was supplied by nuclear electric power (9 percent) and by a variety of renewable energy sources (11 percent), primarily hydroelectric power.

8 Based on national aggregate carbon content of all coal, natural gas, and petroleum fuels combusted in the United States.
wind energy and biofuels (EIA 2018). Specifically, petroleum supplied the largest share of domestic energy demands, accounting for 37 percent of total U.S. energy used in 2016. Natural gas and coal followed in order of energy demand importance, accounting for approximately 29 percent and 15 percent of total U.S. energy used, respectively. Petroleum was consumed primarily in the transportation end-use sector and the vast majority of coal was used in the electric power end-use sector. Natural gas was broadly consumed in all end-use sectors except transportation (see Figure 3-5) (EIA 2018).

Figure 3-3: 2016 U.S. Energy Consumption by Energy Source (Percent)

![Pie chart showing energy consumption by source in 2016. Petroleum is the largest source at 36.9%, followed by natural gas at 29.1%, coal at 14.8%, renewable energy at 10.5%, and nuclear electric power at 8.6%]

Figure 3-4: U.S. Energy Consumption (Quadrillion Btu)

![Line graph showing energy consumption from 1990 to 2016. Total energy, fossil fuels, and renewable & nuclear energy are plotted over time.]

9 Renewable energy, as defined in EIA’s energy statistics, includes the following energy sources: hydroelectric power, geothermal energy, biofuels, solar energy, and wind energy.
Figure 3-5: 2016 CO₂ Emissions from Fossil Fuel Combustion by Sector and Fuel Type (MMT CO₂ Eq.)

Note: Fossil Fuel Combustion from electric power also includes emissions of less than 0.5 MMT CO₂ Eq. from geothermal-based generation.

Fossil fuels are generally combusted for the purpose of producing energy for useful heat and work. During the combustion process, the C stored in the fuels is oxidized and emitted as CO₂ and smaller amounts of other gases, including CH₄, CO, and NMVOCs. These other C-containing non-CO₂ gases are emitted as a byproduct of incomplete fuel combustion, but are, for the most part, eventually oxidized to CO₂ in the atmosphere. Therefore, it is assumed all of the C in fossil fuels used to produce energy is eventually converted to atmospheric CO₂.

Box 3-3: Weather and Non-Fossil Energy Effects on CO₂ from Fossil Fuel Combustion Trends

In 2016, weather conditions, and a warm first and fourth quarter of the year in particular, caused a significant decrease in demand for heating fuels and is reflected in the decreased residential emissions from 2015 to 2016. The United States in 2016 also experienced a warmer winter overall compared to 2015, as heating degree days decreased (5.1 percent). Warmer winter conditions compared to 2015 resulted in a decrease in the amount of energy required for heating, and heating degree days in the United States were 14.3 percent below normal (see Figure 3-6). Cooling degree days increased by 4.7 percent, which increased demand for air conditioning in the residential and commercial sector. This led in part to an overall residential electricity demand increase of 0.5 percent. Summer conditions were significantly warmer in 2016 compared to 2015, with cooling degree days 28.1 percent above normal (see Figure 3-7) (EIA 2018).¹¹

¹⁰ See the sections entitled Stationary Combustion and Mobile Combustion in this chapter for information on non-CO₂ gas emissions from fossil fuel combustion.

¹¹ Degree days are relative measurements of outdoor air temperature. Heating degree days are deviations of the mean daily temperature below 65 degrees Fahrenheit, while cooling degree days are deviations of the mean daily temperature above 65 degrees Fahrenheit. Heating degree days have a considerably greater effect on energy demand and related emissions than do cooling degree days. Excludes Alaska and Hawaii. Normals are based on data from 1981 through 2010. The variation in these normals during this time period was ±12 percent and ±19 percent for heating and cooling degree days, respectively (99 percent confidence interval).
The carbon intensity of the electric power sector is impacted by the amount of non-fossil energy sources of electricity. The utilization (i.e., capacity factors)12 of nuclear power plants in 2016 remained high at 92 percent. In

12 The capacity factor equals generation divided by net summer capacity. Summer capacity is defined as "The maximum output that generating equipment can supply to system load, as demonstrated by a multi-hour test, at the time of summer peak demand (period of June 1 through September 30)." Data for both the generation and net summer capacity are from EIA (2017c).
In recent years, the wind and solar power sectors have been showing strong growth, such that, on the margin, they are becoming relatively important electricity sources. Between 1990 and 2016, renewable energy generation (in kWh) from solar and wind energy have increased from 0.1 percent in 1990 to 7 percent in 2016, which helped drive the decrease in the carbon intensity of the electricity supply in the United States.

Fossil Fuel Combustion Emissions by Sector

In addition to the CO₂ emitted from fossil fuel combustion, CH₄ and N₂O are emitted from stationary and mobile combustion as well. Table 3-7 provides an overview of the CO₂, CH₄, and N₂O emissions from fossil fuel combustion by sector.

Table 3-7: CO₂, CH₄, and N₂O Emissions from Fossil Fuel Combustion by Sector (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Power</td>
<td>1,827.7</td>
<td>2,414.9</td>
<td>2,036.3</td>
<td>2,053.8</td>
<td>2,054.0</td>
<td>1,916.1</td>
<td>1,825.3</td>
</tr>
<tr>
<td>CO₂</td>
<td>1,820.8</td>
<td>2,400.9</td>
<td>2,022.2</td>
<td>2,038.1</td>
<td>2,038.0</td>
<td>1,900.7</td>
<td>1,809.3</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.4</td>
<td>0.9</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>N₂O</td>
<td>6.5</td>
<td>13.2</td>
<td>13.1</td>
<td>14.6</td>
<td>15.0</td>
<td>14.3</td>
<td>14.9</td>
</tr>
<tr>
<td>Transportation</td>
<td>1,522.0</td>
<td>1,903.9</td>
<td>1,691.3</td>
<td>1,704.8</td>
<td>1,742.0</td>
<td>1,758.6</td>
<td>1,804.6</td>
</tr>
<tr>
<td>CO₂</td>
<td>1,467.6</td>
<td>1,855.8</td>
<td>1,661.9</td>
<td>1,677.6</td>
<td>1,717.1</td>
<td>1,735.5</td>
<td>1,782.6</td>
</tr>
<tr>
<td>CH₄</td>
<td>12.7</td>
<td>9.4</td>
<td>5.1</td>
<td>4.7</td>
<td>4.2</td>
<td>3.8</td>
<td>3.6</td>
</tr>
<tr>
<td>N₂O</td>
<td>41.7</td>
<td>38.8</td>
<td>24.3</td>
<td>22.5</td>
<td>20.6</td>
<td>19.3</td>
<td>18.4</td>
</tr>
<tr>
<td>Industrial</td>
<td>863.8</td>
<td>860.4</td>
<td>817.2</td>
<td>847.6</td>
<td>829.2</td>
<td>813.7</td>
<td>813.2</td>
</tr>
<tr>
<td>CO₂</td>
<td>858.8</td>
<td>855.7</td>
<td>812.9</td>
<td>843.3</td>
<td>824.9</td>
<td>809.5</td>
<td>809.1</td>
</tr>
<tr>
<td>CH₄</td>
<td>1.8</td>
<td>1.8</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>N₂O</td>
<td>3.1</td>
<td>3.0</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Residential</td>
<td>344.6</td>
<td>362.8</td>
<td>287.0</td>
<td>335.7</td>
<td>351.4</td>
<td>321.6</td>
<td>296.6</td>
</tr>
<tr>
<td>CO₂</td>
<td>338.3</td>
<td>357.8</td>
<td>282.5</td>
<td>329.7</td>
<td>345.3</td>
<td>316.8</td>
<td>292.5</td>
</tr>
<tr>
<td>CH₄</td>
<td>5.2</td>
<td>4.1</td>
<td>3.7</td>
<td>5.0</td>
<td>5.1</td>
<td>3.9</td>
<td>3.4</td>
</tr>
<tr>
<td>N₂O</td>
<td>1.0</td>
<td>0.9</td>
<td>0.7</td>
<td>1.0</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Commercial</td>
<td>228.7</td>
<td>228.5</td>
<td>202.5</td>
<td>227.1</td>
<td>235.0</td>
<td>247.0</td>
<td>232.8</td>
</tr>
<tr>
<td>CO₂</td>
<td>227.2</td>
<td>227.0</td>
<td>201.3</td>
<td>225.7</td>
<td>233.6</td>
<td>245.4</td>
<td>231.3</td>
</tr>
<tr>
<td>CH₄</td>
<td>1.1</td>
<td>1.1</td>
<td>0.9</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>N₂O</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>U.S. Territories*</td>
<td>27.7</td>
<td>49.9</td>
<td>43.7</td>
<td>42.6</td>
<td>41.5</td>
<td>41.5</td>
<td>41.5</td>
</tr>
<tr>
<td>Total</td>
<td>4,814.4</td>
<td>5,820.4</td>
<td>5,078.0</td>
<td>5,211.5</td>
<td>5,253.1</td>
<td>5,098.4</td>
<td>5,014.0</td>
</tr>
</tbody>
</table>

* U.S. Territories are not apportioned by sector, and emissions are total greenhouse gas emissions from all fuel combustion sources.

Notes: Totals may not sum due to independent rounding. Emissions from fossil fuel combustion by electric power are allocated based on aggregate national electricity consumption by each end-use sector.

Other than CO₂, gases emitted from stationary combustion include the greenhouse gases CH₄ and N₂O and the indirect greenhouse gases NOₓ, CO, and NMVOCs. Methane and N₂O emissions from stationary combustion sources depend upon fuel characteristics, size and vintage, along with combustion technology, pollution control equipment, ambient environmental conditions, and operation and maintenance practices. Nitrous oxide emissions from stationary combustion are closely related to air-fuel mixes and combustion temperatures, as well as the characteristics of any pollution control equipment that is employed. Methane emissions from stationary combustion are primarily a function of the CH₄ content of the fuel and combustion efficiency.

Mobile combustion produces greenhouse gases other than CO₂, including CH₄, N₂O, and indirect greenhouse gases including NOₓ, CO, and NMVOCs. As with stationary combustion, N₂O and NOₓ emissions from mobile

13 Sulfur dioxide (SO₂) emissions from stationary combustion are addressed in Annex 6.3.
combustion are closely related to fuel characteristics, air-fuel mixes, combustion temperatures, and the use of pollution control equipment. Nitrous oxide from mobile sources, in particular, can be formed by the catalytic processes used to control NOx, CO, and hydrocarbon emissions. Carbon monoxide emissions from mobile combustion are significantly affected by combustion efficiency and the presence of post-combustion emission controls. Carbon monoxide emissions are highest when air-fuel mixtures have less oxygen than required for complete combustion. These emissions occur especially in idle, low speed, and cold start conditions. Methane and NMVOC emissions from motor vehicles are a function of the CH4 content of the motor fuel, the amount of hydrocarbons passing uncombusted through the engine, and any post-combustion control of hydrocarbon emissions (such as catalytic converters).

An alternative method of presenting combustion emissions is to allocate emissions associated with electric power to the sectors in which it is used. Four end-use sectors were defined: industrial, transportation, residential, and commercial. In the table below, electric power emissions have been distributed to each end-use sector based upon the sector’s share of national electricity use, with the exception of CH4 and N2O from transportation.14 Emissions from U.S. Territories are also calculated separately due to a lack of end-use-specific consumption data.15 This method assumes that emissions from combustion sources are distributed across the four end-use sectors based on the ratio of electricity use in that sector. The results of this alternative method are presented in Table 3-8.

Table 3-8: CO2, CH4, and N2O Emissions from Fossil Fuel Combustion by End-Use Sector (MMT CO2 Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>1,525.0</td>
<td>1,908.7</td>
<td>1,695.1</td>
<td>1,708.8</td>
<td>1,746.0</td>
<td>1,762.3</td>
<td>1,808.1</td>
</tr>
<tr>
<td>CO2</td>
<td>1,470.6</td>
<td>1,860.5</td>
<td>1,665.8</td>
<td>1,681.6</td>
<td>1,721.2</td>
<td>1,739.2</td>
<td>1,786.1</td>
</tr>
<tr>
<td>CH4</td>
<td>12.7</td>
<td>9.4</td>
<td>5.1</td>
<td>4.7</td>
<td>4.2</td>
<td>3.8</td>
<td>3.6</td>
</tr>
<tr>
<td>N2O</td>
<td>41.7</td>
<td>38.8</td>
<td>24.3</td>
<td>22.5</td>
<td>20.6</td>
<td>19.3</td>
<td>18.4</td>
</tr>
<tr>
<td>Industrial</td>
<td>1,553.2</td>
<td>1,601.3</td>
<td>1,414.1</td>
<td>1,446.9</td>
<td>1,427.1</td>
<td>1,367.7</td>
<td>1,335.4</td>
</tr>
<tr>
<td>CO2</td>
<td>1,545.6</td>
<td>1,592.3</td>
<td>1,405.7</td>
<td>1,438.0</td>
<td>1,418.1</td>
<td>1,359.0</td>
<td>1,326.7</td>
</tr>
<tr>
<td>CH4</td>
<td>2.0</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>N2O</td>
<td>5.6</td>
<td>7.0</td>
<td>6.5</td>
<td>7.0</td>
<td>7.0</td>
<td>6.7</td>
<td>6.8</td>
</tr>
<tr>
<td>Residential</td>
<td>939.9</td>
<td>1,224.1</td>
<td>1,017.3</td>
<td>1,076.2</td>
<td>1,091.9</td>
<td>1,011.4</td>
<td>956.6</td>
</tr>
<tr>
<td>CO2</td>
<td>931.4</td>
<td>1,214.1</td>
<td>1,007.8</td>
<td>1,064.6</td>
<td>1,080.0</td>
<td>1,001.1</td>
<td>946.7</td>
</tr>
<tr>
<td>CH4</td>
<td>5.4</td>
<td>4.4</td>
<td>4.1</td>
<td>5.3</td>
<td>5.4</td>
<td>4.3</td>
<td>3.8</td>
</tr>
<tr>
<td>N2O</td>
<td>3.2</td>
<td>5.6</td>
<td>5.5</td>
<td>6.2</td>
<td>6.4</td>
<td>5.9</td>
<td>6.1</td>
</tr>
<tr>
<td>Commercial</td>
<td>768.7</td>
<td>1,036.5</td>
<td>907.7</td>
<td>937.0</td>
<td>946.5</td>
<td>915.5</td>
<td>872.3</td>
</tr>
<tr>
<td>CO2</td>
<td>765.2</td>
<td>1,030.3</td>
<td>901.6</td>
<td>930.2</td>
<td>939.6</td>
<td>908.6</td>
<td>865.2</td>
</tr>
<tr>
<td>CH4</td>
<td>1.2</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>N2O</td>
<td>2.3</td>
<td>4.8</td>
<td>4.8</td>
<td>5.4</td>
<td>5.5</td>
<td>5.4</td>
<td>5.6</td>
</tr>
<tr>
<td>U.S. Territories*</td>
<td>27.7</td>
<td>49.9</td>
<td>43.7</td>
<td>42.6</td>
<td>41.5</td>
<td>41.5</td>
<td>41.5</td>
</tr>
<tr>
<td>Total</td>
<td>4,814.4</td>
<td>5,820.4</td>
<td>5,078.0</td>
<td>5,211.5</td>
<td>5,253.1</td>
<td>5,098.4</td>
<td>5,014.0</td>
</tr>
</tbody>
</table>

* U.S. Territories are not apportioned by sector, and emissions are total greenhouse gas emissions from all fuel combustion sources.

Notes: Totals may not sum due to independent rounding. Emissions from fossil fuel combustion by electric power are allocated based on aggregate national electricity use by each end-use sector.

Stationary Combustion

The direct combustion of fuels by stationary sources in the electric power, industrial, commercial, and residential sectors represent the greatest share of U.S. greenhouse gas emissions. Table 3-9 presents CO2 emissions from fossil fuel combustion by stationary sources. The CO2 emitted is closely linked to the type of fuel being combusted in each sector (see Methodology section of CO2 from Fossil Fuel Combustion). Other than CO2, gases emitted from

14 Separate calculations were performed for transportation-related CH4 and N2O. The methodology used to calculate these emissions are discussed in the mobile combustion section.

15 U.S. Territories consumption data that are obtained from EIA are only available at the aggregate level and cannot be broken out by end-use sector. The distribution of emissions to each end-use sector for the 50 states does not apply to territories data.
stationary combustion include the greenhouse gases CH$_4$ and N$_2$O. Table 3-10 and Table 3-11 present CH$_4$ and N$_2$O emissions from the combustion of fuels in stationary sources. The CH$_4$ and N$_2$O emission estimation methodology utilizes facility-specific technology and fuel use data reported to EPA’s Acid Rain Program (EPA 2017a) (see Methodology section for CH$_4$ and N$_2$O from Stationary Combustion). Table 3-7 presents the corresponding direct CO$_2$, CH$_4$, and N$_2$O emissions from all sources of fuel combustion, without allocating emissions from electricity use to the end-use sectors.

Table 3-9: CO$_2$ Emissions from Stationary Fossil Fuel Combustion (MMT CO$_2$ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>338.3</td>
<td>357.8</td>
<td>282.5</td>
<td>329.7</td>
<td>345.3</td>
<td>316.8</td>
<td>292.5</td>
</tr>
<tr>
<td>Coal</td>
<td>3.0</td>
<td>0.8</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>238.0</td>
<td>262.2</td>
<td>224.8</td>
<td>266.2</td>
<td>277.9</td>
<td>253.2</td>
<td>238.3</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>97.4</td>
<td>94.9</td>
<td>57.7</td>
<td>63.5</td>
<td>67.4</td>
<td>63.6</td>
<td>54.2</td>
</tr>
<tr>
<td>U.S. Territories</td>
<td>27.6</td>
<td>49.7</td>
<td>43.5</td>
<td>42.5</td>
<td>41.4</td>
<td>41.4</td>
<td>41.4</td>
</tr>
<tr>
<td>Coal</td>
<td>0.6</td>
<td>3.0</td>
<td>3.4</td>
<td>2.8</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>NO</td>
<td>1.3</td>
<td>2.6</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>26.9</td>
<td>45.4</td>
<td>37.5</td>
<td>36.6</td>
<td>34.3</td>
<td>34.3</td>
<td>34.3</td>
</tr>
<tr>
<td>Total</td>
<td>3,272.8</td>
<td>3,891.2</td>
<td>3,362.5</td>
<td>3,479.3</td>
<td>3,483.2</td>
<td>3,313.8</td>
<td>3,183.5</td>
</tr>
</tbody>
</table>

NO (Not Occurring)
Note: Totals may not sum due to independent rounding.

Table 3-10: CH$_4$ Emissions from Stationary Combustion (MMT CO$_2$ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>5.2</td>
<td>4.1</td>
<td>3.7</td>
<td>5.0</td>
<td>5.1</td>
<td>3.9</td>
<td>3.4</td>
</tr>
<tr>
<td>Coal</td>
<td>0.2</td>
<td>0.1</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>
The process of generating electricity is the single largest source of CO\(_2\) emissions in the United States, representing 34 percent of total CO\(_2\) emissions from all CO\(_2\) emissions sources across the United States. Methane and N\(_2\)O accounted for a small portion of total greenhouse gas emissions from electric power, representing 0.1 percent and 0.8 percent, respectively. Electric power also accounted for the largest share of CO\(_2\) emissions from fossil fuel combustion, approximately 36.4 percent in 2016. Methane and N\(_2\)O from electric power represented 10.4 and 40.3 percent of total CH\(_4\) and N\(_2\)O emissions from fossil fuel combustion in 2016, respectively.

For the underlying energy data used in this chapter, the Energy Information Administration (EIA) places electric power generation into three functional categories: the electric power sector, the commercial sector, and the industrial sector. The electric power sector consists of electric utilities and independent power producers whose primary
business is the production of electricity. This includes both regulated utilities and non-utilities (e.g., independent power producers, qualifying co-generators, and other small power producers). Electric generation is reported as occurring in other sectors where the producer of the power indicates that its primary business is something other than the production of electricity.\(^{16}\)

Emissions from the electric power sector have decreased by 0.1 percent since 1990. The carbon intensity of the electric power sector, in terms of CO\(_2\) Eq. per QBtu, has decreased by 12 percent during that same timeframe with the majority of the emissions and carbon intensity decreases occurring in the past decade as shown below in Figure 3-8. This recent decarbonization of the electric power sector is a result of several key drivers. Coal-fired electric power (in kilowatt-hours [kWh]) decreased from almost 54 percent of generation in 1990 to 32 percent in 2016.\(^{17}\) This generation corresponded with an increase in natural gas and renewable energy generation, largely from wind and solar energy. Natural gas generation (in kWh) represented 11 percent of electric power generation in 1990, and increased over the 27-year period to represent 33 percent of electric power sector generation in 2016.

In 2016, CO\(_2\) emissions from the electric power sector decreased by 4.8 percent relative to 2015. This decrease in CO\(_2\) emissions was a result of changes in the types of fuel consumed to produce electricity in the electric power sector in recent years. The shift from coal to less-CO\(_2\)-intensive natural gas to supply electricity has accelerated in recent years. Consumption of coal for electric power decreased by 8.1 percent from 2015 to 2016, while consumption of natural gas increased by 3.8 percent. There has also been a rapid increase in renewable energy capacity additions in the electric power sector in recent years. In 2016, renewable energy sources accounted for 63 percent of capacity additions, with natural gas accounting for the remaining additions. The share of renewable energy capacity additions has grown significantly since 2010, when renewable energy sources accounted for only 28 percent of total capacity additions (EIA 2017d). Electricity generation from renewable sources increased by 14 percent from 2015 to 2016. The decrease in coal-powered electricity generation and increase in renewable energy electricity generation contributed to a decrease in emissions from electric power generation over the time series (see Figure 3-8).

Decreases in natural gas costs and the associated increase in natural gas generation, particularly between 2005 and 2016, was one of the main drivers of the recent fuel switching and decrease in electric power sector carbon intensity. During this time period, the cost of natural gas (in $/MMBtu) decreased by 57 percent while the cost of coal (in $/MMBtu) increased by 82 percent (EIA 2018). Also, between 1990 and 2016, renewable energy generation (in kWh) from wind and solar energy have increased from 0.1 percent in 1990 to 7 percent in 2016, which also helped drive the decrease in electric power sector carbon intensity. This decrease in carbon intensity occurred even as total electricity retail sales increased 39 percent, from 2,713 billion kWh in 1990 to 3,762 billion kWh in 2016.

\(^{16}\) Utilities primarily generate power for the U.S. electric grid for sale to retail customers. Non-utilities produce electricity for their own use, to sell to large consumers, or to sell on the wholesale electricity market (e.g., to utilities for distribution and resale to customers).

\(^{17}\) Values represent electricity net generation from the electric power sector (EIA 2018).
Electricity was consumed primarily in the residential, commercial, and industrial end-use sectors for lighting, heating, electric motors, appliances, electronics, and air conditioning (see Figure 3-9).

The industrial, residential, and commercial end-use sectors, as presented in Table 3-8, were reliant on electricity for meeting energy needs. The residential and commercial end-use sectors are especially reliant on electricity use for lighting, heating, air conditioning, and operating appliances. In 2016, electricity sales to the residential and
commercial end-use sectors each increased by 0.5 percent. Electricity sales to the industrial sector in 2016 decreased approximately 1.0 percent. Overall, in 2016, the amount of electricity retail sales (in kWh) increased by 0.1 percent.

Industrial Sector

Industrial sector CO₂, CH₄, and N₂O, emissions accounted for 16, 14, and 7 percent of CO₂, CH₄, and N₂O, emissions from fossil fuel combustion, respectively. Carbon dioxide, CH₄, and N₂O emissions resulted from the direct consumption of fossil fuels for steam and process heat production.

The industrial end-use sector, per the underlying energy use data from EIA, includes activities such as manufacturing, construction, mining, and agriculture. The largest of these activities in terms of energy use is manufacturing, of which six industries—Petroleum Refineries, Chemicals, Paper, Primary Metals, Food, and Nonmetallic Mineral Products—represent the vast majority of the energy use (EIA 2018; EIA 2009b).

There are many dynamics that impact emissions from the industrial sector including economic activity, changes in the make-up of the industrial sector, changes in the emissions intensity of industrial processes, and weather impacts on heating of industrial buildings. Structural changes within the U.S. economy that lead to shifts in industrial output away from energy-intensive manufacturing products to less energy-intensive products (e.g., from steel to computer equipment) have had a significant effect on industrial emissions.

From 2015 to 2016, total industrial production and manufacturing output increased by 1.2 percent (FRB 2017). Over this period, output increased across production indices for Food, Petroleum Refineries, Chemicals, and Nonmetallic Mineral Products, and decreased slightly for Primary Metals and Paper (see Figure 3-10). Through EPA’s Greenhouse Gas Reporting Program (GHGRP), specific industrial sector trends can be discerned from the overall total EIA industrial fuel consumption data used for these calculations.

For example, from 2015 to 2016, the underlying EIA data showed decreased consumption of coal, and relatively flat use of natural gas in the industrial sector. The GHGRP data highlights that several industries contributed to these trends, including chemical manufacturing; pulp, paper and print; and food processing, beverages and tobacco.¹⁹

¹⁸ Some commercial customers are large enough to obtain an industrial price for natural gas and/or electricity and are consequently grouped with the industrial end-use sector in U.S. energy statistics. These misclassifications of large commercial customers likely cause the industrial end-use sector to appear to be more sensitive to weather conditions.

¹⁹ Further details on industrial sector combustion emissions are provided by EPA’s GHGRP. See <http://ghgdata.epa.gov/ghgp/main.do>.
Despite the growth in industrial output (60 percent) and the overall U.S. economy (87 percent) from 1990 to 2016, CO₂ emissions from fossil fuel combustion in the industrial sector decreased by 5.8 percent over the same time series. A number of factors are believed to have caused this disparity between growth in industrial output and decrease in industrial emissions, including: (1) more rapid growth in output from less energy-intensive industries relative to traditional manufacturing industries, and (2) energy-intensive industries such as steel are employing new methods, such as electric arc furnaces, that are less carbon intensive than the older methods. In 2016, CO₂, CH₄, and N₂O emissions from fossil fuel combustion and electricity use within the industrial end-use sector totaled 1,335.4 MMT CO₂ Eq., a 2.4 percent decrease from 2015 emissions.

Residential and Commercial Sectors

Emissions from the residential and commercial sectors have increased since 1990, and are often correlated with short-term fluctuations in energy use caused by weather conditions, rather than prevailing economic conditions. More significant changes in emissions from the residential and commercial sectors in recent years can be largely attributed to an overall reduction in energy use, a reduction in heating degree days, and increases in energy efficiency (see Figure 3-11).
In 2016 the residential and commercial sectors accounted for 6 and 5 percent of CO₂ emissions from fossil fuel combustion, 31 and 11 percent of CH₄ emissions from fossil fuel combustion, and 2 and 1 percent of N₂O emissions from fossil fuel combustion, respectively. Emissions from these sectors were largely due to the direct consumption of natural gas and petroleum products, primarily for heating and cooking needs. Coal consumption was a minor component of energy use in both of these end-use sectors. In 2016, total emissions (CO₂, CH₄, and N₂O) from fossil fuel combustion and electricity use within the residential and commercial end-use sectors were 956.6 MMT CO₂ Eq. and 872.3 MMT CO₂ Eq., respectively. Total CO₂, CH₄, and N₂O emissions from fossil fuel combustion and electricity use within the residential and commercial end-use sectors decreased by 5.4 and 4.7 percent from 2015 to 2016, respectively, and heating degree days decreased by 5 percent over the same time period. A decrease in heating degree days led to a decreased demand for heating fuel and electricity for heat in the residential and commercial sectors. In addition, a shift toward energy efficient products and more stringent energy efficiency standards for household equipment has also contributed to a decrease in energy demand in households (EIA 2017e), resulting in a decrease in energy-related emissions. In the long term, the residential sector is also affected by population growth, migration trends toward warmer areas, and changes in housing and building attributes (e.g., larger sizes and improved insulation).

In 2016, combustion emissions from natural gas consumption represented 81 and 74 percent of the direct fossil fuel CO₂ emissions from the residential and commercial sectors, respectively. Natural gas combustion CO₂ emissions from the residential and commercial sectors in 2016 decreased by 5.9 percent and 3.1 percent from 2015 levels, respectively.

Figure 3-11: Fuels Used in Residential and Commercial Sectors (TBtu), Heating Degree Days, and Total Sector CO₂ Emissions

Note: Petroleum use in the residential and commercial sectors include adjustments for the sectoral allocation of distillate fuel oil and motor gasoline.
Source: Information on fuel consumption and electricity use were obtained from EIA (2018).

U.S. Territories

Emissions from U.S. Territories are based on the fuel consumption in American Samoa, Guam, Puerto Rico, U.S. Virgin Islands, Wake Island, and other U.S. Pacific Islands. As described in the Methodology section of CO₂ from Fossil Fuel Combustion, this data is collected separately from the sectoral-level data available for the general calculations. As sectoral information is not available for U.S. Territories, CO₂, CH₄, and N₂O emissions are not
presented for U.S. Territories in the tables above by sector, though the emissions will include some transportation and mobile combustion sources.

Transportation Sector and Mobile Combustion

This discussion of transportation emissions follows the alternative method of presenting combustion emissions by allocating emissions associated with electricity generation to the transportation end-use sector, as presented in Table 3-8. Table 3-7 presents direct CO₂, CH₄, and N₂O emissions from all transportation sources (i.e., excluding emissions allocated to electricity consumption in the transportation end-use sector).

The transportation end-use sector and other mobile combustion accounted for 1,808.1 MMT CO₂ Eq. in 2016, which represented 36 percent of CO₂ emissions, 33 percent of CH₄ emissions, and 50 percent of N₂O emissions from fossil fuel combustion, respectively. Fuel purchased in the United States for international aircraft and marine travel accounted for an additional 117.7 MMT CO₂ Eq. in 2016; these emissions are recorded as international bunkers and are not included in U.S. totals according to UNFCCC reporting protocols.

Transportation End-Use Sector

From 1990 to 2016, transportation emissions from fossil fuel combustion rose by 19 percent due, in large part, to increased demand for travel (see Figure 3-12). The number of vehicle miles traveled (VMT) by light-duty motor vehicles (passenger cars and light-duty trucks) increased 44 percent from 1990 to 2016, as a result of a confluence of factors including population growth, economic growth, urban sprawl, and periods of low fuel prices.

From 2015 to 2016, CO₂ emissions from the transportation end-use sector increased by 2.7 percent. The increase in emissions can largely be attributed to increased VMT and motor gasoline consumption by light-duty vehicles, as well as diesel consumption by medium- and heavy-duty vehicles. From 2015 to 2016, there were also increases in residual fuel oil consumption by ships and boats and jet fuel use in general aviation aircraft.

Commercial aircraft emissions were similar between 2015 and 2016, but have decreased 14 percent since 2007 (FAA 2018). Decreases in jet fuel emissions (excluding bunkers) since 2007 are due in part to improved operational efficiency that results in more direct flight routing, improvements in aircraft and engine technologies to reduce fuel burn and emissions, and the accelerated retirement of older, less fuel-efficient aircraft.

Almost all of the energy consumed for transportation was supplied by petroleum-based products, with more than half being related to gasoline consumption in automobiles and other highway vehicles. Other fuel uses, especially diesel fuel for freight trucks and jet fuel for aircraft, accounted for the remainder. The primary driver of transportation-related emissions was CO₂ from fossil fuel combustion. Annex 3.2 presents the total emissions from all transportation and mobile sources, including CO₂, N₂O, CH₄, and HFCs.

20 Note that these totals include CO₂, CH₄ and N₂O emissions from some sources in the U.S. Territories (ships and boats, recreational boats, non-transportation mobile sources) and CH₄ and N₂O emissions from transportation rail electricity.

21 VMT estimates are based on data from FHWA Highway Statistics Table VM-1 (FHWA 1996 through 2017). In 2011, FHWA changed its methods for estimating VMT by vehicle class, which led to a shift in VMT and emissions among on-road vehicle classes in the 2007 to 2016 time period. In absence of these method changes, light-duty VMT growth between 1990 and 2016 would likely have been even higher.

22 Commercial aircraft, as modeled in FAA’s AEDT (FAA 2018), consists of passenger aircraft, cargo, and other chartered flights.
Figure 3-12: Fuels Used in Transportation Sector (TBtu), Onroad VMT, and Total Sector CO₂ Emissions

Notes: Distillate fuel, residual fuel, and jet fuel include adjustments for international bunker fuels. Distillate fuel and motor gasoline include adjustments for the sectoral allocation of these fuels.

Source: Information on fuel consumption was obtained from EIA (2018).

Transportation Fossil Fuel Combustion CO₂ Emissions

Domestic transportation CO₂ emissions increased by 21 percent (315.4 MMT CO₂) between 1990 and 2016, an annualized increase of 0.8 percent. Among domestic transportation sources in 2016, light-duty vehicles (including passenger cars and light-duty trucks) represented 59 percent of CO₂ emissions from fossil fuel combustion, medium- and heavy-duty trucks and buses 24 percent, commercial aircraft 7 percent, and other sources 9 percent. See Table 3-12 for a detailed breakdown of transportation CO₂ emissions by mode and fuel type.

Almost all of the energy consumed by the transportation sector is petroleum-based, including motor gasoline, diesel fuel, jet fuel, and residual oil. Carbon dioxide emissions from the combustion of ethanol and biodiesel for transportation purposes, along with the emissions associated with the agricultural and industrial processes involved in the production of biofuel, are captured in other Inventory sectors. Ethanol consumption from the transportation sector has increased from 0.7 billion gallons in 1990 to 13.5 billion gallons in 2016, while biodiesel consumption has increased from 0.01 billion gallons in 2001 to 2.1 billion gallons in 2016. For further information, see Section 3.11 on biofuel consumption at the end of this chapter and Table A-96 in Annex 3.2.

Carbon dioxide emissions from passenger cars and light-duty trucks totaled 1,058.5 MMT CO₂ in 2016. This is an increase of 14 percent (133.6 MMT CO₂) from 1990 due, in large part, to increased demand for travel as fleet-wide light-duty vehicle fuel economy was relatively stable (average new vehicle fuel economy declined slowly from 1990 through 2004 and then increased more rapidly from 2005 through 2016). Carbon dioxide emissions from passenger cars and light-duty trucks peaked at 1,150.6 MMT CO₂ in 2004, and since then have declined about 8 percent. The decline in new light-duty vehicle fuel economy between 1990 and 2004 (Figure 3-13) reflected the increasing market share of light-duty trucks, which grew from about 30 percent of new vehicle sales in 1990 to 48 percent in

23 Biofuel estimates are presented in the Energy chapter for informational purposes only, in line with IPCC methodological guidance and UNFCCC reporting obligations. Net carbon fluxes from changes in biogenic carbon reservoirs in croplands are accounted for in the estimates for Land Use, Land-Use Change, and Forestry (see Chapter 6). More information and additional analyses on biofuels are available at EPA’s Renewable Fuels Standards website. See <https://www.epa.gov/renewable-fuel-standard-program>.
Starting in 2005, average new vehicle fuel economy began to increase while light-duty VMT grew only modestly for much of the period. Light-duty VMT grew by less than one percent or declined each year between 2005 and 201324 and has since grown at a faster rate (2.6 percent from 2014 to 2015, and 2.5 percent from 2015 to 2016). Average new vehicle fuel economy has increased almost every year since 2005, while the light-duty truck share decreased to about 33 percent in 2009 and has since varied from year to year between 36 and 43 percent. Light-duty truck share is about 38 percent of new vehicles in model year 2016 (EPA 2016a). See also Annex 3.2 for data by vehicle mode and information on VMT and the share of new vehicles (in VMT).

Medium- and heavy-duty truck CO₂ emissions increased by 82 percent from 1990 to 2016. This increase was largely due to a substantial growth in medium- and heavy-duty truck VMT, which increased by 100 percent between 1990 and 2016.25 Carbon dioxide from the domestic operation of commercial aircraft increased by 10 percent (10.5 MMT CO₂) from 1990 to 2016.26 Across all categories of aviation, excluding international bunkers, CO₂ emissions decreased by 11 percent (19.9 MMT CO₂) between 1990 and 2016.27 This includes a 66 percent (22.7 MMT CO₂) decrease in CO₂ emissions from domestic military operations.

Transportation sources also produce CH₄ and N₂O; these emissions are included in Table 3-13 and Table 3-14 and in the CH₄ and N₂O from Mobile Combustion section. Annex 3.2 presents total emissions from all transportation and mobile sources, including CO₂, CH₄, N₂O, and HFCs.

24 VMT estimates are based on data from FHWA Highway Statistics Table VM-1 (FHWA 1996 through 2017). In 2007 and 2008 light-duty VMT decreased 3.0 percent and 2.3 percent, respectively. Note that the decline in light-duty VMT from 2006 to 2007 is due at least in part to a change in FHWA’s methods for estimating VMT. In 2011, FHWA changed its methods for estimating VMT by vehicle class, which led to a shift in VMT and emissions among on-road vehicle classes in the 2007 to 2016 time period. In absence of these method changes, light-duty VMT growth between 2006 and 2007 would likely have been higher.

25 While FHWA data shows consistent growth in medium- and heavy-duty truck VMT over the 1990 to 2016 time period, part of the growth reflects a method change for estimating VMT starting in 2007. This change in methodology in FHWA’s VM-1 table resulted in large changes in VMT by vehicle class, thus leading to a shift in VMT and emissions among on-road vehicle classes in the 2007 to 2016 time period. During the time period prior to the method change (1990 to 2006), VMT for medium- and heavy-duty trucks increased by 51 percent.

26 Commercial aircraft, as modeled in FAA’s AEDT, consists of passenger aircraft, cargo, and other chartered flights.

27 Includes consumption of jet fuel and aviation gasoline. Does not include aircraft bunkers, which are not included in national emission totals, in line with IPCC methodological guidance and UNFCCC reporting obligations.
Figure 3-13: Sales-Weighted Fuel Economy of New Passenger Cars and Light-Duty Trucks, 1990–2016 (miles/gallon)

Source: EPA (2016a)

Figure 3-14: Sales of New Passenger Cars and Light-Duty Trucks, 1990–2016 (Percent)

Source: EPA (2016a)
<table>
<thead>
<tr>
<th>Fuel/Vehicle Type</th>
<th>1990</th>
<th>2005</th>
<th>2012(^a)</th>
<th>2013(^a)</th>
<th>2014(^a)</th>
<th>2015(^a)</th>
<th>2016(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline(^a)</td>
<td>957.3</td>
<td>1,152.4</td>
<td>1,029.8</td>
<td>1,030.2</td>
<td>1,072.0</td>
<td>1,070.5</td>
<td>1,096.3</td>
</tr>
<tr>
<td>Passenger Cars</td>
<td>604.6</td>
<td>638.3</td>
<td>707.2</td>
<td>706.9</td>
<td>725.4</td>
<td>731.3</td>
<td>744.6</td>
</tr>
<tr>
<td>Light-Duty Trucks</td>
<td>300.7</td>
<td>464.4</td>
<td>268.2</td>
<td>268.3</td>
<td>290.2</td>
<td>283.2</td>
<td>294.5</td>
</tr>
<tr>
<td>Medium- and Heavy-Duty Trucks</td>
<td>37.7</td>
<td>33.9</td>
<td>37.4</td>
<td>38.2</td>
<td>39.5</td>
<td>39.3</td>
<td>40.4</td>
</tr>
<tr>
<td>Buses</td>
<td>0.3</td>
<td>0.4</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Motorcycles</td>
<td>1.7</td>
<td>1.6</td>
<td>3.9</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td>Recreational Boats(^d)</td>
<td>12.3</td>
<td>13.8</td>
<td>12.3</td>
<td>12.2</td>
<td>12.2</td>
<td>12.2</td>
<td>12.1</td>
</tr>
<tr>
<td>Distillate Fuel Oil (Diesel)(^b)</td>
<td>262.9</td>
<td>457.5</td>
<td>427.5</td>
<td>433.9</td>
<td>446.3</td>
<td>459.8</td>
<td>462.8</td>
</tr>
<tr>
<td>Passenger Cars</td>
<td>7.9</td>
<td>4.2</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Light-Duty Trucks</td>
<td>11.5</td>
<td>25.8</td>
<td>12.9</td>
<td>12.9</td>
<td>13.8</td>
<td>13.9</td>
<td>14.3</td>
</tr>
<tr>
<td>Medium- and Heavy-Duty Trucks</td>
<td>190.5</td>
<td>360.2</td>
<td>344.4</td>
<td>350.0</td>
<td>360.0</td>
<td>368.8</td>
<td>376.4</td>
</tr>
<tr>
<td>Buses</td>
<td>8.0</td>
<td>10.6</td>
<td>15.4</td>
<td>15.5</td>
<td>16.8</td>
<td>17.1</td>
<td>17.0</td>
</tr>
<tr>
<td>Rail</td>
<td>35.5</td>
<td>45.5</td>
<td>39.5</td>
<td>40.1</td>
<td>41.5</td>
<td>39.8</td>
<td>36.7</td>
</tr>
<tr>
<td>Recreational Boats</td>
<td>2.0</td>
<td>3.2</td>
<td>3.7</td>
<td>3.7</td>
<td>3.8</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Ships and Non-Recreational</td>
<td>7.5</td>
<td>8.0</td>
<td>7.5</td>
<td>7.5</td>
<td>6.1</td>
<td>12.0</td>
<td>9.9</td>
</tr>
<tr>
<td>International Bunker Fuels(^d)</td>
<td>11.7</td>
<td>9.4</td>
<td>6.8</td>
<td>5.6</td>
<td>6.1</td>
<td>8.4</td>
<td>8.7</td>
</tr>
<tr>
<td>Jet Fuel</td>
<td>184.2</td>
<td>189.3</td>
<td>143.4</td>
<td>147.1</td>
<td>148.4</td>
<td>157.6</td>
<td>166.0</td>
</tr>
<tr>
<td>Commercial Aircraft(^e)</td>
<td>109.9</td>
<td>132.7</td>
<td>113.3</td>
<td>114.3</td>
<td>115.2</td>
<td>119.0</td>
<td>120.4</td>
</tr>
<tr>
<td>Military Aircraft</td>
<td>35.0</td>
<td>19.4</td>
<td>12.1</td>
<td>11.0</td>
<td>14.0</td>
<td>13.5</td>
<td>12.3</td>
</tr>
<tr>
<td>General Aviation Aircraft</td>
<td>39.4</td>
<td>37.3</td>
<td>18.0</td>
<td>21.8</td>
<td>19.2</td>
<td>25.1</td>
<td>33.4</td>
</tr>
<tr>
<td>International Bunker Fuels(^d)</td>
<td>38.0</td>
<td>60.1</td>
<td>64.5</td>
<td>65.7</td>
<td>69.6</td>
<td>71.9</td>
<td>74.1</td>
</tr>
<tr>
<td>International Bunker Fuels(^d)</td>
<td>30.0</td>
<td>55.6</td>
<td>61.4</td>
<td>62.8</td>
<td>66.3</td>
<td>68.6</td>
<td>70.8</td>
</tr>
<tr>
<td>Aviation Gasoline</td>
<td>3(^i)</td>
<td>2.4</td>
<td>1.7</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>General Aviation Aircraft</td>
<td>3(^i)</td>
<td>2.4</td>
<td>1.7</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Residual Fuel Oil</td>
<td>22.6</td>
<td>19.3</td>
<td>15.8</td>
<td>15.1</td>
<td>5.8</td>
<td>4.2</td>
<td>12.9</td>
</tr>
<tr>
<td>Ships and Boats(^c)</td>
<td>22.6</td>
<td>19.3</td>
<td>15.8</td>
<td>15.1</td>
<td>5.8</td>
<td>4.2</td>
<td>12.9</td>
</tr>
<tr>
<td>International Bunker Fuels(^d)</td>
<td>53.7</td>
<td>43.6</td>
<td>34.5</td>
<td>28.5</td>
<td>27.7</td>
<td>30.6</td>
<td>33.8</td>
</tr>
<tr>
<td>Natural Gas(^j)</td>
<td>36.0</td>
<td>33.1</td>
<td>41.3</td>
<td>47.0</td>
<td>40.3</td>
<td>39.5</td>
<td>40.6</td>
</tr>
<tr>
<td>Passenger Cars</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Light-Duty Trucks</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Medium- and Heavy-Duty Trucks</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Buses</td>
<td>+</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Pipeline(^b)</td>
<td>36.0</td>
<td>32.4</td>
<td>40.5</td>
<td>46.2</td>
<td>39.4</td>
<td>38.5</td>
<td>39.6</td>
</tr>
<tr>
<td>LPG(^j)</td>
<td>1.4</td>
<td>1.7</td>
<td>2.3</td>
<td>2.7</td>
<td>2.9</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Passenger Cars</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0.2</td>
</tr>
<tr>
<td>Light-Duty Trucks</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Medium- and Heavy-Duty Trucks</td>
<td>1.1</td>
<td>1.3</td>
<td>1.8</td>
<td>2.1</td>
<td>1.9</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Buses</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Electricity</td>
<td>3(^o)</td>
<td>4.7</td>
<td>3.9</td>
<td>4.0</td>
<td>4.1</td>
<td>3.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Rail</td>
<td>3.0</td>
<td>4.7</td>
<td>3.9</td>
<td>4.0</td>
<td>4.1</td>
<td>3.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Total(^b)</td>
<td>1,470.6</td>
<td>1,860.5</td>
<td>1,665.8</td>
<td>1,681.6</td>
<td>1,721.2</td>
<td>1,739.2</td>
<td>1,786.1</td>
</tr>
<tr>
<td>Total (Including Bunkers)(^b)</td>
<td>1,574.1</td>
<td>1,973.6</td>
<td>1,771.6</td>
<td>1,781.4</td>
<td>1,824.6</td>
<td>1,850.1</td>
<td>1,902.7</td>
</tr>
<tr>
<td>Biofuels-Ethanol(^l)</td>
<td>4.1</td>
<td>22.4</td>
<td>71.5</td>
<td>73.4</td>
<td>74.9</td>
<td>75.9</td>
<td>78.2</td>
</tr>
<tr>
<td>Biofuels-Biodiesel(^l)</td>
<td>+</td>
<td>0.9</td>
<td>8.5</td>
<td>13.5</td>
<td>13.3</td>
<td>14.1</td>
<td>19.6</td>
</tr>
</tbody>
</table>

\(^a\) Does not exceed 0.05 MMT CO\(_2\) Eq.

Transportation reporting schemes are in accordance with IPCC guidance. Using the “Mobile Combustion” category, which includes non-transportation sources such as construction/mining equipment, agricultural equipment, vehicles used off-road, and other sources (e.g., snowmobiles, lawn mowers, etc.).

In 2014, EPA incorporated the NONROAD2008 model into MOVES2014. The current Inventory uses the NONROAD component of MOVES2014a for years 1999 through 2016.

Note that large year over year fluctuations in emission estimates partially reflect nature of data collection for these sources.

Commercial aircraft, as modeled in FAA’s Aviation Environmental Design Tool (AEDT), consists of passenger aircraft, cargo, and other chartered flights.

Pipelines reflect CO₂ emissions from natural gas-powered pipelines transporting natural gas.

Ethanol and biodiesel estimates are presented for informational purposes only. See Section 3.11 of this chapter and the estimates in Land Use, Land-Use Change, and Forestry (see Chapter 6), in line with IPCC methodological guidance and UNFCCC reporting obligations, for more information on ethanol and biodiesel.

Transportation sector natural gas and LPG consumption are based on data from EIA (2017). Prior to the previous (i.e., 1990 through 2015) Inventory, data from DOE TEDB were used to estimate each vehicle class’s share of the total natural gas and LPG consumption. Since TEDB does not include estimates for natural gas use by medium and heavy-duty trucks or LPG use by passenger cars, EIA Alternative Fuel Vehicle Data (Browning 2017) is now used to determine each vehicle class’s share of the total natural gas and LPG consumption. These changes were first incorporated in the previous Inventory and apply to the 1990 to 2016 time period.

Includes emissions from rail electricity.

Notes: This table does not include emissions from non-transportation mobile sources, such as agricultural equipment and construction/mining equipment; it also does not include emissions associated with electricity consumption by pipelines or lubricants used in transportation. In addition, this table does not include CO₂ emissions from U.S. Territories, since these are covered in a separate chapter of the Inventory. Totals may not sum due to independent rounding.

Mobile Fossil Fuel Combustion CH₄ and N₂O Emissions

Mobile combustion includes emissions of CH₄ and N₂O from all transportation sources identified in the U.S. Inventory with the exception of pipelines and electric locomotives; mobile sources also include non-transportation sources such as construction/mining equipment, agricultural equipment, vehicles used off-road, and other sources (e.g., snowmobiles, lawn mowers, etc.). Annex 3.2 includes a summary of all emissions from both transportation and mobile sources. Table 3-13 and Table 3-14 provide mobile fossil fuel CH₄ and N₂O emission estimates in MMT CO₂ Eq.

Mobile combustion was responsible for a small portion of national CH₄ emissions (0.6 percent) but was the third largest source of U.S. N₂O emissions (5.0 percent). From 1990 to 2016, mobile source CH₄ emissions declined by

28 Emissions of CH₄ from natural gas systems are reported separately. More information on the methodology used to calculate these emissions are included in this chapter and Annex 3.4.

29 See the methodology sub-sections of the CO₂ from Fossil Fuel Combustion and CH₄ and N₂O from Mobile Combustion sections of this chapter. Note that N₂O and CH₄ emissions are reported using different categories than CO₂. CO₂ emissions are reported by end-use sector (Transportation, Industrial, Commercial, Residential, U.S. Territories), and generally adhere to a top-down approach to estimating emissions. CO₂ emissions from non-transportation sources (e.g., lawn and garden equipment, farm equipment, construction equipment) are allocated to their respective end-use sector (i.e., construction equipment CO₂ emissions are included in the Industrial end-use sector instead of the Transportation end-use sector). CH₄ and N₂O emissions are reported using the “Mobile Combustion” category, which includes non-transportation mobile sources. CH₄ and N₂O emission estimates are bottom-up estimates, based on total activity (fuel use, VMT) and emissions factors by source and technology type. These reporting schemes are in accordance with IPCC guidance. For informational purposes only, CO₂ emissions from non-transportation mobile sources are presented separately from their overall end-use sector in Annex 3.2.

30 See Annex 3.2 for a complete time series of emission estimates for 1990 through 2016.
71 percent, to 3.6 MMT CO₂ Eq. (146 kt CH₄), due largely to control technologies employed in on-road vehicles since the mid-1990s to reduce CO, NOₓ, NMVOC, and CH₄ emissions. Mobile source emissions of N₂O decreased by 56 percent, to 18.4 MMT CO₂ Eq. (62 kt N₂O). Earlier generation control technologies initially resulted in higher N₂O emissions, causing a 30 percent increase in N₂O emissions from mobile sources between 1990 and 1997. Improvements in later-generation emission control technologies have reduced N₂O output, resulting in a 66 percent decrease in mobile source N₂O emissions from 1997 to 2016 (Figure 3-15). Overall, CH₄ and N₂O emissions were predominantly from gasoline-fueled passenger cars and light-duty trucks. See also Annex 3.2 for data by vehicle mode and information on VMT and the share of new vehicles (in VMT).

Figure 3-15: Mobile Source CH₄ and N₂O Emissions (MMT CO₂ Eq.)

![Figure 3-15](image)

Table 3-13: CH₄ Emissions from Mobile Combustion (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline On-Roadb</td>
<td>5.2</td>
<td>2.2</td>
<td>1.3</td>
<td>1.1</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Passenger Cars</td>
<td>3.2</td>
<td>1.3</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Light-Duty Trucks</td>
<td>1.7</td>
<td>0.8</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Medium- and Heavy-Duty</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Trucks and Buses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorcycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel On-Roadb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passenger Cars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light-Duty Trucks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium- and Heavy-Duty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trucks and Buses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative Fuel On-Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Road⁴</td>
<td>7.5</td>
<td>6.9</td>
<td>3.5</td>
<td>3.3</td>
<td>3.0</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Ships and Boats</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Rail</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Aircraft</td>
<td>0.1</td>
<td>0.1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Agricultural Equipment⁵</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Construction/Mining</td>
<td>0.9</td>
<td>0.9</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Equipment⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other²</td>
<td>5.2</td>
<td>4.9</td>
<td>2.2</td>
<td>2.0</td>
<td>1.8</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>12.7</td>
<td>9.4</td>
<td>5.1</td>
<td>4.7</td>
<td>4.2</td>
<td>3.8</td>
<td>3.6</td>
</tr>
</tbody>
</table>

+ Does not exceed 0.05 MMT CO₂ Eq.
Table 3-14: N₂O Emissions from Mobile Combustion (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline On-Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passenger Cars</td>
<td>37.5</td>
<td>33.5</td>
<td>19.1</td>
<td>17.2</td>
<td>15.4</td>
<td>14.0</td>
<td>12.8</td>
</tr>
<tr>
<td>Light-Duty Trucks</td>
<td>12.8</td>
<td>15.0</td>
<td>5.3</td>
<td>4.7</td>
<td>4.4</td>
<td>3.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Medium- and Heavy-Duty</td>
<td>0.5</td>
<td>0.9</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Trucks and Buses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorcycles</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Diesel On-Road</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Passenger Cars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light-Duty Trucks</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Medium- and Heavy-Duty</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Trucks and Buses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative Fuel On-Road</td>
<td>4.0</td>
<td>5.0</td>
<td>4.8</td>
<td>4.9</td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
</tr>
<tr>
<td>Ships and Boats</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Rail</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Aircraft</td>
<td>1.7</td>
<td>1.8</td>
<td>1.3</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Agricultural Equipment</td>
<td>0.4</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Construction/Mining</td>
<td>0.6</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Other</td>
<td>0.5</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Total</td>
<td>41.7</td>
<td>38.8</td>
<td>24.3</td>
<td>22.5</td>
<td>20.7</td>
<td>19.3</td>
<td>18.4</td>
</tr>
</tbody>
</table>

+ Does not exceed 0.05 MMT CO₂ Eq.

a See Annex 3.2 for definitions of on-road vehicle types.

b Gasoline and diesel highway vehicle mileage estimates are based on data from FHWA Highway Statistics Table VM-1 (FHWA 1996 through 2017). These mileage estimates are combined with estimates of fuel shares by vehicle type from DOE’s TEDB Annex Tables A.1 through A.6 (DOE 1993 through 2016). TEDB data for 2016 has not been published yet, therefore 2015 data are used as a proxy.

c Rail emissions do not include emissions from electric powered locomotives. Class II and Class III rail diesel consumption for 2014-2016 are not available, therefore 2013 data is used as a proxy. Commuter and intercity rail diesel consumption data for 2016 is not available yet, therefore 2015 data are used as a proxy.

d Includes equipment, such as tractors and combines, as well as fuel consumption from trucks that are used off-road in agriculture.

e Includes equipment, such as cranes, dumpers, and excavators, as well as fuel consumption from trucks that are used off-road in construction.
“Other” includes snowmobiles and other recreational equipment, logging equipment, lawn and garden equipment, railroad equipment, airport equipment, commercial equipment, and industrial equipment, as well as fuel consumption from trucks that are used off-road for commercial/industrial purposes.

Note: In 2011, FHWA changed its methods for estimating vehicle miles traveled (VMT) and related data. These methodological changes included how vehicles are classified, moving from a system based on body type to one that is based on wheelbase. These changes were first incorporated for the 1990 through 2010 Inventory and apply to the 2007 through 2016 time period. This resulted in large changes in VMT and fuel consumption data by vehicle class, thus leading to a shift in emissions among on-road vehicle classes. Totals may not sum due to independent rounding.

CO₂ from Fossil Fuel Combustion

Methodology

CO₂ emissions from fossil fuel combustion are estimated in line with a Tier 2 method described by the IPCC in the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006) with some exceptions as discussed below. A detailed description of the U.S. methodology is presented in Annex 2.1, and is characterized by the following steps:

1. Determine total fuel consumption by fuel type and sector. Total fossil fuel consumption for each year is estimated by aggregating consumption data by end-use sector (e.g., commercial, industrial, etc.), primary fuel type (e.g., coal, petroleum, gas), and secondary fuel category (e.g., motor gasoline, distillate fuel oil, etc.). Fuel consumption data for the United States were obtained directly from the EIA of the U.S. Department of Energy (DOE), primarily from the Monthly Energy Review (EIA 2018). The EIA does not include territories in its national energy statistics, so fuel consumption data for territories were collected separately from EIA’s International Energy Statistics (EIA 2017a). For consistency of reporting, the IPCC has recommended that countries report energy data using the International Energy Agency (IEA) reporting convention and/or IEA data. Data in the IEA format are presented "top down"—that is, energy consumption for fuel types and categories are estimated from energy production data (accounting for imports, exports, stock changes, and losses). The resulting quantities are referred to as “apparent consumption.” The data collected in the United States by EIA on an annual basis and used in this Inventory are predominantly from mid-stream or conversion energy consumers such as refiners and electric power generators. These annual surveys are supplemented with end-use energy consumption surveys, such as the Manufacturing Energy Consumption Survey, that are conducted on a periodic basis (every four years). These consumption data sets help inform the annual surveys to arrive at the national total and sectoral breakdowns for that total.

Also, note that U.S. fossil fuel energy statistics are generally presented using gross calorific values (GCV) (i.e., higher heating values). Fuel consumption activity data presented here have not been adjusted to correspond to international standards, which are to report energy statistics in terms of net calorific values (NCV) (i.e., lower heating values).

2. Subtract uses accounted for in the Industrial Processes and Product Use chapter. Portions of the fuel consumption data for seven fuel categories—coking coal, distillate fuel, industrial other coal, petroleum coke, natural gas, residual fuel oil, and other oil—were reallocated to the Industrial Processes and Product Use chapter.

The IPCC Tier 3B methodology is used for estimating emissions from commercial aircraft.

Fuel consumption by U.S. Territories (i.e., American Samoa, Guam, Puerto Rico, U.S. Virgin Islands, Wake Island, and other U.S. Pacific Islands) is included in this report and contributed total emissions of 41.4 MMT CO₂ Eq. in 2016.

A crude convention to convert between gross and net calorific values is to multiply the heat content of solid and liquid fossil fuels by 0.95 and gaseous fuels by 0.9 to account for the water content of the fuels. Biomass-based fuels in U.S. energy statistics, however, are generally presented using net calorific values.

3. Adjust for conversion of fuels and exports of CO₂. Fossil fuel consumption estimates are adjusted downward to exclude fuels created from other fossil fuels and exports of CO₂. Synthetic natural gas is created from industrial coal, and is currently included in EIA statistics for both coal and natural gas. Therefore, synthetic natural gas is subtracted from energy consumption statistics. Since October 2000, the Dakota Gasification Plant has been exporting CO₂ to Canada by pipeline. Since this CO₂ is not emitted to the atmosphere in the United States, the associated fossil fuel burned to create the exported CO₂ is subtracted from fossil fuel consumption statistics. The associated fossil fuel is the total fossil fuel burned at the plant with the CO₂ capture system multiplied by the fraction of the plant’s total site-generated CO₂ that is recovered by the capture system. To make these adjustments, additional data for ethanol and biodiesel were collected from EIA (2018), data for synthetic natural gas were collected from EIA (2017c), and data for CO₂ exports were collected from the Eastman Gasification Services Company (2011), Dakota Gasification Company (2006), Fitzpatrick (2002), Erickson (2003), EIA (2008) and DOE (2012).

4. Adjust Sectoral Allocation of Distillate Fuel Oil and Motor Gasoline. EPA had conducted a separate bottom-up analysis of transportation fuel consumption based on data from the Federal Highway Administration that indicated that the amount of distillate and motor gasoline consumption allocated to the transportation sector in the EIA statistics should be adjusted. Therefore, for these estimates, the transportation sector’s distillate fuel and motor gasoline consumption was adjusted to match the value obtained from the bottom-up analysis. As the total distillate and motor gasoline consumption estimate from EIA are considered to be accurate at the national level, the distillate and motor gasoline consumption totals for the residential, commercial, and industrial sectors were adjusted proportionately. The data sources used in the bottom-up analysis of transportation fuel consumption include AAR (2008 through 2017), Benson (2002 through 2004), DOE (1993 through 2016), EIA (2007), EIA (1991 through 2017), EPA (2017b), and FHWA (1996 through 2017).

5. Adjust for fuels consumed for non-energy uses. U.S. aggregate energy statistics include consumption of fossil fuels for non-energy purposes. These are fossil fuels that are manufactured into plastics, asphalt, lubricants, or other products. Depending on the end-use, this can result in storage of some or all of the C contained in the fuel for a period of time. As the emission pathways of C used for non-energy purposes are vastly different than fuel combustion (since the C in these fuels ends up in products instead of being combusted), these emissions are estimated separately in Section 3.2 – Carbon Emitted and Stored in Products from Non-Energy Uses of Fossil Fuels. Therefore, the amount of fuels used for non-energy purposes was subtracted from total fuel consumption. Data on non-fuel consumption was provided by EIA (2018).

6. Subtract consumption of international bunker fuels. According to the UNFCCC reporting guidelines emissions from international transport activities, or bunker fuels, should not be included in national totals. U.S. energy consumption statistics include these bunker fuels (e.g., distillate fuel oil, residual fuel oil, and

36 Energy statistics from EIA (2018) are already adjusted downward to account for ethanol added to motor gasoline, biodiesel added to diesel fuel, and biogas in natural gas.

37 These adjustments are explained in greater detail in Annex 2.1.

38 Bottom-up gasoline and diesel highway vehicle fuel consumption estimates are based on data from FHWA Highway Statistics Table MF-21, MF-27, and VM-1 (FHWA 1996 through 2017).
Transportation sector natural gas and LPG consumption are based on data from EIA (2018). In previous Inventory years, data from DOE TEDB was used to estimate each vehicle class’s share of the total natural gas and LPG consumption. Since TEDB does not include estimates for natural gas use by medium- and heavy-duty trucks or LPG use by passenger cars, EIA Alternative Fuel Vehicle Data (Browning 2017) is now used to determine each vehicle class’s share of the total natural gas and LPG consumption. These changes were first incorporated in the current Inventory and apply to the 1990 to 2015 time period.

39 See International Bunker Fuels section in this chapter for a more detailed discussion.
40 Data for 2002 were interpolated due to inconsistencies in reported fuel consumption data.
41 For a more detailed description of the data sources used for the analysis of the transportation end use sector see the Mobile Combustion (excluding CO2) and International Bunker Fuels sections of the Energy chapter, Annex 3.2, and Annex 3.8, respectively.
42 Data from FHWA’s Table VM-1 is used to estimate the share of fuel consumption between each on-road vehicle class. These fuel consumption estimates are combined with estimates of fuel shares by vehicle type from DOE’s TEDB Annex Tables A.1 through A.6 (DOE 1993 through 2016). TEDB data for 2016 has not been published yet, therefore 2015 data is used as a proxy. In 2011, FHWA changed its methods for estimating data in the VM-1 table. These methodological changes included how vehicles are classified, moving from a system based on body-type to one that is based on wheelbase. These changes were first incorporated for the 1990 through 2010 Inventory and apply to the 2007 through 2015 time period. This resulted in large changes in VMT and fuel consumption data by vehicle class, thus leading to a shift in emissions among on-road vehicle classes.
43 Transportation sector natural gas and LPG consumption are based on data from EIA (2018). In previous Inventory years, data from DOE TEDB was used to estimate each vehicle class’s share of the total natural gas and LPG consumption. Since TEDB does not include estimates for natural gas use by medium- and heavy-duty trucks or LPG use by passenger cars, EIA Alternative Fuel Vehicle Data (Browning 2017) is now used to determine each vehicle class’s share of the total natural gas and LPG consumption. These changes were first incorporated in the current Inventory and apply to the 1990 to 2015 time period.
For jet fuel used by aircraft, CO₂ emissions from commercial aircraft were developed by the U.S. Federal Aviation Administration (FAA) using a Tier 3B methodology, consistent with IPCC (2006) (see Annex 3.3). Carbon dioxide emissions from other aircraft were calculated directly based on reported consumption of fuel as reported by EIA. Allocation to domestic military uses was made using DoD data (see Annex 3.8). General aviation jet fuel consumption is calculated as the remainder of total jet fuel use (as determined by EIA) nets all other jet fuel use as determined by FAA and DoD. For more information, see Annex 3.2.

Box 3-4: Uses of Greenhouse Gas Reporting Program Data and Improvements in Reporting Emissions from Industrial Sector Fossil Fuel Combustion

As described in the calculation methodology, total fossil fuel consumption for each year is based on aggregated end-use sector consumption published by the EIA. The availability of facility-level combustion emissions through EPA’s GHGRP has provided an opportunity to better characterize the industrial sector’s energy consumption and emissions in the United States, through a disaggregation of EIA’s industrial sector fuel consumption data from select industries.

For GHGRP 2010 through 2016 reporting years, facility-level fossil fuel combustion emissions reported through EPA’s GHGRP were categorized and distributed to specific industry types by utilizing facility-reported NAICS codes (as published by the U.S. Census Bureau). As noted previously in this report, the definitions and provisions for reporting fuel types in EPA’s GHGRP include some differences from the Inventory’s use of EIA national fuel statistics to meet the UNFCCC reporting guidelines. The IPCC has provided guidance on aligning facility-level reported fuels and fuel types published in national energy statistics, which guided this exercise. As with previous Inventory reports, the current effort represents an attempt to align, reconcile, and coordinate the facility-level reporting of fossil fuel combustion emissions under EPA’s GHGRP with the national-level approach presented in this report. Consistent with recommendations for reporting the Inventory to the UNFCCC, progress was made on certain fuel types for specific industries and has been included in the CRF tables that are submitted to the UNFCCC along with this report. The efforts in reconciling fuels focus on standard, common fuel types (e.g., natural gas, distillate fuel oil, etc.) where the fuels in EIA’s national statistics aligned well with facility-level GHGRP data. For these reasons, the current information presented in the CRF tables should be viewed as an initial attempt at this exercise. Additional efforts will be made for future Inventory reports to improve the mapping of fuel types, and examine ways to reconcile and coordinate any differences between facility-level data and national statistics. The current analysis includes the full time series presented in the CRF tables. Analyses were conducted linking GHGRP facility-level reporting with the information published by EIA in its MECS data in order to disaggregate the full 1990 through 2016 time period in the CRF tables. It is believed that the current analysis has led to improvements in the presentation of data in the Inventory, but further work will be conducted, and future improvements will be realized in subsequent Inventory reports. This includes incorporating the latest MECS data as it becomes available.

Box 3-5: Carbon Intensity of U.S. Energy Consumption

The amount of C emitted from the combustion of fossil fuels is dependent upon the C content of the fuel and the fraction of that C that is oxidized. Fossil fuels vary in their average C content, ranging from about 53 MMT CO₂

44 In 2014, EPA incorporated the NONROAD2008 model into MOVES2014. The current Inventory uses the NONROAD component of MOVES2014a for years 1999 through 2016.

Eq./QBtu for natural gas to upwards of 95 MMT CO$_2$ Eq./QBtu for coal and petroleum coke.47 In general, the C content per unit of energy of fossil fuels is the highest for coal products, followed by petroleum, and then natural gas. The overall C intensity of the U.S. economy is thus dependent upon the quantity and combination of fuels and other energy sources employed to meet demand.

Table 3-15 provides a time series of the C intensity of direct emissions for each sector of the U.S. economy. The time series incorporates only the energy from the direct combustion of fossil fuels in each sector. For example, the C intensity for the residential sector does not include the energy from or emissions related to the use of electricity for lighting, as it is instead allocated to the electric power sector. For the purposes of maintaining the focus of this section, renewable energy and nuclear energy are not included in the energy totals used in Table 3-15 in order to focus attention on fossil fuel combustion as detailed in this chapter. Looking only at this direct consumption of fossil fuels, the residential sector exhibited the lowest C intensity, which is related to the large percentage of its energy derived from natural gas for heating. The C intensity of the commercial sector has predominantly declined since 1990 as commercial businesses shift away from petroleum to natural gas. The industrial sector was more dependent on petroleum and coal than either the residential or commercial sectors, and thus had higher C intensities over this period. The C intensity of the transportation sector was closely related to the C content of petroleum products (e.g., motor gasoline and jet fuel, both around 70 MMT CO$_2$ Eq./EJ), which were the primary sources of energy. Lastly, the electric power sector had the highest C intensity due to its heavy reliance on coal for generating electricity.

Table 3-15: Carbon Intensity from Direct Fossil Fuel Combustion by Sector (MMT CO$_2$ Eq./QBtu)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residentiala</td>
<td>57.4</td>
<td>56.6</td>
<td>55.5</td>
<td>55.3</td>
<td>55.4</td>
<td>55.5</td>
<td>55.2</td>
</tr>
<tr>
<td>Commerciala</td>
<td>59.6</td>
<td>57.7</td>
<td>56.3</td>
<td>56.1</td>
<td>55.8</td>
<td>57.2</td>
<td>56.8</td>
</tr>
<tr>
<td>Industriala</td>
<td>64.4</td>
<td>64.5</td>
<td>62.3</td>
<td>62.1</td>
<td>61.6</td>
<td>61.2</td>
<td>60.8</td>
</tr>
<tr>
<td>Transportationa</td>
<td>71.1</td>
<td>71.4</td>
<td>71.5</td>
<td>71.4</td>
<td>71.5</td>
<td>71.5</td>
<td>71.5</td>
</tr>
<tr>
<td>Electric Powerb</td>
<td>87.3</td>
<td>85.8</td>
<td>79.9</td>
<td>81.3</td>
<td>81.2</td>
<td>78.1</td>
<td>76.9</td>
</tr>
<tr>
<td>U.S. Territoriesc</td>
<td>73.0</td>
<td>73.5</td>
<td>72.2</td>
<td>71.9</td>
<td>72.3</td>
<td>72.3</td>
<td>72.3</td>
</tr>
<tr>
<td>All Sectorsc</td>
<td>73.0</td>
<td>73.5</td>
<td>70.9</td>
<td>70.9</td>
<td>70.8</td>
<td>69.7</td>
<td>69.3</td>
</tr>
</tbody>
</table>

a Does not include electricity or renewable energy consumption.

b Does not include electricity produced using nuclear or renewable energy.

c Does not include nuclear or renewable energy consumption.

Note: Excludes non-energy fuel use emissions and consumption.

For the time period of 1990 through about 2008, the C intensity of U.S. energy consumption was fairly constant, as the proportion of fossil fuels used by the individual sectors did not change significantly over that time. Starting in 2008 the C intensity has decreased, reflecting the shift from coal to natural gas in the electric power sector during that time period. Per capita energy consumption fluctuated little from 1990 to 2007, but then started decreasing after 2007 and, in 2016, was approximately 10.4 percent below levels in 1990 (see Figure 3-16). To differentiate these estimates from those of Table 3-15, the C intensity trend shown in Figure 3-16 and described below includes nuclear and renewable energy EIA data to provide a comprehensive economy-wide picture of energy consumption. Due to a general shift from a manufacturing-based economy to a service-based economy, as well as overall increases in efficiency, energy consumption and energy-related CO$_2$ emissions per dollar of gross domestic product (GDP) have both declined since 1990 (BEA 2017).

47 One exajoule (EJ) is equal to 10^{18} joules or 0.9478 QBtu.
C intensity estimates were developed using nuclear and renewable energy data from EIA (2018), EPA (2010), and fossil fuel consumption data as discussed above and presented in Annex 2.1.

Uncertainty and Time-Series Consistency

For estimates of CO₂ from fossil fuel combustion, the amount of CO₂ emitted is directly related to the amount of fuel consumed, the fraction of the fuel that is oxidized, and the carbon content of the fuel. Therefore, a careful accounting of fossil fuel consumption by fuel type, average carbon contents of fossil fuels consumed, and production of fossil fuel-based products with long-term carbon storage should yield an accurate estimate of CO₂ emissions.

Nevertheless, there are uncertainties in the consumption data, carbon content of fuels and products, and carbon oxidation efficiencies. For example, given the same primary fuel type (e.g., coal, petroleum, or natural gas), the amount of carbon contained in the fuel per unit of useful energy can vary. For the United States, however, the impact of these uncertainties on overall CO₂ emission estimates is believed to be relatively small. See, for example, Marland and Pippin (1990).

Although statistics of total fossil fuel and other energy consumption are relatively accurate, the allocation of this consumption to individual end-use sectors (i.e., residential, commercial, industrial, and transportation) is less certain. For example, for some fuels the sectoral allocations are based on price rates (i.e., tariffs), but a commercial establishment may be able to negotiate an industrial rate or a small industrial establishment may end up paying an industrial rate, leading to a misallocation of emissions. Also, the deregulation of the natural gas industry and the more recent deregulation of the electric power industry have likely led to some minor problems in collecting accurate energy statistics as firms in these industries have undergone significant restructuring.

To calculate the total CO₂ emission estimate from energy-related fossil fuel combustion, the amount of fuel used in non-energy production processes were subtracted from the total fossil fuel consumption. The amount of CO₂ emissions resulting from non-energy related fossil fuel use has been calculated separately and reported in the Carbon Emitted from Non-Energy Uses of Fossil Fuels section of this report (Section 3.2). These factors all contribute to the
uncertainty in the CO₂ estimates. Detailed discussions on the uncertainties associated with C emitted from Non-
Energy Uses of Fossil Fuels can be found within that section of this chapter.

Various sources of uncertainty surround the estimation of emissions from international bunker fuels, which are
subtracted from the U.S. totals (see the detailed discussions on these uncertainties provided in Section 3.10 –
International Bunker Fuels). Another source of uncertainty is fuel consumption by U.S. Territories. The United
States does not collect energy statistics for its territories at the same level of detail as for the fifty states and the
District of Columbia. Therefore, estimating both emissions and bunker fuel consumption by these territories is
difficult.

Uncertainties in the emission estimates presented above also result from the data used to allocate CO₂ emissions
from the transportation end-use sector to individual vehicle types and transport modes. In many cases, bottom-up
estimates of fuel consumption by vehicle type do not match aggregate fuel-type estimates from EIA. Further
research is planned to improve the allocation into detailed transportation end-use sector emissions.

The uncertainty analysis was performed by primary fuel type for each end-use sector, using the IPCC-recommended
Approach 2 uncertainty estimation methodology, Monte Carlo Stochastic Simulation technique, with @RISK
software. For this uncertainty estimation, the inventory estimation model for CO₂ from fossil fuel combustion was
integrated with the relevant variables from the inventory estimation model for International Bunker Fuels, to
realistically characterize the interaction (or endogenous correlation) between the variables of these two models.
About 120 input variables were modeled for CO₂ from energy-related Fossil Fuel Combustion (including about 10
for non-energy fuel consumption and about 20 for International Bunker Fuels).

In developing the uncertainty estimation model, uniform distributions were assumed for all activity-related input
variables and emission factors, based on the SAIC/EIA (2001) report. Triangular distributions were assigned for
the oxidation factors (or combustion efficiencies). The uncertainty ranges were assigned to the input variables
based on the data reported in SAIC/EIA (2001) and on conversations with various agency personnel.

The uncertainty ranges for the activity-related input variables were typically asymmetric around their inventory
estimates; the uncertainty ranges for the emissions factors were symmetric. Bias (or systematic uncertainties)
associated with these variables accounted for much of the uncertainties associated with these variables (SAIC/EIA
2001). For purposes of this uncertainty analysis, each input variable was simulated 10,000 times through Monte
Carlo sampling.

The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 3-16. Fossil fuel
combustion CO₂ emissions in 2016 were estimated to be between 4,859.3 and 5,195.4 MMT CO₂ Eq. at a 95 percent
confidence level. This indicates a range of 2 percent below to 5 percent above the 2016 emission estimate of 4,966.0
MMT CO₂ Eq.

Table 3-16: Approach 2 Quantitative Uncertainty Estimates for CO₂ Emissions from Energy-
Related Fossil Fuel Combustion by Fuel Type and Sector (MMT CO₂ Eq. and Percent)

<table>
<thead>
<tr>
<th>Fuel/Sector</th>
<th>2016 Emission Estimate (MMT CO₂ Eq.)</th>
<th>Uncertainty Range Relative to Emission Estimate* (MMT CO₂ Eq.) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
</tbody>
</table>

48 SAIC/EIA (2001) characterizes the underlying probability density function for the input variables as a combination of uniform
and normal distributions (the former to represent the bias component and the latter to represent the random component).
However, for purposes of the current uncertainty analysis, it was determined that uniform distribution was more appropriate to
characterize the probability density function underlying each of these variables.

49 In the SAIC/EIA (2001) report, the quantitative uncertainty estimates were developed for each of the three major fossil fuels
used within each end-use sector; the variations within the sub-fuel types within each end-use sector were not modeled. However,
for purposes of assigning uncertainty estimates to the sub-fuel type categories within each end-use sector in the current
uncertainty analysis, SAIC/EIA (2001)-reported uncertainty estimates were extrapolated.

50 Although, in general, random uncertainties are the main focus of statistical uncertainty analysis, when the uncertainty
estimates are elicited from experts, their estimates include both random and systematic uncertainties. Hence, both these types of
uncertainties are represented in this uncertainty analysis.
Methodological recalculationst were applied to the entire time series to ensure time-series consistency from 1990 through 2016. Details on the emission trends through time are described in more detail in the Methodology section, above. As discussed in Annex 5, data are unavailable to include estimates of CO$_2$ emissions from any liquid fuel used in pipeline transport or non-hazardous industrial waste incineration, but those emissions are assumed to insignificant.

QA/QC and Verification

A source-specific QA/QC plan for CO$_2$ from fossil fuel combustion was developed and implemented consistent with the 2006 IPCC Guidelines and the Quality Assurance/Quality Control and Uncertainty Management Plan (QA/QC Management Plan) referenced in this report and described further in Annex 8. This effort included a general (Tier 1) analysis, as well as portions of a category-specific (Tier 2) analysis. The Tier 2 procedures that were implemented involved checks specifically focusing on the activity data and methodology used for estimating CO$_2$ emissions from fossil fuel combustion in the United States. Emission totals for the different sectors and fuels were compared and trends were investigated to determine whether any corrective actions were needed. Minor corrective actions were taken.

Recalculations Discussion

The Energy Information Administration (EIA 2018) updated energy consumption statistics across the time series relative to the previous Inventory. EIA revised LPG consumption in the residential and industrial sectors for the
years 2010 through 2015, and in the commercial and transportation sectors for the years 2011 through 2015. EIA also revised 2014 and 2015 distillate fuel consumption in the transportation sector, 2015 natural gas consumption in all sectors, and 2015 motor gasoline consumption in the commercial, industrial, and transportation sectors. Revisions to LPG, distillate fuel, and motor gasoline consumption resulted in an average annual decrease of 0.1 MMT CO₂ Eq. (less than 0.05 percent) in CO₂ emissions from petroleum. Revisions to natural gas consumption resulted in an average annual increase of less than 0.5 MMT CO₂ Eq. (less than 0.05 percent) in CO₂ emissions from natural gas. Overall, these changes resulted in an average annual decrease of 0.1 MMT CO₂ Eq. (less than 0.05 percent) in CO₂ emissions from fossil fuel combustion for the period 1990 through 2015, relative to the previous Inventory.

In addition, changes were made to the historic allocation of gasoline to on-road and non-road applications. In 2016, the Federal Highway Administration (FHWA) changed its methods for estimating the share of gasoline used in on-road and non-road applications. Among other updates, FHWA included lawn and garden equipment as well as off-road recreational equipment in its estimates of non-road gasoline consumption for the first time. This change created a time-series inconsistency between the data reported for years 2015 and 2016 and previous years. To create a more consistent time series of motor gasoline consumption and emissions data for the current Inventory, the historical time series was modified. Specifically, the lawn, garden, and recreational vehicle gasoline consumption from EPA’s NONROAD model is subtracted from the highway motor gasoline consumption from FHWA Table MF-21 when determining the total highway motor gasoline consumption for years 1990 through 2014.

Planned Improvements

To reduce uncertainty of CO₂ from fossil fuel combustion estimates for U.S. Territories, efforts will be made to improve the quality of the U.S. Territories data, including through work with EIA and other agencies. This improvement is part of an ongoing analysis and efforts to continually improve the CO₂ from fossil fuel combustion estimates. In addition, further expert elicitation may be conducted to better quantify the total uncertainty associated with emissions from this source.

The availability of facility-level combustion emissions through EPA’s GHGRP will continue to be examined to help better characterize the industrial sector’s energy consumption in the United States, and further classify total industrial sector fossil fuel combustion emissions by business establishments according to industrial economic activity type. Most methodologies used in EPA’s GHGRP are consistent with IPCC, though for EPA’s GHGRP, facilities collect detailed information specific to their operations according to detailed measurement standards, which may differ with the more aggregated data collected for the Inventory to estimate total, national U.S. emissions. In addition, and unlike the reporting requirements for this chapter under the UNFCCC reporting guidelines, some facility-level fuel combustion emissions reported under the GHGRP may also include industrial process emissions. In line with UNFCCC reporting guidelines, fuel combustion emissions are included in this chapter, while process emissions are included in the Industrial Processes and Product Use chapter of this report. In examining data from EPA’s GHGRP that would be useful to improve the emission estimates for the CO₂ from fossil fuel combustion category, particular attention will also be made to ensure time-series consistency, as the facility-level reporting data from EPA’s GHGRP are not available for all inventory years as reported in this Inventory. Additional analyses will be conducted to align reported facility-level fuel types and IPCC fuel types per the national energy statistics. For example, efforts will be taken to incorporate updated industrial fuel consumption data from EIA’s Manufacturing Energy Consumption Survey (MECS), with updated data for 2014. Additional work will look at CO₂ emissions from biomass to ensure they are separated in the facility-level reported data, and maintaining consistency with national energy statistics provided by EIA. In implementing improvements and integration of data from EPA’s GHGRP, the latest guidance from the IPCC on the use of facility-level data in national inventories will continue to be relied upon.

51 Starting in 2017, EIA reclassified LPG as Hydrocarbon Gas Liquids (HGL) in the Monthly Energy Review. HGL is equivalent to LPG for all sectors except the industrial sector. EIA calculates LPG and HGL consumption estimates for the industrial sector using slightly different methodologies. EIA provided industrial LPG consumption data for this year’s Inventory that align with industrial sector LPG consumption estimates from the previous Inventory (i.e., 1990 through 2015).

52 See <https://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf?page=2>.

An ongoing planned improvement is to develop improved estimates of domestic waterborne fuel consumption. The Inventory estimates for residual and distillate fuel used by ships and boats is based in part on data on bunker fuel use from the U.S. Department of Commerce. Domestic fuel consumption is estimated by subtracting fuel sold for international use from the total sold in the United States. It may be possible to more accurately estimate domestic fuel use and emissions by using detailed data on marine ship activity. The feasibility of using domestic marine activity data to improve the estimates will continue to be investigated.

EPA received a comment from FHWA that the trend of decreasing electricity use in the transportation sector does not align with increased sales of electric and plug-in hybrid vehicles. Electricity data is allocated between economic sectors based on electricity sales data provided by the industry through EIA reports. The data for electricity used in transportation only includes electricity used for railroads and railways. Electricity used to charge electric vehicles would fall under other sectors like residential and commercial use associated with home and public charging stations. As a planned improvement, EPA will look into the possibility of breaking out electricity used to charge electric vehicles and report that electricity use under the transportation sector.

EPA will evaluate and potentially update methods for allocating motor gasoline consumption to the transportation, industrial, and commercial sectors. In 2016, FHWA changed its methods for estimating the share of gasoline used in on-road and non-road applications, creating a time-series inconsistency in the current Inventory between 2015 and previous years. EPA will continue to explore approaches to address this inconsistency, including using MOVES on-road fuel consumption output to define the percentage of the FHWA consumption totals (from MF-21) that are attributable to transportation, and applying that percentage to the EIA total. This would define gasoline consumption from transportation, such that the remainder would be defined as consumption by the industrial and commercial sectors.

CH₄ and N₂O from Stationary Combustion

Methodology

Methane and N₂O emissions from stationary combustion were estimated by multiplying fossil fuel and wood consumption data by emission factors (by sector and fuel type for industrial, residential, commercial, and U.S. Territories; and by fuel and technology type for the electric power sector). The electric power sector utilizes a Tier 2 methodology, whereas all other sectors utilize a Tier 1 methodology. The activity data and emission factors used are described in the following subsections.

Industrial, Residential, Commercial, and U.S. Territories

National coal, natural gas, fuel oil, and wood consumption data were grouped by sector: industrial, commercial, residential, and U.S. Territories. For the CH₄ and N₂O estimates, consumption data for each fuel were obtained from EIA’s Monthly Energy Review (EIA 2018). Because the United States does not include territories in its national energy statistics, fuel consumption data for territories were provided separately by EIA’s International Energy Statistics (EIA 2017). Fuel consumption for the industrial sector was adjusted to subtract out construction and agricultural use, which is reported under mobile sources. Construction and agricultural fuel use was obtained from EPA (2017b) and FHWA (1996 through 2016). Estimates for wood biomass consumption for fuel combustion do not include wood wastes, liquors, municipal solid waste, tires, etc., that are reported as biomass by EIA. Tier 1

55 U.S. Territories data also include combustion from mobile activities because data to allocate territories’ energy use were unavailable. For this reason, CH₄ and N₂O emissions from combustion by U.S. Territories are only included in the stationary combustion totals.

56 Though emissions from construction and farm use occur due to both stationary and mobile sources, detailed data was not available to determine the magnitude from each. Currently, these emissions are assumed to be predominantly from mobile sources.
default emission factors for these three end-use sectors were provided by the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006). U.S. Territories’ emission factors were estimated using the U.S. emission factors for the primary sector in which each fuel was combusted.

Electric Power Sector

The electric power sector uses a Tier 2 emission estimation methodology as fuel consumption for the electric power sector by control-technology type was obtained from EPA’s Acid Rain Program Dataset (EPA 2017a). These combustion technology- and fuel- use data were available by facility from 1996 to 2016. The Tier 2 emission factors used are based in part on emission factors published by EPA, and EPA’s Compilation of Air Pollutant Emission Factors, AP-42 (EPA 1997) for combined cycle natural gas units.\(^57\)

Since there was a difference between the EPA (2017a) and EIA (2018) total fuel consumption estimates, the remaining consumption from EIA (2018) was apportioned to each combustion technology type and fuel combination using a ratio of fuel consumption by technology type from 1996 to 2016.

Fuel consumption estimates were not available from 1990 to 1995 in the EPA (2017a) dataset, and as a result, consumption was calculated using total electric power production from EIA (2018) and the ratio of combustion technology and fuel types from EPA (2017a). The consumption estimates from 1990 to 1995 were estimated by applying the 1996 consumption ratio by combustion technology type to the total EIA consumption for each year from 1990 to 1995. Emissions were estimated by multiplying fossil fuel and wood consumption by technology- and fuel-specific Tier 2 country specific emission factors.

Lastly, there were significant differences between wood biomass consumption in the electric power sector between the EPA (2017a) and EIA (2018) datasets. The higher wood biomass consumption from EIA (2018) in the electric power sector was distributed to the residential, commercial, and industrial sectors according to their percent share of wood biomass energy consumption calculated from EIA (2018).

More detailed information on the methodology for calculating emissions from stationary combustion, including emission factors and activity data, is provided in Annex 3.1.

Uncertainty and Time-Series Consistency

Methane emission estimates from stationary sources exhibit high uncertainty, primarily due to difficulties in calculating emissions from wood combustion (i.e., fireplaces and wood stoves). The estimates of CH\(_4\) and N\(_2\)O emissions presented are based on broad indicators of emissions (i.e., fuel use multiplied by an aggregate emission factor for different sectors), rather than specific emission processes (i.e., by combustion technology and type of emission control).

An uncertainty analysis was performed by primary fuel type for each end-use sector, using the IPCC-recommended Approach 2 uncertainty estimation methodology, Monte Carlo Stochastic Simulation technique, with @RISK software.

The uncertainty estimation model for this source category was developed by integrating the CH\(_4\) and N\(_2\)O stationary source inventory estimation models with the model for CO\(_2\) from fossil fuel combustion to realistically characterize the interaction (or endogenous correlation) between the variables of these three models. About 55 input variables were simulated for the uncertainty analysis of this source category (about 20 from the CO\(_2\) emissions from fossil fuel combustion inventory estimation model and about 35 from the stationary source inventory models).

In developing the uncertainty estimation model, uniform distribution was assumed for all activity-related input variables and N\(_2\)O emission factors, based on the SAIC/EIA (2001) report.\(^58\) For these variables, the uncertainty

\(^{57}\) Several of the U.S. Tier 2 emission factors were used in IPCC 2006 as Tier 1 emission factors.

\(^{58}\) SAIC/EIA (2001) characterizes the underlying probability density function for the input variables as a combination of uniform and normal distributions (the former distribution to represent the bias component and the latter to represent the random component). However, for purposes of the current uncertainty analysis, it was determined that uniform distribution was more appropriate to characterize the probability density function underlying each of these variables.
ranges were assigned to the input variables based on the data reported in SAIC/EIA (2001).59 However, the CH₄ emission factors differ from those used by EIA. These factors and uncertainty ranges are based on IPCC default uncertainty estimates (IPCC 2006).

The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 3-17. Stationary combustion CH₄ emissions in 2016 (including biomass) were estimated to be between 5.1 and 15.7 MMT CO₂ Eq. at a 95 percent confidence level. This indicates a range of 30 percent below to 114 percent above the 2016 emission estimate of 7.3 MMT CO₂ Eq.60 Stationary combustion N₂O emissions in 2016 (including biomass) were estimated to be between 14.4 and 28.2 MMT CO₂ Eq. at a 95 percent confidence level. This indicates a range of 22 percent below to 52 percent above the 2016 emission estimate of 18.6 MMT CO₂ Eq.

Table 3-17: Approach 2 Quantitative Uncertainty Estimates for CH₄ and N₂O Emissions from Energy-Related Stationary Combustion, Including Biomass (MMT CO₂ Eq. and Percent)

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>2016 Emission Estimate (MMT CO₂ Eq.)</th>
<th>Uncertainty Range Relative to Emission Estimatea (MMT CO₂ Eq.) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>Stationary Combustion</td>
<td>CH₄</td>
<td>7.3</td>
<td>5.1</td>
</tr>
<tr>
<td>Stationary Combustion</td>
<td>N₂O</td>
<td>18.6</td>
<td>14.4</td>
</tr>
</tbody>
</table>

*Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

The uncertainties associated with the emission estimates of CH₄ and N₂O are greater than those associated with estimates of CO₂ from fossil fuel combustion, which mainly rely on the carbon content of the fuel combusted. Uncertainties in both CH₄ and N₂O estimates are due to the fact that emissions are estimated based on emission factors representing only a limited subset of combustion conditions. For the indirect greenhouse gases, uncertainties are partly due to assumptions concerning combustion technology types, age of equipment, emission factors used, and activity data projections.

Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990 through 2016 as discussed below. Details on the emission trends through time are described in more detail in the Methodology section, above. As discussed in Annex 5, data are unavailable to include estimates of CH₄ and N₂O emissions from biomass use in territories, but those emissions are assumed to be insignificant.

For more information on the general QA/QC process applied to this source category, consistent with Volume 1, Chapter 6 of the 2006 IPCC Guidelines, see QA/QC and Verification Procedures section in the introduction of the IPPU Chapter.

QA/QC and Verification

A source-specific QA/QC plan for stationary combustion was developed and implemented consistent with the 2006 IPCC Guidelines and the QA/QC Management Plan referenced in this report and described further in Annex 8. This effort included a general (Tier 1) analysis, as well as portions of a category-specific (Tier 2) analysis. The Tier 2 procedures that were implemented involved checks specifically focusing on the activity data and emission factor sources and methodology used for estimating CH₄, N₂O, and the indirect greenhouse gases from stationary combustion in the United States. Emission totals for the different sectors and fuels were compared and trends were investigated.

59 In the SAIC/EIA (2001) report, the quantitative uncertainty estimates were developed for each of the three major fossil fuels used within each end-use sector; the variations within the sub-fuel types within each end-use sector were not modeled. However, for purposes of assigning uncertainty estimates to the sub-fuel type categories within each end-use sector in the current uncertainty analysis, SAIC/EIA (2001)-reported uncertainty estimates were extrapolated.

60 The low emission estimates reported in this section have been rounded down to the nearest integer values and the high emission estimates have been rounded up to the nearest integer values.
Recalculations Discussion

Methane and N\textsubscript{2}O emissions from stationary sources (excluding CO\textsubscript{2}) across the entire time series were revised due to revised data from EIA (2018), EIA (2017), and EPA (2017a) relative to the previous Inventory. Methane and N\textsubscript{2}O emission factors for combined cycle natural gas units were updated to be consistent with EPA’s Compilation of Air Pollutant Emission Factors, AP-42 (EPA 1997). In addition, the GWPs for CH\textsubscript{4} and N\textsubscript{2}O for the Acid Rain Program Dataset (EPA 2017a) were updated to be consistent with the IPCC Fourth Assessment Report (AR4) values. The historical data changes resulted in an average annual increase 0.4 MMT CO\textsubscript{2} Eq. (5.2 percent) in CH\textsubscript{4} emissions, and an average annual decrease 2.3 MMT CO\textsubscript{2} Eq. (12.4 percent) in N\textsubscript{2}O emissions from stationary combustion for the 1990 through 2015 period.

Planned Improvements

Several items are being evaluated to improve the CH\textsubscript{4} and N\textsubscript{2}O emission estimates from stationary combustion and to reduce uncertainty for U.S. Territories. Efforts will be taken to work with EIA and other agencies to improve the quality of the U.S. Territories data. Because these data are not broken out by stationary and mobile uses, further research will be aimed at trying to allocate consumption appropriately. In addition, the uncertainty of biomass emissions will be further investigated since it was expected that the exclusion of biomass from the estimates would reduce the uncertainty; and in actuality the exclusion of biomass increases the uncertainty. These improvements are not all-inclusive, but are part of an ongoing analysis and efforts to continually improve these stationary combustion estimates from U.S. Territories.

Fuel use was adjusted for the industrial sector to subtract out construction and agricultural use, which is reported under mobile sources. Mobile source CH\textsubscript{4} and N\textsubscript{2}O also include emissions from sources that may be captured as part of the commercial sector. Future research will look into the need to adjust commercial sector fuel consumption to account for sources included elsewhere.

CH\textsubscript{4} and N\textsubscript{2}O from Mobile Combustion

Methodology

Estimates of CH\textsubscript{4} and N\textsubscript{2}O emissions from mobile combustion were calculated by multiplying emission factors by measures of activity for each fuel and vehicle type (e.g., light-duty gasoline trucks). Activity data included vehicle miles traveled (VMT) for on-road vehicles and fuel consumption for non-road mobile sources. The activity data and emission factors used are described in the subsections that follow. A complete discussion of the methodology used to estimate CH\textsubscript{4} and N\textsubscript{2}O emissions from mobile combustion and the emission factors used in the calculations is provided in Annex 3.2.

On-Road Vehicles

Estimates of CH\textsubscript{4} and N\textsubscript{2}O emissions from gasoline and diesel on-road vehicles are based on VMT and emission factors by vehicle type, fuel type, model year, and emission control technology. Emission estimates for alternative fuel vehicles (AFVs) are based on VMT and emission factors by vehicle and fuel type.61

Emissions factors for N\textsubscript{2}O from newer on-road gasoline vehicles were calculated based upon a regression analysis done by EPA (Browning 2017). Methane emission factors were calculated based on the ratio of NMOG emission standards for newer vehicles. Older gasoline vehicles on-road emissions factors were developed by ICF (2004). These factors were derived from EPA, California Air Resources Board (CARB) and Environment Canada laboratory test results of different vehicle and control technology types. The EPA, CARB and Environment Canada tests were designed following the Federal Test Procedure (FTP), which covers three separate driving segments, since vehicles emit varying amounts of greenhouse gases depending on the driving segment. These driving segments are: (1) a transient driving cycle that includes cold start and running emissions, (2) a cycle that represents running emissions

61 Alternative fuel and advanced technology vehicles are those that can operate using a motor fuel other than gasoline or diesel. This includes electric or other bi-fuel or dual-fuel vehicles that may be partially powered by gasoline or diesel.
only, and (3) a transient driving cycle that includes hot start and running emissions. For each test run, a bag was affixed to the tailpipe of the vehicle and the exhaust was collected; the content of this bag was then analyzed to determine quantities of gases present. The emissions characteristics of segment 2 were used to define running emissions, and subtracted from the total FTP emissions to determine start emissions. These were then recomposed based upon the ratio of start to running emissions for each vehicle class from MOBILE6.2, an EPA emission factor model that predicts gram per mile emissions of CO₂, CO, HC, NOₓ, and PM from vehicles under various conditions, to approximate average driving characteristics. Diesel on-road vehicle emission factors were developed by ICF (2006b).

CH₄ and N₂O emission factors for AFVs were developed based on the 2016 GREET model. For light-duty trucks, EPA used a curve fit of 1999 through 2011 travel fractions for LDT1 and LDT2 (MOVES Source Type 31 for LDT1 and MOVES Source Type 32 for LDT2). For medium-duty vehicles, EPA used emission factors for light-heavy-duty vocational trucks. For heavy-duty vehicles, EPA used emission factors for long haul combination trucks. For buses, EPA used emission factors for transit buses. These values represent vehicle operation only (tank-to-wheels); well-to-tank emissions are calculated elsewhere in the Inventory.

Annual VMT data for 1990 through 2016 were obtained from the Federal Highway Administration’s (FHWA) Highway Performance Monitoring System database as reported in Highway Statistics (FHWA 1996 through 2017). VMT estimates were then allocated from FHWA’s vehicle categories to fuel-specific vehicle categories using the calculated shares of vehicle fuel use for each vehicle category by fuel type reported in DOE (1993 through 2017) and information on total motor vehicle fuel consumption by fuel type from FHWA (1996 through 2017). VMT for AFVs were estimated based on Browning (2017). The age distributions of the U.S. vehicle fleet were obtained from EPA (2017b, 2000), and the average annual age-specific vehicle mileage accumulation of U.S. vehicles were obtained from EPA (2017b).

Control technology and standards data for on-road vehicles were obtained from EPA’s Office of Transportation and Air Quality (EPA 2007a, 2007b, 2000, 1998, and 1997) and Browning (2005). These technologies and standards are defined in Annex 3.2, and were compiled from EPA (1994a, 1994b, 1998, 1999a) and IPCC (2006).

Non-Road Mobile Sources

62 Additional information regarding the MOBILE model can be found online at <https://www.epa.gov/moves/description-and-history-mobile-highway-vehicle-emission-factor-model>.

63 The source of VMT is FHWA Highway Statistics Table VM-1. In 2011, FHWA changed its methods for estimating data in the VM-1 table. These methodological changes included how vehicles are classified, moving from a system based on body-type to one that is based on wheelbase. These changes were first incorporated for the 1990 through 2010 Inventory and applied to the 2007 through 2016 time period. This resulted in large changes in VMT by vehicle class, thus leading to a shift in emissions among on-road vehicle classes. For example, the category “Passenger Cars” has been replaced by “Light-duty Vehicles-Short Wheelbase” and “Other 2 axle-4 Tire Vehicles” has been replaced by “Light-duty Vehicles, Long Wheelbase.” This change in vehicle classification has moved some smaller trucks and sport utility vehicles from the light truck category to the passenger vehicle category in the current Inventory. These changes are reflected in a large drop in light-truck emissions between 2006 and 2007.

64 The consumption of international bunker fuels is not included in these activity data, but is estimated separately under the International Bunker Fuels source category.

65 This Inventory uses FHWA’s Agriculture, Construction, and Commercial/Industrial MF-24 fuel volumes along with the MOVES NONROAD model gasoline volumes to estimate non-road mobile source CH₄ and N₂O emissions for these categories.
Uncertainty and Time-Series Consistency

A quantitative uncertainty analysis was conducted for the mobile source sector using the IPCC-recommended Approach 2 uncertainty estimation methodology, Monte Carlo Stochastic Simulation technique, using @RISK software. The uncertainty analysis was performed on 2016 estimates of CH₄ and N₂O emissions, incorporating probability distribution functions associated with the major input variables. For the purposes of this analysis, the uncertainty was modeled for the following four major sets of input variables: (1) VMT data, by on-road vehicle and fuel type and (2) emission factor data, by on-road vehicle, fuel, and control technology type, (3) fuel consumption, data, by non-road vehicle and equipment type, and (4) emission factor data, by non-road vehicle and equipment type.

Uncertainty analyses were not conducted for NOₓ, CO, or NMVOC emissions. Emission factors for these gases have been extensively researched since emissions of these gases from motor vehicles are regulated in the United States, and the uncertainty in these emission estimates is believed to be relatively low. For more information, see Section 3.9 – Uncertainty Analysis of Emission Estimates. However, a much higher level of uncertainty is associated with CH₄ and N₂O emission factors due to limited emission test data, and because, unlike CO₂ emissions, the emission pathways of CH₄ and N₂O are highly complex.

Mobile combustion CH₄ emissions from all mobile sources in 2016 were estimated to be between 3.4 and 4.6 MMT CO₂ Eq. at a 95 percent confidence level. This indicates a range of 7 percent below to 26 percent above the corresponding 2016 emission estimate of 3.6 MMT CO₂ Eq. Also at a 95 percent confidence level, mobile combustion N₂O emissions from mobile sources in 2016 were estimated to be between 16.8 and 21.0 MMT CO₂ Eq., indicating a range of 9 percent below to 14 percent above the corresponding 2016 emission estimate of 18.4 MMT CO₂ Eq.

Table 3-18: Approach 2 Quantitative Uncertainty Estimates for CH₄ and N₂O Emissions from Mobile Sources (MMT CO₂ Eq. and Percent)

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>2016 Emission Estimatea (MMT CO₂ Eq.)</th>
<th>Uncertainty Range Relative to Emission Estimatea (MMT CO₂ Eq.) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>CH₄</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>N₂O</td>
<td>18.4</td>
<td>16.8</td>
</tr>
</tbody>
</table>

* Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

This uncertainty analysis is a continuation of a multi-year process for developing quantitative uncertainty estimates for this source category using the IPCC Approach 2 uncertainty analysis. As a result, as new information becomes available, uncertainty characterization of input variables may be improved and revised. For additional information regarding uncertainty in emission estimates for CH₄ and N₂O please refer to the Uncertainty Annex. As discussed in Annex 5, data are unavailable to include estimates of CH₄ and N₂O emissions from any liquid fuel used in pipeline transport or some biomass used in transportation sources, but those emissions are assumed to insignificant.

QA/QC and Verification

A source-specific Quality Assurance/Quality Control (QA/QC) plan for mobile combustion was developed and implemented. This plan is based on the IPCC-recommended QA/QC Plan. The specific plan used for mobile combustion was updated prior to collection and analysis of this current year of data. This effort included a general (Tier 1) analysis, as well as portions of a category-specific (Tier 2) analysis. The Tier 2 procedures focused on the

For agriculture, the MF-24 gasoline volume is used directly because it includes both off-road trucks and equipment. For construction and commercial/industrial gasoline estimates, the 2014 and older MF-24 volumes represented off-road trucks only; therefore, the MOVES NONROAD gasoline volumes for construction and commercial/industrial are added to the respective categories in the Inventory. Beginning in 2015, this addition is no longer necessary since the FHWA updated its methods for estimating on-road and non-road gasoline consumption. Among the method updates, FHWA now incorporates MOVES NONROAD equipment gasoline volumes in the construction and commercial/industrial categories.
emission factor and activity data sources, as well as the methodology used for estimating emissions. These procedures included a qualitative assessment of the emission estimates to determine whether they appear consistent with the most recent activity data and emission factors available. A comparison of historical emissions between the current Inventory and the previous Inventory was also conducted to ensure that the changes in estimates were consistent with the changes in activity data and emission factors.

Recalculations Discussion

Updates were made to the on-road, non-road and alternative fuel CH₄ and N₂O emissions calculations for the current Inventory resulting in both increases and decreases to different source categories. Decreases in on-road gasoline emissions were offset by large increases in alternative fuel and non-road emissions. The collective result of all of these changes was a net increase in CH₄ and N₂O emissions from mobile combustion relative to the previous Inventory. Methane emissions increased by 166.8 percent. Nitrous oxide emissions increased by 9.2 percent. Each of these changes is described below.

New emission factors for N₂O emissions were developed for on-road vehicles based on an EPA regression analysis of the relationship between NOₓ and N₂O. New CH₄ emission factors were calculated based on the ratio of NMOG emission standards for newer vehicles. These new emission factors allowed the inclusion of additional emissions standards, including Federal Tier 3 emission standards and two levels of California emission standards (LEV II and LEV III) to the control technology breakouts.

In addition, new non-road emissions factors were developed. Previously, emission factors were taken from the 1996 IPCC Guidelines and represented the IPCC Tier 1 factors. For the current Inventory, new emission factors were calculated using the updated 2006 IPCC Tier 3 guidance and EPA’s MOVES2014a model. Methane emission factors were calculated directly from MOVES. Nitrous oxide emission factors were calculated using NONROAD activity and emission factors by fuel type from the European Environment Agency. Gasoline engines were broken out by 2- and 4-stroke engine types. Non-road equipment using liquefied petroleum gas (LPG) and compressed natural gas (CNG) were included.

New emission factors for AFVs were estimated using GREET 2016. The updated emission factors have been generated for CH₄ and N₂O. For light-duty trucks, EPA used a curve fit of 1999 through 2011 travel fractions for LDT1 and LDT2 (MOVES Source Type 31 for LDT1 and MOVES Source Type 32 for LDT2). For medium-duty vehicles, EPA used emission factors for Light Heavy-Duty Vocational Trucks. For heavy-duty vehicles, EPA used emission factors for Long Haul Combination Trucks. For buses, EPA used emission factors for Transit Buses. The emission factors developed represent vehicle operation only (tank-to-wheels).

In addition, changes were made to the historic allocation of gasoline to on-road and non-road applications. In 2016, the Federal Highway Administration (FHWA) changed its methods for estimating the share of gasoline used in on-road and non-road applications. Among other updates, FHWA included lawn and garden equipment as well as off-road recreational equipment in its estimates of non-road gasoline consumption for the first time. This change created a time-series inconsistency between the data reported for years 2015 and 2016 and previous years. To create a more consistent time series of motor gasoline consumption and emissions data for the current Inventory, the historical time series was modified. Specifically, the lawn, garden, and recreational vehicle gasoline consumption from EPA’s NONROAD model is subtracted from the highway motor gasoline consumption from FHWA Table MF-21 when determining the total highway motor gasoline consumption for years 1990 through 2014.

Methodological recalculation were applied to the entire time series to ensure time-series consistency from 1990 through 2016 with one recent notable exception. An update by FHWA to the method for estimating on-road VMT created an inconsistency in on-road CH₄ and N₂O for the time periods 1990 to 2006 and 2007 to 2016. Details on the emission trends and methodological inconsistencies through time are described in the Methodology section, above.

Planned Improvements

While the data used for this report represent the most accurate information available, several areas have been identified that could potentially be improved in the near term given available resources.

- Evaluate and potentially update EPA’s method for estimating motor gasoline consumption for non-road mobile sources to improve accuracy and create a more consistent time series. As discussed in the Methodology section above and in Annex 3.2, CH₄ and N₂O estimates for gasoline-powered non-road
sources in this Inventory are based on a variety of inputs, including FHWA Highway Statistics Table MF-24. In 2016, FHWA changed its methods for estimating the share of gasoline used in on-road and non-road applications.66 These method changes created a time-series inconsistency in the current Inventory between 2015 and previous years in CH₄ and N₂O estimates for agricultural, construction, commercial, and industrial non-road mobile sources. In the current Inventory EPA has implemented one approach to address this inconsistency. EPA will test other approaches including using MOVES on-road fuel consumption output to define the percentage of the FHWA consumption totals (from MF-21) that are attributable to on-highway transportation sources. This percentage would then be applied to the EIA total, thereby defining consumption from on-highway transportation sources, such that the remainder would be defined as consumption by the industrial and commercial sectors.

- Explore updates to on-road diesel emissions factors for CH₄ and N₂O to incorporate diesel after treatment technology for light-duty vehicles.
- Continue to explore potential improvements to estimates of domestic waterborne fuel consumption for future Inventories. The Inventory estimates for residual and distillate fuel used by ships and boats is based in part on data on bunker fuel use from the U.S. Department of Commerce. Domestic fuel consumption is estimated by subtracting fuel sold for international use from the total sold in the United States. It may be possible to more accurately estimate domestic fuel use and emissions by using detailed data on marine ship activity. The feasibility of using domestic marine activity data to improve the estimates continues to be investigated. Additionally, the feasibility of including data from a broader range of domestic and international sources for domestic bunker fuels, including data from studies such as the Third IMO GHG Study 2014, continues to be explored.

3.2 Carbon Emitted from Non-Energy Uses of Fossil Fuels (CRF Source Category 1A5)

In addition to being combusted for energy, fossil fuels are also consumed for non-energy uses in the United States. The fuels used for these purposes are diverse, including natural gas, liquefied petroleum gases (LPG), asphalt (a viscous liquid mixture of heavy crude oil distillates), petroleum coke (manufactured from heavy oil), and coal (metallurgical) coke (manufactured from coking coal). The non-energy applications of these fuels are equally diverse, including feedstocks for the manufacture of plastics, rubber, synthetic fibers and other materials; reducing agents for the production of various metals and inorganic products; and non-energy products such as lubricants, waxes, and asphalt (IPCC 2006). Emissions from non-energy uses of fossil fuels are reported in the Energy sector, as opposed to the Industrial Processes and Product Use (IPPU) sector, to reflect national circumstances in its choice of methodology and to increase transparency of this source category’s unique country-specific data sources and methodology (see Box 3-6).

Carbon dioxide emissions arise from non-energy uses via several pathways. Emissions may occur during the manufacture of a product, as is the case in producing plastics or rubber from fuel-derived feedstocks. Additionally, emissions may occur during the product’s lifetime, such as during solvent use. Overall, throughout the time series and across all uses, about 62 percent of the total C consumed for non-energy purposes was stored in products, and not released to the atmosphere; the remaining 38 percent was emitted.

There are several areas in which non-energy uses of fossil fuels are closely related to other parts of this Inventory. For example, some of the non-energy use products release CO₂ at the end of their commercial life when they are combusted after disposal; these emissions are reported separately within the Energy chapter in the Incineration of Waste source category. In addition, there is some overlap between fossil fuels consumed for non-energy uses and the

fossil-derived CO₂ emissions accounted for in the IPPU chapter, especially for fuels used as reducing agents. To avoid double counting, the “raw” non-energy fuel consumption data reported by EIA are modified to account for these overlaps. There are also net exports of petrochemicals that are not completely accounted for in the EIA data, and the Inventory calculations adjust for the effect of net exports on the mass of C in non-energy applications.

As shown in Table 3-19, fossil fuel emissions in 2016 from the non-energy uses of fossil fuels were 112.2 MMT CO₂ Eq., which constituted approximately 2 percent of overall fossil fuel emissions. In 2016, the consumption of fuels for non-energy uses (after the adjustments described above) was 4,844.8 TBtu (see Table 3-20). A portion of the C in the 4,844.8 TBtu of fuels was stored (216.6 MMT CO₂ Eq.), while the remaining portion was emitted (112.2 MMT CO₂ Eq.).

Table 3-19: CO₂ Emissions from Non-Energy Use Fossil Fuel Consumption (MMT CO₂ Eq. and Percent)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential Emissions</td>
<td>312.1</td>
<td>377.5</td>
<td>312.9</td>
<td>328.9</td>
<td>324.1</td>
<td>339.5</td>
<td>328.8</td>
</tr>
<tr>
<td>C Stored</td>
<td>192.5</td>
<td>238.6</td>
<td>204.9</td>
<td>205.4</td>
<td>205.3</td>
<td>213.8</td>
<td>216.6</td>
</tr>
<tr>
<td>Emissions as a % of Potential</td>
<td>38%</td>
<td>37%</td>
<td>35%</td>
<td>38%</td>
<td>37%</td>
<td>37%</td>
<td>34%</td>
</tr>
<tr>
<td>Emissions</td>
<td>119.5</td>
<td>138.9</td>
<td>108.0</td>
<td>123.5</td>
<td>118.9</td>
<td>125.6</td>
<td>112.2</td>
</tr>
</tbody>
</table>

Methodology

The first step in estimating C stored in products was to determine the aggregate quantity of fossil fuels consumed for non-energy uses. The C content of these feedstock fuels is equivalent to potential emissions, or the product of consumption and the fuel-specific C content values. Both the non-energy fuel consumption and C content data were supplied by the EIA (2017, 2018) (see Annex 2.1). Consumption of natural gas, LPG, pentanes plus, naphthas, other oils, and special naphtha were adjusted to subtract out net exports of these products that are not reflected in the raw data from EIA. Consumption values for industrial coking coal, petroleum coke, other oils, and natural gas in Table 3-20 and Table 3-21 have been adjusted to subtract non-energy uses that are included in the source categories of the Industrial Processes and Product Use chapter. Consumption values were also adjusted to subtract net exports of intermediary chemicals.

For the remaining non-energy uses, the quantity of C stored was estimated by multiplying the potential emissions by a storage factor.

- For several fuel types—petrochemical feedstocks (including natural gas for non-fertilizer uses, LPG, pentanes plus, naphthas, other oils, still gas, special naphtha, and industrial other coal), asphalt and road oil, lubricants, and waxes—U.S. data on C stocks and flows were used to develop C storage factors, calculated as the ratio of (a) the C stored by the fuel’s non-energy products to (b) the total C content of the fuel consumed. A lifecycle approach was used in the development of these factors in order to account for losses in the production process and during use. Because losses associated with municipal solid waste management are handled separately in the Energy sector under the Incineration of Waste source category, the storage factors do not account for losses at the disposal end of the life cycle.

- For industrial coking coal and distillate fuel oil, storage factors were taken from IPCC (2006), which in turn draws from Marland and Rotty (1984).

67 These source categories include Iron and Steel Production, Lead Production, Zinc Production, Ammonia Manufacture, Carbon Black Manufacture (included in Petrochemical Production), Titanium Dioxide Production, Ferroalloy Production, Silicon Carbide Production, and Aluminum Production.

68 Some degree of double counting may occur between these estimates of non-energy use of fuels and process emissions from petrochemical production presented in the Industrial Processes and Produce Use sector. Data integration is not feasible at this time as feedstock data from EIA used to estimate non-energy uses of fuels are aggregated by fuel type, rather than disaggregated by both fuel type and particular industries (e.g., petrochemical production) as currently collected through EPA’s GHGRP and used for the petrochemical production category.
• For the remaining fuel types (petroleum coke, miscellaneous products, and other petroleum), IPCC (2006) does not provide guidance on storage factors, and assumptions were made based on the potential fate of C in the respective non-energy use products. Carbon dioxide emissions from carbide production are implicitly accounted for in the storage factor calculation for the non-energy use of petroleum coke.

Table 3-20: Adjusted Consumption of Fossil Fuels for Non-Energy Uses (TBtu)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Coking Coal</td>
<td>4,215.8</td>
<td>5,110.7</td>
<td>4,377.3</td>
<td>4,621.1</td>
<td>4,597.6</td>
<td>4,759.1</td>
<td>4,626.9</td>
</tr>
<tr>
<td>Industrial Other Coal</td>
<td>8.2</td>
<td>11.9</td>
<td>10.3</td>
<td>10.3</td>
<td>10.3</td>
<td>10.3</td>
<td>10.3</td>
</tr>
<tr>
<td>Natural Gas to Chemical Plants</td>
<td>281.6</td>
<td>260.9</td>
<td>292.7</td>
<td>297.0</td>
<td>305.1</td>
<td>302.2</td>
<td>289.5</td>
</tr>
<tr>
<td>Asphalt & Road Oil</td>
<td>1,170.2</td>
<td>1,323.2</td>
<td>826.7</td>
<td>783.3</td>
<td>792.6</td>
<td>831.7</td>
<td>853.4</td>
</tr>
<tr>
<td>LPG</td>
<td>1,120.5</td>
<td>1,610.0</td>
<td>1,887.3</td>
<td>2,062.9</td>
<td>2,109.5</td>
<td>2,157.1</td>
<td>2,117.6</td>
</tr>
<tr>
<td>Lubricants</td>
<td>186.3</td>
<td>160.2</td>
<td>130.5</td>
<td>138.1</td>
<td>144.0</td>
<td>156.8</td>
<td>148.9</td>
</tr>
<tr>
<td>Pentanes Plus</td>
<td>117.6</td>
<td>95.5</td>
<td>40.3</td>
<td>45.4</td>
<td>43.5</td>
<td>78.4</td>
<td>53.0</td>
</tr>
<tr>
<td>Naphtha (<401 °F)</td>
<td>326.3</td>
<td>679.5</td>
<td>432.3</td>
<td>498.8</td>
<td>435.2</td>
<td>417.8</td>
<td>396.6</td>
</tr>
<tr>
<td>Other Oil (>401 °F)</td>
<td>662.1</td>
<td>499.4</td>
<td>267.4</td>
<td>209.1</td>
<td>236.2</td>
<td>216.8</td>
<td>203.8</td>
</tr>
<tr>
<td>Still Gas</td>
<td>36.7</td>
<td>67.7</td>
<td>160.6</td>
<td>166.7</td>
<td>164.5</td>
<td>162.2</td>
<td>166.1</td>
</tr>
<tr>
<td>Petroleum Coke</td>
<td>27.2</td>
<td>105.2</td>
<td>14.1</td>
<td>96.6</td>
<td>104.4</td>
<td>97.0</td>
<td>88.7</td>
</tr>
<tr>
<td>Special Naphtha</td>
<td>100.9</td>
<td>60.9</td>
<td>11.7</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Distillate Fuel Oil</td>
<td>7.0</td>
<td>11.7</td>
<td>15.3</td>
<td>16.5</td>
<td>14.8</td>
<td>12.4</td>
<td>12.9</td>
</tr>
<tr>
<td>Waxes</td>
<td>33.3</td>
<td>31.4</td>
<td>15.3</td>
<td>16.5</td>
<td>14.8</td>
<td>12.4</td>
<td>12.9</td>
</tr>
<tr>
<td>Miscellaneous Products</td>
<td>137.8</td>
<td>112.8</td>
<td>161.6</td>
<td>171.2</td>
<td>182.7</td>
<td>188.9</td>
<td>191.3</td>
</tr>
<tr>
<td>Transportation</td>
<td>176.0</td>
<td>151.3</td>
<td>123.2</td>
<td>130.4</td>
<td>136.0</td>
<td>148.1</td>
<td>140.6</td>
</tr>
<tr>
<td>Lubricants</td>
<td>176.0</td>
<td>151.3</td>
<td>123.2</td>
<td>130.4</td>
<td>136.0</td>
<td>148.1</td>
<td>140.6</td>
</tr>
<tr>
<td>U.S. Territories</td>
<td>85.6</td>
<td>123.2</td>
<td>72.0</td>
<td>82.4</td>
<td>77.3</td>
<td>77.3</td>
<td>77.3</td>
</tr>
<tr>
<td>Lubricants</td>
<td>8.7</td>
<td>4.6</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Other Petroleum (Misc. Prod.)</td>
<td>84.9</td>
<td>118.6</td>
<td>71.0</td>
<td>81.4</td>
<td>76.2</td>
<td>76.2</td>
<td>76.2</td>
</tr>
<tr>
<td>Total</td>
<td>4,477.4</td>
<td>5,385.2</td>
<td>4,572.5</td>
<td>4,833.9</td>
<td>4,810.9</td>
<td>4,984.5</td>
<td>4,844.8</td>
</tr>
</tbody>
</table>

Table 3-21: 2016 Adjusted Non-Energy Use Fossil Fuel Consumption, Storage, and Emissions

<table>
<thead>
<tr>
<th>Sector/Fuel Type</th>
<th>Adjusted Non-Energy Use (TBtu)</th>
<th>Carbon Content Coefficient (MMT C/Qtu)</th>
<th>Potential Carbon (MMT C)</th>
<th>Storage Factor (MMT C)</th>
<th>Carbon Stored (MMT C)</th>
<th>Carbon Emissions (MMT C)</th>
<th>Carbon Emissions (MMT CO2 Eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td>4,626.9</td>
<td>NA</td>
<td>85.3</td>
<td>NA</td>
<td>58.6</td>
<td>26.6</td>
<td>97.6</td>
</tr>
<tr>
<td>Industrial Coking Coal</td>
<td>88.8</td>
<td>31.00</td>
<td>2.8</td>
<td>0.10</td>
<td>0.3</td>
<td>2.5</td>
<td>9.1</td>
</tr>
<tr>
<td>Industrial Other Coal</td>
<td>10.3</td>
<td>25.82</td>
<td>0.3</td>
<td>0.70</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Natural Gas to Chemical Plants</td>
<td>289.5</td>
<td>14.47</td>
<td>4.2</td>
<td>0.70</td>
<td>2.9</td>
<td>1.3</td>
<td>4.6</td>
</tr>
<tr>
<td>Asphalt & Road Oil</td>
<td>853.4</td>
<td>20.55</td>
<td>17.5</td>
<td>1.00</td>
<td>17.5</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>LPG</td>
<td>2117.6</td>
<td>17.06</td>
<td>36.1</td>
<td>0.70</td>
<td>25.3</td>
<td>10.8</td>
<td>39.7</td>
</tr>
<tr>
<td>Lubricants</td>
<td>148.9</td>
<td>20.20</td>
<td>3.0</td>
<td>0.09</td>
<td>0.3</td>
<td>2.7</td>
<td>10.0</td>
</tr>
<tr>
<td>Pentanes Plus</td>
<td>53.0</td>
<td>19.10</td>
<td>1.0</td>
<td>0.70</td>
<td>0.7</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Naphtha (<401 °F)</td>
<td>396.6</td>
<td>18.55</td>
<td>7.4</td>
<td>0.70</td>
<td>5.2</td>
<td>2.2</td>
<td>8.1</td>
</tr>
<tr>
<td>Other Oil (>401 °F)</td>
<td>203.8</td>
<td>20.17</td>
<td>4.1</td>
<td>0.70</td>
<td>2.9</td>
<td>1.2</td>
<td>4.5</td>
</tr>
<tr>
<td>Still Gas</td>
<td>166.1</td>
<td>17.51</td>
<td>2.9</td>
<td>0.70</td>
<td>2.0</td>
<td>0.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Petroleum Coke</td>
<td>0.0</td>
<td>27.85</td>
<td>0.0</td>
<td>0.30</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Special Naphtha</td>
<td>88.7</td>
<td>19.74</td>
<td>1.8</td>
<td>0.70</td>
<td>1.2</td>
<td>0.5</td>
<td>1.9</td>
</tr>
<tr>
<td>Distillate Fuel Oil</td>
<td>5.8</td>
<td>20.17</td>
<td>0.1</td>
<td>0.50</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Waxes</td>
<td>12.9</td>
<td>19.80</td>
<td>0.3</td>
<td>0.58</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>

The results of the Approach 2 quantitative uncertainty analysis are summarized in uncertainty estimates were determined using assumptions based on source category knowledge. Judgments of uncertainty were not available directly from the information sources for all the activity variables; thus, uncertainty estimates were determined using assumptions based on source category knowledge.

Lastly, emissions were estimated by subtracting the C stored from the potential emissions (see Table 3-19). More detail on the methodology for calculating storage and emissions from each of these sources is provided in Annex 2.3.

Uncertainty and Time-Series Consistency

An uncertainty analysis was conducted to quantify the uncertainty surrounding the estimates of emissions and storage factors from non-energy uses. This analysis, performed using @RISK software and the IPCC-recommended Approach 2 methodology (Monte Carlo Stochastic Simulation technique), provides for the specification of probability density functions for key variables within a computational structure that mirrors the calculation of the inventory estimate. The results presented below provide the 95 percent confidence interval, the range of values within which emissions are likely to fall, for this source category.

As noted above, the non-energy use analysis is based on U.S.-specific storage factors for (1) feedstock materials (natural gas, LPG, pentanes plus, naphthas, other oils, still gas, special naphthas, and oil other industrial coal), (2) asphalt, (3) lubricants, and (4) waxes. For the remaining fuel types (the “other” category in Table 3-20 and Table 3-21), the storage factors were taken directly from IPCC (2006), where available, and otherwise assumptions were made based on the potential fate of carbon in the respective NEU products. To characterize uncertainty, five separate analyses were conducted, corresponding to each of the five categories. In all cases, statistical analyses or expert judgments of uncertainty were not available directly from the information sources for all the activity variables; thus, uncertainty estimates were determined using assumptions based on source category knowledge.

The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 3-22 (emissions) and Table 3-23 (storage factors). Carbon emitted from non-energy uses of fossil fuels in 2016 was estimated to be between 112.2 TBtu.
90.6 and 156.3 MMT CO\textsubscript{2} Eq. at a 95 percent confidence level. This indicates a range of 19 percent below to 39 percent above the 2016 emission estimate of 112.2 MMT CO\textsubscript{2} Eq. The uncertainty in the emission estimates is a function of uncertainty in both the quantity of fuel used for non-energy purposes and the storage factor.

Table 3-22: Approach 2 Quantitative Uncertainty Estimates for CO\textsubscript{2} Emissions from Non-Energy Uses of Fossil Fuels (MMT CO\textsubscript{2} Eq. and Percent)

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>2016 Emission Estimate (MMT CO\textsubscript{2} Eq.)</th>
<th>Uncertainty Range Relative to Emission Estimatea (MMT CO\textsubscript{2} Eq.)</th>
<th>(%), Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td>Lower Bound</td>
</tr>
<tr>
<td>Feedstocks</td>
<td>CO\textsubscript{2}</td>
<td>63.4</td>
<td>47.9</td>
<td>111.3</td>
</tr>
<tr>
<td>Asphalt</td>
<td>CO\textsubscript{2}</td>
<td>0.3</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Lubricants</td>
<td>CO\textsubscript{2}</td>
<td>19.5</td>
<td>16.2</td>
<td>22.7</td>
</tr>
<tr>
<td>Waxes</td>
<td>CO\textsubscript{2}</td>
<td>0.4</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Other</td>
<td>CO\textsubscript{2}</td>
<td>28.6</td>
<td>17.5</td>
<td>31.2</td>
</tr>
<tr>
<td>Total</td>
<td>CO\textsubscript{2}</td>
<td>112.2</td>
<td>90.6</td>
<td>156.3</td>
</tr>
</tbody>
</table>

a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval.

Note: Totals may not sum due to independent rounding.

Table 3-23: Approach 2 Quantitative Uncertainty Estimates for Storage Factors of Non-Energy Uses of Fossil Fuels (Percent)

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>2016 Storage Factor (%)</th>
<th>Uncertainty Range Relative to Emission Estimatea (%, Relative)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>Feedstocks</td>
<td>CO\textsubscript{2}</td>
<td>70.0%</td>
<td>57%</td>
</tr>
<tr>
<td>Asphalt</td>
<td>CO\textsubscript{2}</td>
<td>99.6%</td>
<td>99%</td>
</tr>
<tr>
<td>Lubricants</td>
<td>CO\textsubscript{2}</td>
<td>9.2%</td>
<td>4%</td>
</tr>
<tr>
<td>Waxes</td>
<td>CO\textsubscript{2}</td>
<td>57.8%</td>
<td>47%</td>
</tr>
<tr>
<td>Other</td>
<td>CO\textsubscript{2}</td>
<td>6.4%</td>
<td>6%</td>
</tr>
</tbody>
</table>

a Range of emission estimates predicted by Monte Carlo Stochastic Simulation for a 95 percent confidence interval, as a percentage of the inventory value (also expressed in percent terms).

As shown in Table 3-23, feedstocks and asphalt contribute least to overall storage factor uncertainty on a percentage basis. Although the feedstocks category—the largest use category in terms of total carbon flows—appears to have tight confidence limits, this is to some extent an artifact of the way the uncertainty analysis was structured. As discussed in Annex 2.3, the storage factor for feedstocks is based on an analysis of six fates that result in long-term storage (e.g., plastics production), and eleven that result in emissions (e.g., volatile organic compound emissions). Rather than modeling the total uncertainty around all of these fate processes, the current analysis addresses only the storage fates, and assumes that all C that is not stored is emitted. As the production statistics that drive the storage values are relatively well-characterized, this approach yields a result that is probably biased toward understating uncertainty.

As is the case with the other uncertainty analyses discussed throughout this document, the uncertainty results above address only those factors that can be readily quantified. More details on the uncertainty analysis are provided in Annex 2.3.

Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990 through 2016 as discussed below. Details on the emission trends through time are described in more detail in the Methodology section, above.
QA/QC and Verification

A source-specific QA/QC plan for non-energy uses of fossil fuels was developed and implemented. This effort included a general analysis, as well as portions of a category specific analysis for non-energy uses involving petrochemical feedstocks and for imports and exports. The category-specific procedures that were implemented involved checks specifically focusing on the activity data and methodology for estimating the fate of C (in terms of storage and emissions) across the various end-uses of fossil C. Emission and storage totals for the different subcategories were compared, and trends across the time series were analyzed to determine whether any corrective actions were needed. Corrective actions were taken to rectify minor errors and to improve the transparency of the calculations, facilitating future QA/QC.

For petrochemical import and export data, special attention was paid to NAICS numbers and titles to verify that none had changed or been removed. Import and export totals were compared with 2015 totals as well as their trends across the time series.

Petrochemical input data reported by EIA will continue to be investigated in an attempt to address an input/output discrepancy in the NEU model. Prior to 2001, the C balance inputs exceed outputs, then starting in 2001 through 2009, outputs exceeded inputs. In 2010 through 2016, inputs exceeded outputs. A portion of this discrepancy has been reduced and two strategies have been developed to address the remaining portion (see the Planned Improvements section, below).

Recalculations Discussion

The Energy Information Administration (EIA 2018) updated energy consumption statistics across the time series relative to the previous Inventory.

Pesticide production data for 2007 through 2015 were updated using EPA’s Pesticides Industry Sales and Usage 2008 – 2012 Market Estimates (EPA 2017). This resulted in a slight increase in emissions from pesticides compared to previous estimates for 2007 through 2015. Pesticide production data for 1990 through 2015 were updated by correcting rounding errors and molecular weights and chemical formulas for certain pesticides.

The calculated ratio of urea production to melamine production from 2001 to 2015 was updated to approximately 95/5 based on ICIS (2016) and ICIS (2008), rather than an even 50/50 split as previously estimated.

Overall, these changes resulted in an average annual increase of 2.8 MMT CO₂ Eq. (2.4 percent) in carbon emissions from non-energy uses of fossil fuels for the period 1990 through 2015, relative to the previous Inventory.

Planned Improvements

There are several future improvements planned:

- Analyzing the fuel and feedstock data from EPA’s GHGRP subpart X (Petrochemical Production) to better disaggregate CO₂ emissions in NEU model and CO₂ process emissions from petrochemical production.

- More accurate accounting of C in petrochemical feedstocks. EPA has worked with EIA to determine the cause of input/output discrepancies in the C mass balance contained within the NEU model. In the future, two strategies to reduce or eliminate this discrepancy will continue to be pursued. First, accounting of C in imports and exports will be improved. The import/export adjustment methodology will be examined to ensure that net exports of intermediaries such as ethylene and propylene are fully accounted for. Second, the use of top-down C input calculation in estimating emissions will be reconsidered. Alternative approaches that rely more substantially on the bottom-up C output calculation will be considered instead.

- Improving the uncertainty analysis. Most of the input parameter distributions are based on professional judgment rather than rigorous statistical characterizations of uncertainty.

- Better characterizing flows of fossil C. Additional fates may be researched, including the fossil C load in organic chemical wastewaters, plasticizers, adhesives, films, paints, and coatings. There is also a need to further clarify the treatment of fuel additives and backflows (especially methyl tert-butyl ether, MTBE).
• Reviewing the trends in fossil fuel consumption for non-energy uses. Annual consumption for several fuel types is highly variable across the time series, including industrial coking coal and other petroleum (miscellaneous products). A better understanding of these trends will be pursued to identify any mischaracterized or misreported fuel consumption for non-energy uses. For example, “miscellaneous products” category includes miscellaneous products that are not reported elsewhere in the EIA data set. The EIA does not have firm data concerning the amounts of various products that are being reported in the “miscellaneous products” category; however, EIA has indicated that recovered sulfur from petroleum and natural gas processing, and potentially also C black feedstock could be reported in this category. Recovered sulfur would not be reported in the NEU calculation or elsewhere in the Inventory.

• Updating the average C content of solvents was researched, since the entire time series depends on one year’s worth of solvent composition data. The data on C emissions from solvents that were readily available do not provide composition data for all categories of solvent emissions and also have conflicting definitions for volatile organic compounds, the source of emissive C in solvents. Additional sources of solvents data will be investigated in order to update the C content assumptions.

• Updating the average C content of cleansers (soaps and detergents) was researched; although production and consumption data for cleansers are published every 5 years by the Census Bureau, the composition (C content) of cleansers has not been recently updated. Recently available composition data sources may facilitate updating the average C content for this category.

• Revising the methodology for consumption, production, and C content of plastics was researched; because of recent changes to the type of data publicly available for plastics, the NEU model for plastics applies data obtained from personal communications. Potential revisions to the plastics methodology to account for the recent changes in published data will be investigated.

• Although U.S.-specific storage factors have been developed for feedstocks, asphalt, lubricants, and waxes, default values from IPCC are still used for two of the non-energy fuel types (industrial coking coal, distillate oil), and broad assumptions are being used for miscellaneous products and other petroleum. Over the long term, there are plans to improve these storage factors by analyzing C fate similar to those described in Annex 2.3 or deferring to more updated default storage factors from IPCC where available.

• Reviewing the storage of carbon black across various sectors in the Inventory; in particular, the carbon black abraded and stored in tires.

Box 3-6: Reporting of Lubricants, Waxes, and Asphalt and Road Oil Product Use in Energy Sector

IPCC (2006) provides methodological guidance to estimate emissions from the first use of fossil fuels as a product for primary purposes other than combustion for energy purposes (including lubricants, paraffin waxes, bitumen / asphalt, and solvents) under the IPPU sector. 69 In this Inventory, C storage and C emissions from product use of lubricants, waxes, and asphalt and road oil are reported under the Energy sector in the Carbon Emitted from Non-Energy Uses of Fossil Fuels source category (CRF Source Category 1A). 70

The emissions are reported in the Energy sector, as opposed to the IPPU sector, to reflect national circumstances in its choice of methodology and to increase transparency of this source category’s unique country-specific data sources and methodology. The country-specific methodology used for the Carbon Emitted from Non-Energy Uses of Fossil Fuels source category is based on a carbon balance (i.e., C inputs-outputs) calculation of the aggregate amount of fossil fuels used for non-energy uses, including inputs of lubricants, waxes, asphalt and road oil (see Section 3.2, Table 3-21). For those inputs, U.S. country-specific data on C stocks and flows are used to develop carbon storage factors, which are calculated as the ratio of the C stored by the fossil fuel non-energy products to the

70 Non-methane volatile organic compound (NMVOC) emissions from solvent use are reported separately in the IPPU sector, following Chapter 5 of the 2006 IPCC Guidelines.
total C content of the fuel consumed, taking into account losses in the production process and during product use.\(^7\) The country-specific methodology to reflect national circumstances starts with the aggregate amount of fossil fuels used for non-energy uses and applies a C balance calculation, breaking out the C emissions from non-energy use of lubricants, waxes, and asphalt and road oil. Due to U.S. national circumstances, reporting these C emissions separately under IPPU would involve making artificial adjustments to allocate both the C inputs and C outputs of the non-energy use C balance. These artificial adjustments would also result in the C emissions for lubricants, waxes, and asphalt and road oil being reported under IPPU, while the C storage for lubricants, waxes, and asphalt and road oil would be reported under Energy. To avoid presenting an incomplete C balance and a less transparent approach for the Carbon Emitted from Non-Energy Uses of Fossil Fuels source category calculation, the entire calculation of C storage and C emissions is therefore conducted in the Non-Energy Uses of Fossil Fuels category calculation methodology, and both the C storage and C emissions for lubricants, waxes, and asphalt and road oil are reported under the Energy sector.

However, portions of the fuel consumption data for seven fuel categories—coking coal, distillate fuel, industrial other coal, petroleum coke, natural gas, residual fuel oil, and other oil—were reallocated to the IPPU chapter, as they were consumed during non-energy related industrial activity. Emissions from uses of fossil fuels as feedstocks or reducing agents (e.g., petrochemical production, aluminum production, titanium dioxide and zinc production) are reported in the IPPU chapter, unless otherwise noted due to specific national circumstances.

3.3 Incineration of Waste (CRF Source Category 1A5)

Incineration is used to manage about 7 to 19 percent of the solid wastes generated in the United States, depending on the source of the estimate and the scope of materials included in the definition of solid waste (EPA 2000; Goldstein and Madtes 2001; Kaufman et al. 2004; Simmons et al. 2006; van Haaren et al. 2010). In the context of this section, waste includes all municipal solid waste (MSW) as well as scrap tires. In the United States, incineration of MSW tends to occur at waste-to-energy facilities or industrial facilities where useful energy is recovered, and thus emissions from waste incineration are accounted for in the Energy chapter. Similarly, scrap tires are combusted for energy recovery in industrial and utility boilers, pulp and paper mills, and cement kilns. Incineration of waste results in conversion of the organic inputs to CO\(_2\). According to IPCC guidelines, when the CO\(_2\) emitted is of fossil origin, it is counted as a net anthropogenic emission of CO\(_2\) to the atmosphere. Thus, the emissions from waste incineration are calculated by estimating the quantity of waste combusted and the fraction of the waste that is C derived from fossil sources.

Most of the organic materials in municipal solid wastes are of biogenic origin (e.g., paper, yard trimmings), and have their net C flows accounted for under the Land Use, Land-Use Change, and Forestry chapter. However, some components—plastics, synthetic rubber, synthetic fibers, and carbon black in scrap tires—are of fossil origin. Plastics in the U.S. waste stream are primarily in the form of containers, packaging, and durable goods. Rubber is found in durable goods, such as carpets, and in non-durable goods, such as clothing and footwear. Fibers in municipal solid wastes are predominantly from clothing and home furnishings. As noted above, scrap tires (which contain synthetic rubber and carbon black) are also considered a “non-hazardous” waste and are included in the waste incineration estimate, though waste disposal practices for tires differ from municipal solid waste. Estimates on emissions from hazardous waste incineration can be found in Annex 2.3 and are accounted for as part of the C mass balance for non-energy uses of fossil fuels.

Approximately 30.1 million metric tons of MSW were incinerated in the United States in 2014 (EPA 2016). Data for the amount of MSW incinerated in 2015 and 2016 were not available, so data for 2015 and 2016 were assumed to be equal to data for 2014. Carbon dioxide emissions from incineration of waste increased 34 percent since 1990, to an

\(^7\) Data and calculations for lubricants and waxes and asphalt and road oil are in Annex 2.3 – Methodology and Data for Estimating CO\(_2\) Emissions from Fossil Fuel Combustion.
estimated 10.7 MMT CO₂ (10,676 kt) in 2016, as the volume of scrap tires and other fossil C-containing materials in waste increased (see Table 3-24 and Table 3-25). Waste incineration is also a source of CH₄ and N₂O emissions (De Soete 1993; IPCC 2006). Methane emissions from the incineration of waste were estimated to be less than 0.05 MMT CO₂ Eq. (less than 0.5 kt CH₄) in 2016, and have decreased by 32 percent since 1990. Nitrous oxide emissions from the incineration of waste were estimated to be 0.3 MMT CO₂ Eq. (1 kt N₂O) in 2016, and have decreased by 32 percent since 1990.

Table 3-24: CO₂, CH₄, and N₂O Emissions from the Incineration of Waste (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>8.0</td>
<td>12.5</td>
<td>10.4</td>
<td>10.4</td>
<td>10.6</td>
<td>10.7</td>
<td>10.7</td>
</tr>
<tr>
<td>Plastics</td>
<td>5.6</td>
<td>6.9</td>
<td>5.7</td>
<td>5.8</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>Synthetic Rubber in Tires</td>
<td>0.3</td>
<td>1.6</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Carbon Black in Tires</td>
<td>0.4</td>
<td>2.0</td>
<td>1.5</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Synthetic Rubber in MSW</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Synthetic Fibers</td>
<td>0.8</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>CH₄</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N₂O</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>8.4</td>
<td>12.9</td>
<td>10.7</td>
<td>10.7</td>
<td>10.9</td>
<td>11.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Table 3-25: CO₂, CH₄, and N₂O Emissions from the Incineration of Waste (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>7,950</td>
<td>12,469</td>
<td>10,392</td>
<td>10,361</td>
<td>10,604</td>
<td>10,670</td>
<td>10,676</td>
</tr>
<tr>
<td>Plastics</td>
<td>5,588</td>
<td>6,919</td>
<td>5,709</td>
<td>5,815</td>
<td>5,928</td>
<td>5,928</td>
<td>5,928</td>
</tr>
<tr>
<td>Synthetic Rubber in Tires</td>
<td>308</td>
<td>1,599</td>
<td>1,261</td>
<td>1,158</td>
<td>1,189</td>
<td>1,220</td>
<td>1,220</td>
</tr>
<tr>
<td>Carbon Black in Tires</td>
<td>385</td>
<td>1,958</td>
<td>1,537</td>
<td>1,412</td>
<td>1,449</td>
<td>1,487</td>
<td>1,487</td>
</tr>
<tr>
<td>Synthetic Rubber in MSW</td>
<td>854</td>
<td>766</td>
<td>706</td>
<td>729</td>
<td>729</td>
<td>729</td>
<td>729</td>
</tr>
<tr>
<td>Synthetic Fibers</td>
<td>816</td>
<td>1,227</td>
<td>1,179</td>
<td>1,247</td>
<td>1,309</td>
<td>1,307</td>
<td>1,313</td>
</tr>
<tr>
<td>CH₄</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N₂O</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Methodology

Emissions of CO₂ from the incineration of waste include CO₂ generated by the incineration of plastics, synthetic fibers, and synthetic rubber in MSW, as well as the incineration of synthetic rubber and carbon black in scrap tires. The emission estimates are calculated for all four sources on a mass-basis based on the data available. These emissions were estimated by multiplying the mass of each material incinerated by the C content of the material and the fraction oxidized (98 percent). Plastics incinerated in municipal solid wastes were categorized into seven plastic resin types, each material having a discrete C content. Similarly, synthetic rubber is categorized into three product types, and synthetic fibers were categorized into four product types, each having a discrete C content. Scrap tires contain several types of synthetic rubber, carbon black, and synthetic fibers. Each type of synthetic rubber has a discrete C content, and carbon black is 100 percent C. Emissions of CO₂ were calculated based on the amount of scrap tires used for fuel and the synthetic rubber and carbon black content of scrap tires. More detail on the methodology for calculating emissions from each of these waste incineration sources is provided in Annex 3.7.

For each of the methods used to calculate CO₂ emissions from the incineration of waste, data on the quantity of product combusted and the C content of the product are needed. For plastics, synthetic rubber, and synthetic fibers in MSW, the amount of specific materials discarded as municipal solid waste (i.e., the quantity generated minus the quantity recycled) was taken from Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures (EPA 2000 through 2003, 2005 through 2014), and Advancing Sustainable Materials Management: Facts and Figures: Assessing Trends in Material Generation, Recycling and Disposal in the United States (EPA 2015, 2016) and detailed unpublished backup data for some years not shown in the reports (Schneider 2007). For 2016, the amount of MSW incinerated was assumed to be equal to that in 2014, due to the lack of available data. The proportion of total waste discarded that is incinerated was derived from Shin (2014). Data on
total waste incinerated was not available in detail for 2012 through 2016, so these values were assumed to equal to the 2011 value (Shin 2014). For synthetic rubber and carbon black in scrap tires, information was obtained biannually from U.S. Scrap Tire Management Summary for 2005 through 2015 data (RMA 2016). The 2016 values were assumed to equal the 2015 value. Average C contents for the “Other” plastics category and synthetic rubber in municipal solid wastes were calculated from 1998 and 2002 production statistics; C content for 1990 through 1998 is based on the 1998 value; C content for 1999 through 2001 is the average of 1998 and 2002 values; and C content for 2002 to date is based on the 2002 value. Carbon content for synthetic fibers was calculated from a weighted average of production statistics from 1990 to date. Information about scrap tire composition was taken from the Rubber Manufacturers’ Association internet site (RMA 2012a). The mass of incinerated material is multiplied by its C content to calculate the total amount of carbon stored.

The assumption that 98 percent of organic C is oxidized (which applies to all waste incineration categories for CO$_2$ emissions) was reported in EPA’s life cycle analysis of greenhouse gas emissions and sinks from management of solid waste (EPA 2006). This percentage is multiplied by the carbon stored to estimate the amount of carbon emitted.

Incineration of waste, including MSW, also results in emissions of CH$_4$ and N$_2$O. These emissions were calculated as a function of the total estimated mass of waste incinerated and emission factors. As noted above, CH$_4$ and N$_2$O emissions are a function of total waste incinerated in each year; for 1990 through 2008, these data were derived from the information published in BioCycle (van Haaren et al. 2010). Data for 2009 and 2010 were interpolated between 2008 and 2011 values. Data for 2011 were derived from Shin (2014). Data on total waste incinerated was not available in the BioCycle data set for 2012 through 2016, so these values were assumed to equal the 2011 BioCycle dataset value.

Table 3-26 provides data on municipal solid waste discarded and percentage combusted for the total waste stream. The emission factors of N$_2$O and CH$_4$ emissions per quantity of municipal solid waste combusted are default emission factors for the default continuously-fed stoker unit MSW incineration technology type and were taken from IPCC (2006).

Table 3-26: Municipal Solid Waste Generation (Metric Tons) and Percent Combusted (BioCycle dataset)

<table>
<thead>
<tr>
<th>Year</th>
<th>Waste Discarded</th>
<th>Waste Incinerated</th>
<th>Incinerated (% of Discards)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>235,733,657</td>
<td>30,632,057</td>
<td>13.0%</td>
</tr>
<tr>
<td>2005</td>
<td>259,559,787</td>
<td>25,973,520</td>
<td>10.0%</td>
</tr>
<tr>
<td>2012</td>
<td>273,116,704*</td>
<td>20,756,870</td>
<td>7.6%</td>
</tr>
<tr>
<td>2013</td>
<td>273,116,704*</td>
<td>20,756,870</td>
<td>7.6%</td>
</tr>
<tr>
<td>2014</td>
<td>273,116,704*</td>
<td>20,756,870</td>
<td>7.6%</td>
</tr>
<tr>
<td>2015</td>
<td>273,116,704*</td>
<td>20,756,870</td>
<td>7.6%</td>
</tr>
<tr>
<td>2016</td>
<td>273,116,704*</td>
<td>20,756,870</td>
<td>7.6%</td>
</tr>
</tbody>
</table>

* Assumed equal to 2011 value.

Source: van Haaren et al. (2010)

Uncertainty and Time-Series Consistency

An Approach 2 Monte Carlo analysis was performed to determine the level of uncertainty surrounding the estimates of CO$_2$ emissions and N$_2$O emissions from the incineration of waste (given the very low emissions for CH$_4$, no uncertainty estimate was derived). IPCC Approach 2 analysis allows the specification of probability density functions for key variables within a computational structure that mirrors the calculation of the Inventory estimate. Uncertainty estimates and distributions for waste generation variables (i.e., plastics, synthetic rubber, and textiles generation) were obtained through a conversation with one of the authors of the Municipal Solid Waste in the United States reports. Statistical analyses or expert judgments of uncertainty were not available directly from the information sources for the other variables; thus, uncertainty estimates for these variables were determined using
assumptions based on source category knowledge and the known uncertainty estimates for the waste generation variables.

The uncertainties in the waste incineration emission estimates arise from both the assumptions applied to the data and from the quality of the data. Key factors include MSW incineration rate; fraction oxidized; missing data on waste composition; average C content of waste components; assumptions on the synthetic/biogenic C ratio; and combustion conditions affecting N₂O emissions. The highest levels of uncertainty surround the variables that are based on assumptions (e.g., percent of clothing and footwear composed of synthetic rubber); the lowest levels of uncertainty surround variables that were determined by quantitative measurements (e.g., combustion efficiency, C content of C black).

The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 3-27. Waste incineration CO₂ emissions in 2016 were estimated to be between 8.3 and 13.4 MMT CO₂ Eq. at a 95 percent confidence level. This indicates a range of 22 percent below to 26 percent above the 2016 emission estimate of 10.7 MMT CO₂ Eq. Also at a 95 percent confidence level, waste incineration N₂O emissions in 2016 were estimated to be between 0.2 and 1.3 MMT CO₂ Eq. This indicates a range of 51 percent below to 327 percent above the 2016 emission estimate of 0.3 MMT CO₂ Eq.

Table 3-27: Approach 2 Quantitative Uncertainty Estimates for CO₂ and N₂O from the Incineration of Waste (MMT CO₂ Eq. and Percent)

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>2016 Emission Estimate (MMT CO₂ Eq.)</th>
<th>Uncertainty Range Relative to Emission Estimatea (MMT CO₂ Eq.)</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incineration of Waste</td>
<td>CO₂</td>
<td>10.7</td>
<td>-22%</td>
<td>8.3</td>
<td>13.4</td>
<td>-22%</td>
<td>+26%</td>
</tr>
<tr>
<td>Incineration of Waste</td>
<td>N₂O</td>
<td>0.3</td>
<td>-51%</td>
<td>0.2</td>
<td>1.3</td>
<td>-51%</td>
<td>+327%</td>
</tr>
</tbody>
</table>

a Range of emission estimates predicted by Monte Carlo Simulation for a 95 percent confidence interval.

QA/QC and Verification

A source-specific Quality Assurance/Quality Control plan was implemented for incineration of waste. This effort included a general (Tier 1) analysis, as well as portions of a category-specific (Tier 2) analysis. The Tier 2 procedures that were implemented involved checks specifically focusing on the activity data and specifically focused on the emission factor and activity data sources and methodology used for estimating emissions from incineration of waste. Trends across the time series were analyzed to determine whether any corrective actions were needed. Actions were taken to streamline the activity data throughout the calculations on incineration of waste.

Recalculations Discussion

No methodological changes occurred since the previous Inventory.

Planned Improvements

The waste incineration inventory has recently relied on MSW mass flow (i.e., tonnage) for data that has not been updated since 2011. These values previously came from BioCycle (Shin 2014) and EPA Facts and Figures (EPA 2015). To update these values, the next Inventory will primarily use facility-level MSW tonnage data from EPA’s Greenhouse Gas Reporting Program (GHGRP).

For the current Inventory, an examination of facility-level MSW tonnage data availability was performed, primarily focusing on GHGRP data. Energy Information Administration (EIA) waste-to-energy data, and other sources. EPA concluded that the GHGRP data were more complete (i.e., included more facilities), but did not contain data for all inventory years (1990 through 2016). The EIA data will be used to supplement years not available in the GHGRP data. The GHGRP data do not include specific waste components outside of an assumed biogenic and fossil component, which is necessary for CO₂ emission calculations. For the calculation of CO₂ emissions, EPA’s GHGRP fossil CO₂ emissions will be used to benchmark results for other waste components in the next Inventory.
Additional improvements will be conducted to improve the transparency in the current reporting of waste incineration. Currently, hazardous industrial waste incineration is included within the overall calculations for the Carbon Emitted from Non-Energy Uses of Fossil Fuels source category. Waste incineration activities that do not include energy recovery will be examined. Synthetic fibers within scrap tires are not included in this analysis and will be explored for future Inventories. The C content of fibers within scrap tires will be used to calculate the associated incineration emissions. Updated fiber content data from the Fiber Economics Bureau will also be explored.

3.4 Coal Mining (CRF Source Category 1B1a)

Three types of coal mining-related activities release CH₄ to the atmosphere: underground mining, surface mining, and post-mining (i.e., coal-handling) activities. While surface mines account for the majority of U.S. coal production, underground coal mines contribute the largest share of CH₄ emissions (see Table 3-29 and Table 3-30) due to the higher CH₄ content of coal in the deeper underground coal seams. In 2016, 251 underground coal mines and 439 surface mines were operating in the United States. In recent years the total number of active coal mines in the United States has declined. In 2016, the United States was the third largest coal producer in the world (660 MMT), after China (3,242 MMT) and India (708 MMT) (IEA 2017).

Table 3-28: Coal Production (kt)

<table>
<thead>
<tr>
<th>Year</th>
<th>Underground</th>
<th>Surface</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Mines</td>
<td>Production</td>
<td>Number of Mines</td>
</tr>
<tr>
<td>1990</td>
<td>1,683</td>
<td>384,244</td>
<td>1,656</td>
</tr>
<tr>
<td>2005</td>
<td>586</td>
<td>334,398</td>
<td>789</td>
</tr>
<tr>
<td>2012</td>
<td>488</td>
<td>310,608</td>
<td>719</td>
</tr>
<tr>
<td>2013</td>
<td>395</td>
<td>309,546</td>
<td>637</td>
</tr>
<tr>
<td>2014</td>
<td>345</td>
<td>321,783</td>
<td>613</td>
</tr>
<tr>
<td>2015</td>
<td>305</td>
<td>278,342</td>
<td>529</td>
</tr>
<tr>
<td>2016</td>
<td>251</td>
<td>228,403</td>
<td>439</td>
</tr>
</tbody>
</table>

Underground mines liberate CH₄ from ventilation systems and from degasification systems. Ventilation systems pump air through the mine workings to dilute noxious gases and ensure worker safety; these systems can exhaust significant amounts of CH₄ to the atmosphere in low concentrations. Degasification systems are wells drilled from the surface or boreholes drilled inside the mine that remove large, often highly concentrated volumes of CH₄ before, during, or after mining. Some mines recover and use CH₄ generated from ventilation and degasification systems, thereby reducing emissions to the atmosphere.

Surface coal mines liberate CH₄ as the overburden is removed and the coal is exposed to the atmosphere. CH₄ emissions are normally a function of coal rank (a classification related to the percentage of carbon in the coal) and depth. Surface coal mines typically produce lower-rank coals and remove less than 250 feet of overburden, so their level of emissions is much lower than from underground mines.

In addition, CH₄ is released during post-mining activities, as the coal is processed, transported, and stored for use. Total CH₄ emissions in 2016 were estimated to be 2,153 kt (53.8 MMT CO₂ Eq.), a decline of 44 percent since 1990 (see Table 3-29 and Table 3-30). Of these total emissions, underground mines accounted for approximately 76 percent, surface mines accounted for 13 percent, and post-mining activities accounted for 12 percent.

Table 3-29: CH₄ Emissions from Coal Mining (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Underground (UG) Mining</td>
<td>74.2</td>
<td>42.0</td>
<td>47.3</td>
<td>46.2</td>
<td>46.1</td>
<td>44.9</td>
<td>40.7</td>
</tr>
<tr>
<td>Liberated</td>
<td>80.8</td>
<td>59.7</td>
<td>65.8</td>
<td>64.5</td>
<td>63.1</td>
<td>61.2</td>
<td>57.1</td>
</tr>
<tr>
<td>Recovered & Used</td>
<td>(6.6) (17.7)</td>
<td>(18.5) (18.3)</td>
<td>(17.0) (16.4)</td>
<td>(16.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Mining</td>
<td>10.8</td>
<td>11.9</td>
<td>10.3</td>
<td>9.7</td>
<td>9.6</td>
<td>8.7</td>
<td>6.8</td>
</tr>
</tbody>
</table>
Post-Mining (UG) 9.2 7.6 6.7 6.6 6.7 5.8 4.8
Post-Mining (Surface) 2.3 2.6 2.2 2.1 2.1 1.9 1.5
Total 96.5 64.1 66.5 64.6 64.6 61.2 53.8

Notes: Totals may not sum due to independent rounding. Parentheses indicate negative values.

Table 3-30: CH₄ Emissions from Coal Mining (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UG Mining</td>
<td>2,968</td>
<td>1,682</td>
<td>1,891</td>
<td>1,849</td>
<td>1,844</td>
<td>1,844</td>
<td>1,796</td>
</tr>
<tr>
<td>Liberated</td>
<td>3,234</td>
<td>2,390</td>
<td>2,631</td>
<td>2,580</td>
<td>2,524</td>
<td>2,450</td>
<td>2,31</td>
</tr>
<tr>
<td>Recovered & Used</td>
<td>(266)</td>
<td>(708)</td>
<td>(740)</td>
<td>(730)</td>
<td>(680)</td>
<td>(654)</td>
<td>(654)</td>
</tr>
<tr>
<td>Surface Mining</td>
<td>430</td>
<td>475</td>
<td>410</td>
<td>388</td>
<td>386</td>
<td>347</td>
<td>273</td>
</tr>
<tr>
<td>Post-Mining (UG)</td>
<td>368</td>
<td>306</td>
<td>268</td>
<td>263</td>
<td>270</td>
<td>231</td>
<td>192</td>
</tr>
<tr>
<td>Post-Mining (Surface)</td>
<td>93</td>
<td>103</td>
<td>89</td>
<td>84</td>
<td>84</td>
<td>75</td>
<td>59</td>
</tr>
<tr>
<td>Total</td>
<td>3,860</td>
<td>2,565</td>
<td>2,658</td>
<td>2,584</td>
<td>2,583</td>
<td>2,449</td>
<td>2,153</td>
</tr>
</tbody>
</table>

Notes: Totals may not sum due to independent rounding. Parentheses indicate negative values.

Methodology

The methodology for estimating CH₄ emissions from coal mining consists of two steps:

- Estimate emissions from underground mines. These emissions have two sources: ventilation systems and degasification systems. They are estimated using mine-specific data, then summed to determine total CH₄ liberated. The CH₄ recovered and used is then subtracted from this total, resulting in an estimate of net emissions to the atmosphere.

- Estimate CH₄ emissions from surface mines and post-mining activities. Unlike the methodology for underground mines, which uses mine-specific data, the methodology for estimating emissions from surface mines and post-mining activities consists of multiplying basin-specific coal production by basin-specific gas content and an emission factor.

Step 1: Estimate CH₄ Liberated and CH₄ Emitted from Underground Mines

Underground mines generate CH₄ from ventilation systems and from degasification systems. Some mines recover and use the generated CH₄, thereby reducing emissions to the atmosphere. Total CH₄ emitted from underground mines equals the CH₄ liberated from ventilation systems, plus the CH₄ liberated from degasification systems, minus the CH₄ recovered and used.

Step 1.1: Estimate CH₄ Liberated from Ventilation Systems

To estimate CH₄ liberated from ventilation systems, EPA uses data collected through its Greenhouse Gas Reporting Program (GHGRP) subpart FF, “Underground Coal Mines”), data provided by the U.S. Mine Safety and Health Administration (MSHA), and occasionally data collected from other sources on a site-specific level (e.g., state gas production databases). Since 2011, the nation’s “gassiest” underground coal mines—those that liberate more than 36,500,000 actual cubic feet of CH₄ per year (about 17,525 MT CO₂ Eq.)—have been required to report to EPA’s GHGRP (EPA 2016). Mines that report to EPA’s GHGRP must report quarterly measurements of CH₄ emissions from ventilation systems to EPA; they have the option of recording their own measurements, or using the...

72 In implementing improvements and integrating data from EPA’s GHGRP, EPA followed the latest guidance from the IPCC on the use of facility-level data in national inventories (IPCC 2011).

73 Underground coal mines report to EPA under subpart FF of the GHGRP (40 CFR part 98). In 2016, 90 underground coal mines reported to the program.
measurements taken by MSHA as part of that agency’s quarterly safety inspections of all mines in the United States with detectable CH₄ concentrations.⁷⁴

Since 2013, ventilation emission estimates have been calculated based on both GHGRP data submitted by underground mines, and on quarterly measurement data obtained directly from MSHA for the remaining mines. The quarterly measurements are used to determine the average daily emissions rate for the reporting year quarter. Because not all mines report under EPA’s GHGRP, the emissions of the mines that do not report must be calculated using MSHA data. The MSHA data also serves as a quality assurance tool for validating GHGRP data.

Step 1.2: Estimate CH₄ Liberated from Degasification Systems

Particularly gassy underground mines also use degasification systems (e.g., wells or boreholes) to remove CH₄ before, during, or after mining. This CH₄ can then be collected for use or vented to the atmosphere. Twenty-five mines used degasification systems in 2016, and the CH₄ removed through these systems was reported to EPA’s GHGRP under subpart FF (EPA 2017). Based on the weekly measurements reported to EPA’s GHGRP, degasification data summaries for each mine were added to estimate the CH₄ liberated from degasification systems. Fifteen of the 25 mines with degasification systems had operational CH₄ recovery and use projects (see step 1.3 below), and EPA’s GHGRP reports show the remaining ten mines vented CH₄ from degasification systems to the atmosphere.⁷⁵

Degasification data reported to EPA’s GHGRP by underground coal mines is the primary source of data used to develop estimates of CH₄ liberated from degasification systems. Data reported to EPA’s GHGRP were used to estimate CH₄ liberated from degasification systems at 20 of the 25 mines that used degasification systems in 2016.

For pre-mining wells, cumulative degasification volumes that occur prior to the well being mined through are attributed to the mine in the inventory year in which the well is mined through.⁷⁶ EPA’s GHGRP does not require gas production from virgin coal seams (coalbed methane) to be reported by coal mines under subpart FF.⁷⁷ Most pre-mining wells drilled from the surface are considered coalbed methane wells prior to mine-through and associated CH₄ emissions are reported under another subpart of the program (subpart W, “Petroleum and Natural Gas Systems”). As a result, GHGRP data must be supplemented to estimate cumulative degasification volumes that occurred prior to well mine-through. For five mines with degasification systems that include pre-mining wells that were mined through in 2016, GHGRP data were supplemented with historical data from state gas well production databases (DMME 2017; GSA 2017; WVGES 2017), as well as with mine-specific information regarding the locations and dates on which the pre-mining wells were mined through (JWR 2010; El Paso 2009).

EPA’s GHGRP reports with CH₄ liberated from degasification systems are reviewed for errors in reporting. For one of the 25 mines, due to a lack of mine-provided information used in prior years and a GHGRP reporting discrepancy, the CH₄ liberated was based on both an estimate from historical mine-provided CH₄ recovery and use rates and state gas sales records (DMME 2017).

Step 1.3: Estimate CH₄ Recovered from Ventilation and Degasification Systems, and Utilized or Destroyed (Emissions Avoided)

Fifteen mines had CH₄ recovery and use projects in place in 2016. Fourteen of these mines sold the recovered CH₄ to a pipeline, including one that also used CH₄ to fuel a thermal coal dryer. In addition, one mine used recovered CH₄ to heat mine ventilation air.

EPA’s GHGRP data was exclusively used to estimate the CH₄ recovered and used from ten of the 15 mines that deployed degasification systems in 2016. Based on weekly measurements, the GHGRP degasification destruction

⁷⁴ MSHA records coal mine CH₄ readings with concentrations of greater than 50 ppm (parts per million) CH₄. Readings below this threshold are considered non-detectable.

⁷⁵ Several of the mines venting CH₄ from degasification systems use a small portion the gas to fuel gob well blowers in remote locations where electricity is not available. However, this CH₄ use is not considered to be a formal recovery and use project.

⁷⁶ A well is “mined through” when coal mining development or the working face intersects the borehole or well.

⁷⁷ This applies for pre-drainage in years prior to the well being mined through. Beginning with the year the well is mined through, the annual volume of CH₄ liberated from a pre-drainage well is reported under subpart FF of EPA’s GHGRP.
data summaries for each mine were added together to estimate the CH\textsubscript{4} recovered and used from degasification systems.

All 10 mines with degasification systems used pre-mining wells as part of those systems, but only four of the mines intersected pre-mining wells in 2016. EPA’s GHGRP and supplemental data were used to estimate CH\textsubscript{4} recovered and used at two of these four mines; supplemental data alone (GSA 2017) was used to estimate CH\textsubscript{4} recovered and used at the other two mines. Supplemental information was used for these four mines because estimating CH\textsubscript{4} recovery and use from pre-mining wells requires additional data (not reported under subpart FF of EPA’s GHGRP; see discussion in step 1.2 above) to account for the emissions avoided. The supplemental data came from state gas production databases as well as mine-specific information on the timing of mined-through pre-mining wells.

EPA’s GHGRP information was not used to estimate CH\textsubscript{4} recovered and used at two mines. At one of these mines, a portion of reported CH\textsubscript{4} vented was applied to an ongoing mine air heating project. Because of a lack of mine-provided information used in prior years and a GHGRP reporting discrepancy, the 2016 CH\textsubscript{4} recovered and used from pre-mining wells at the other mine was based on an estimate from historical mine-provided CH\textsubscript{4} recovery and use rates. Emissions recovered and used from the active mine degasification system were estimated based on a state gas production data information system.

In 2016, one mine destroyed a portion of its CH\textsubscript{4} emissions from ventilation systems using thermal oxidation technology. The amount of CH\textsubscript{4} recovered and destroyed by the project was determined through publicly-available emission reduction project information (ACR 2017).

Step 2: Estimate CH\textsubscript{4} Emitted from Surface Mines and Post-Mining Activities

Mine-specific data are not available for estimating CH\textsubscript{4} emissions from surface coal mines or for post-mining activities. For surface mines, basin-specific coal production obtained from the Energy Information Administration’s *Annual Coal Report* (EIA 2017) was multiplied by basin-specific CH\textsubscript{4} contents (EPA 1996, 2005) and a 150 percent emission factor (to account for CH\textsubscript{4} from over- and under-burden) to estimate CH\textsubscript{4} emissions (King 1994; Saghafi 2013). For post-mining activities, basin-specific coal production was multiplied by basin-specific gas contents and a mid-range 32.5 percent emission factor for CH\textsubscript{4} desorption during coal transportation and storage (Creedy 1993). Basin-specific *in situ* gas content data were compiled from AAPG (1984) and USBM (1986).

Uncertainty and Time-Series Consistency

A quantitative uncertainty analysis was conducted for the coal mining source category using the IPCC-recommended Approach 2 uncertainty estimation methodology. Because emission estimates from underground ventilation systems were based on actual measurement data from EPA’s GHGRP or from MSHA, uncertainty is relatively low. A degree of imprecision was introduced because the ventilation air measurements used were not continuous but rather quarterly instantaneous readings that were used to determine the average daily emissions rate for the quarter. Additionally, the measurement equipment used can be expected to have resulted in an average of 10 percent overestimation of annual CH\textsubscript{4} emissions (Mutmansky & Wang 2000). GHGRP data were used for a significant number of the mines that reported their own measurements to the program beginning in 2013; however, the equipment uncertainty is applied to both GHGRP and MSHA data.

Estimates of CH\textsubscript{4} recovered by degasification systems are relatively certain for utilized CH\textsubscript{4} because of the availability of EPA’s GHGRP data and gas sales information. Many of the recovery estimates use data on wells within 100 feet of a mined area. However, uncertainty exists concerning the radius of influence of each well. The number of wells counted, and thus the avoided emissions, may vary if the drainage area is found to be larger or smaller than estimated.

EPA’s GHGRP requires weekly CH\textsubscript{4} monitoring of mines that report degasification systems, and continuous CH\textsubscript{4} monitoring is required for utilized CH\textsubscript{4} on- or off-site. Since 2012, GHGRP data have been used to estimate CH\textsubscript{4} emissions from vented degasification wells, reducing the uncertainty associated with prior MSHA estimates used for this subsourse. Beginning in 2013, GHGRP data were also used for determining CH\textsubscript{4} recovery and use at mines without publicly available gas usage or sales records, which has reduced the uncertainty from previous estimation methods that were based on information from coal industry contacts.
In 2015 and 2016, a small level of uncertainty was introduced with using estimated rather than measured values of recovered methane from two of the mines with degasification systems. An increased level of uncertainty was applied to these two subsources, but the change had little impact on the overall uncertainty.

Surface mining and post-mining emissions are associated with considerably more uncertainty than underground mines, because of the difficulty in developing accurate emission factors from field measurements. However, since underground emissions constitute the majority of total coal mining emissions, the uncertainty associated with underground emissions is the primary factor that determines overall uncertainty.

The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 3-31. Coal mining CH$_4$ emissions in 2016 were estimated to be between 47.4 and 61.6 MMT CO$_2$ Eq. at a 95 percent confidence level. This indicates a range of 11.8 percent below to 14.4 percent above the 2016 emission estimate of 53.8 MMT CO$_2$ Eq.

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>2016 Emission Estimate (MMT CO$_2$ Eq.)</th>
<th>Uncertainty Range Relative to Emission Estimate ($%$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>Coal mining</td>
<td>CH$_4$</td>
<td>53.8</td>
<td>47.4</td>
</tr>
</tbody>
</table>

* Range of emission estimates predicted by Monte Carlo stochastic simulation for a 95 percent confidence interval.

Methodological recalculations were applied to the entire time series to ensure consistency from 1990 through 2016. Details on the emission trends through time are described in more detail in the methodology section.

Recalculations Discussion

For the current Inventory, revisions were made to the 2014 and 2015 underground liberated and recovered emissions. The EPA’s GHGRP data that was used to calculate the emissions liberated and destroyed in 2014 and 2015 from a mine with a ventilation air methane (VAM) project was incorrect. The GHGRP spreadsheet for subpart FF reporting does not accommodate methane destruction from VAM, and therefore the emissions avoided are reported as degasification. In 2016, the VAM project’s verified emission reductions registered with the California Air Resources Board were deducted from the total reported destroyed methane; and the remaining emissions destroyed were applied to the mine’s degasification emissions recovered and destroyed total. The revised methodology was used to recalculate and update the emissions avoided in 2014 and 2015.

3.5 Abandoned Underground Coal Mines (CRF Source Category 1B1a)

Underground coal mines contribute the largest share of coal mine methane (CMM) emissions, with active underground mines the leading source of underground emissions. However, mines also continue to release CH$_4$ after closure. As mines mature and coal seams are mined through, mines are closed and abandoned. Many are sealed and some flood through intrusion of groundwater or surface water into the void. Shafts or portals are generally filled with gravel and capped with a concrete seal, while vent pipes and boreholes are plugged in a manner similar to oil and gas wells. Some abandoned mines are vented to the atmosphere to prevent the buildup of CH$_4$ that may find its way to surface structures through overburden fractures or via ground water aquifers. As work stops within the mines, CH$_4$ liberation decreases but it does not stop completely. Following an initial decline, abandoned mines can liberate CH$_4$ at a near-steady rate over an extended period of time, or, if flooded, produce gas for only a few years. The gas can migrate to the surface through the conduits described above, particularly if they have not been sealed adequately. In addition, diffuse emissions can occur when CH$_4$ migrates to the surface through cracks and fissures in the strata overlying the coal mine. The following factors influence abandoned mine emissions:
• Time since abandonment;
• Gas content and adsorption characteristics of coal;
• CH₄ flow capacity of the mine;
• Mine flooding;
• Presence of vent holes; and
• Mine seals.

Annual gross abandoned mine CH₄ emissions ranged from 7.2 to 10.8 MMT CO₂ Eq. from 1990 through 2016, varying, in general, by less than 1 percent to approximately 19 percent from year to year. Fluctuations were due mainly to the number of mines closed during a given year as well as the magnitude of the emissions from those mines when active. Gross abandoned mine emissions peaked in 1996 (10.8 MMT CO₂ Eq.) due to the large number of gassy mine closures from 1994 to 1996 (72 gassy mines closed during the three-year period). In spite of this rapid rise, abandoned mine emissions have been generally on the decline since 1996. Since 2002, there have been fewer than twelve gassy mine closures each year. There were five gassy mine closures in 2016. In 2016, gross abandoned mine emissions increased slightly from 9.0 to 9.5 MMT CO₂ Eq. (see Table 3-32 and Table 3-33). Gross emissions are reduced by CH₄ recovered and used at 45 mines, resulting in net emissions in 2016 of 6.7 MMT CO₂ Eq.

Table 3-32: CH₄ Emissions from Abandoned Coal Mines (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Underground Mines</td>
<td>7.2</td>
<td>8.4</td>
<td>8.9</td>
<td>8.8</td>
<td>8.7</td>
<td>9.0</td>
<td>9.5</td>
</tr>
<tr>
<td>Recovered & Used</td>
<td>+</td>
<td>1.8</td>
<td>2.7</td>
<td>2.6</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Total</td>
<td>7.2</td>
<td>6.6</td>
<td>6.2</td>
<td>6.2</td>
<td>6.3</td>
<td>6.4</td>
<td>6.7</td>
</tr>
</tbody>
</table>

+ Does not exceed 0.05 MMT CO₂ Eq.

Note: Totals may not sum due to independent rounding.

Table 3-33: CH₄ Emissions from Abandoned Coal Mines (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Underground Mines</td>
<td>288</td>
<td>334</td>
<td>358</td>
<td>353</td>
<td>350</td>
<td>359</td>
<td>380</td>
</tr>
<tr>
<td>Recovered & Used</td>
<td>+</td>
<td>70</td>
<td>109</td>
<td>104</td>
<td>97</td>
<td>102</td>
<td>112</td>
</tr>
<tr>
<td>Total</td>
<td>288</td>
<td>264</td>
<td>249</td>
<td>249</td>
<td>253</td>
<td>256</td>
<td>268</td>
</tr>
</tbody>
</table>

+ Does not exceed 0.5 kt

Note: Totals may not sum due to independent rounding.

Methodology

Estimating CH₄ emissions from an abandoned coal mine requires predicting the emissions of a mine from the time of abandonment through the inventory year of interest. The flow of CH₄ from the coal to the mine void is primarily dependent on the mine’s emissions when active and the extent to which the mine is flooded or sealed. The CH₄ emission rate before abandonment reflects the gas content of the coal, the rate and method of coal mining, and the flow capacity of the mine in much the same way as the initial rate of a water-free conventional gas well reflects the gas content of the producing formation and the flow capacity of the well. A well or a mine which produces gas from a coal seam and the surrounding strata will produce less gas through time as the reservoir of gas is depleted. Depletion of a reservoir will follow a predictable pattern depending on the interplay of a variety of natural physical conditions imposed on the reservoir. The depletion of a reservoir is commonly modeled by mathematical equations and mapped as a type curve. Type curves, which are referred to as decline curves, have been developed for abandoned coal mines. Existing data on abandoned mine emissions through time, although sparse, appear to fit the hyperbolic type of decline curve used in forecasting production from natural gas wells.

In order to estimate CH₄ emissions over time for a given abandoned mine, it is necessary to apply a decline function, initiated upon abandonment, to that mine. In the analysis, mines were grouped by coal basin with the assumption

78 A mine is considered a “gassy” mine if it emits more than 100 thousand cubic feet of CH₄ per day (100 mcfd).
that they will generally have the same initial pressures, permeability and isotherm. As CH₄ leaves the system, the reservoir pressure (Pr) declines as described by the isotherm’s characteristics. The emission rate declines because the mine pressure (Pw) is essentially constant at atmospheric pressure for a vented mine, and the productivity index (PI), which is expressed as the flow rate per unit of pressure change, is essentially constant at the pressures of interest (atmospheric to 30 psia). The CH₄ flow rate is determined by the laws of gas flow through porous media, such as Darcy’s Law. Permeability and isotherm data were gathered from each coal basin and histograms were generated. The low, mid and high values of each parameter were combined in nine separate flow simulations for each coal basin using a computational fluid dynamics simulation model used in the oil and gas industry, which generated individual decline curves. These decline curves fit a hyperbolic equation commonly used in the oil and gas industry for forecasting gas well production. A rate-time equation can be generated that can be used to predict future emissions. This equation is expressed as:

\[q = q_i \left(1 + bD_i t \right)^{-1/b} \]

where,

- \(q \) = Gas flow rate at time \(t \) in million cubic feet per day (mmcf/d)
- \(q_i \) = Initial gas flow rate at time zero \((t_0) \), mmcf/d
- \(b \) = The hyperbolic exponent, dimensionless
- \(D_i \) = Initial decline rate, 1/year
- \(t \) = Elapsed time from \(t_0 \) (years)

This equation is applied to mines of various initial emission rates that have similar initial pressures, permeability and adsorption isotherms relative to their coal basin (EPA 2004).

The decline curves created to model the gas emission rate of coal mines must account for factors that decrease the rate of emissions after mining activities cease, such as sealing and flooding. Based on field measurement data, it was assumed that most U.S. mines prone to flooding will become completely flooded within eight years and therefore will no longer have any measurable CH₄ emissions. Based on this assumption, an average decline rate for flooded mines was established by fitting a decline curve to emissions from field measurements. An exponential equation was developed from emissions data measured at eight abandoned mines known to be filling with water located in two of the five basins. Using a least squares, curve-fitting algorithm, emissions data were matched to the exponential equation shown below. There was not enough data to establish basin-specific equations as was done with the vented, non-flooding mines (EPA 2004).

\[q = q_i e^{(-D_t \Delta t)} \]

where,

- \(q \) = Gas flow rate at time \(t \) in mmcf/d
- \(q_i \) = Initial gas flow rate at time zero \((t_0) \), mmcf/d
- \(D \) = Decline rate, 1/year
- \(t \) = Elapsed time from \(t_0 \) (years)

Seals have an inhibiting effect on the flow rate of CH₄ into the atmosphere compared to the flow rate that would exist if the mine had an open vent. The total volume emitted will be the same, but emissions will occur over a longer period of time. The methodology, therefore, treats the emissions prediction from a sealed mine similarly to the emissions prediction from a vented mine, but uses a lower initial rate depending on the degree of sealing. A computational fluid dynamics simulator was used with the conceptual abandoned mine model to predict the decline curve for inhibited flow. The percent sealed is defined as 100 × (1 – [initial emissions from sealed mine / emission rate at abandonment prior to sealing]). Significant differences are seen between 50 percent, 80 percent and 95 percent closure. These decline curves were therefore used as the high, middle, and low values for emissions from sealed mines (EPA 2004).

For active coal mines, those mines producing over 100 thousand cubic feet per day (mcfd) account for about 98 percent of all CH₄ emissions. This same relationship is assumed for abandoned mines. It was determined that the 531 abandoned mines closed after 1972 produced emissions greater than 100 mcfd when active. Further, the status of 304 of the 531 mines (or 57 percent) is known to be either: 1) vented to the atmosphere; 2) sealed to some degree (either earthen or concrete seals); or, 3) flooded (enough to inhibit CH₄ flow to the atmosphere). The remaining 43
percent of the mines whose status is unknown were placed in one of these three categories by applying a probability distribution analysis based on the known status of other mines located in the same coal basin (EPA 2004).

Table 3-34: Number of Gassy Abandoned Mines Present in U.S. Basins in 2016, grouped by Class according to Post-Abandonment State

<table>
<thead>
<tr>
<th>Basin</th>
<th>Sealed</th>
<th>Vented</th>
<th>Flooded</th>
<th>Total Known</th>
<th>Unknown</th>
<th>Total Mines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Appl.</td>
<td>40</td>
<td>26</td>
<td>52</td>
<td>118</td>
<td>147</td>
<td>265</td>
</tr>
<tr>
<td>Illinois</td>
<td>34</td>
<td>3</td>
<td>14</td>
<td>51</td>
<td>31</td>
<td>82</td>
</tr>
<tr>
<td>Northern Appl.</td>
<td>47</td>
<td>22</td>
<td>16</td>
<td>85</td>
<td>39</td>
<td>124</td>
</tr>
<tr>
<td>Warrior Basin</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Western Basins</td>
<td>28</td>
<td>4</td>
<td>2</td>
<td>34</td>
<td>10</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td>149</td>
<td>55</td>
<td>100</td>
<td>304</td>
<td>227</td>
<td>531</td>
</tr>
</tbody>
</table>

Inputs to the decline equation require the average emission rate and the date of abandonment. Generally, this data is available for mines abandoned after 1971; however, such data are largely unknown for mines closed before 1972, which marks the beginning of comprehensive methane emissions data by the Bureau of Mines. Information that is readily available, such as coal production by state and county, is helpful but does not provide enough data to directly employ the methodology used to calculate emissions from mines abandoned before 1972. It is assumed that pre-1972 mines are governed by the same physical, geologic, and hydrologic constraints that apply to post-1971 mines; thus, their emissions may be characterized by the same decline curves.

During the 1970s, 78 percent of CH$_4$ emissions from coal mining came from seventeen counties in seven states. In addition, mine closure dates were obtained for two states, Colorado and Illinois, for the hundred-year period extending from 1900 through 1999. The data were used to establish a frequency of mine closure histogram (by decade) and applied to the other five states with gassy mine closures. As a result, basin-specific decline curve equations were applied to the 145 gassy coal mines estimated to have closed between 1920 and 1971 in the United States, representing 78 percent of the emissions. State-specific, initial emission rates were used based on average coal mine CH$_4$ emissions rates during the 1970s (EPA 2004) and closure dates were summarized by decade. Emissions from pre-1972 mines represent approximately 17 percent of total abandoned mine methane emissions.

Abandoned mine emission estimates are based on all closed mines known to have active mine CH$_4$ ventilation emission rates greater than 100 mcfd at the time of abandonment. For example, for 1990 the analysis included 145 mines closed before 1972 and 258 mines closed between 1972 and 1990. Initial emission rates based on MSHA reports, time of abandonment, and basin-specific decline curves influenced by a number of factors were used to calculate annual emissions for each mine in the database (MSHA 2016). Coal mine degasification data are not available for years prior to 1990, thus the initial emission rates used reflect ventilation emissions only for pre-1990 closures. CH$_4$ degasification amounts were added to the quantity of CH$_4$ vented to determine the total CH$_4$ liberation rate for all mines that closed between 1992 and 2016. Since the sample of gassy mines is assumed to account for 78 percent of the pre-1972 and 98 percent of the post-1971 abandoned mine emissions, the modeled results were multiplied by 1.22 and 1.02 to account for all U.S. abandoned mine emissions.

From 1993 through 2016, emission totals were reduced by subtracting abandoned mine CH$_4$ emissions avoided. The Inventory totals were not adjusted for abandoned mine reductions from 1990 through 1992 because no data was reported for abandoned coal mining CH$_4$ recovery projects during that time.

Uncertainty and Time-Series Consistency

A quantitative uncertainty analysis was conducted to estimate the uncertainty surrounding the estimates of emissions from abandoned underground coal mines. The uncertainty analysis described below provides for the specification of probability density functions for key variables within a computational structure that mirrors the calculation of the inventory estimate. The results provide the range within which, with 95 percent certainty, emissions from this source category are likely to fall.

As discussed above, the low, mid and high model generated decline curves for each basin were fitted to a hyperbolic decline curve. The decline curve parameters, Di and b, for the low, mid and high decline curves were then used to define a triangular distribution and together with the initial rate value of a mine’s emissions and time from
abandonment, a probability density function for each mine in the coal basin was generated. These density functions were then summed together using Monte Carlo simulation software to produce the AMM inventory which would be expressed in terms of a 95 percent confidence interval.

The results of the Approach 2 quantitative uncertainty analysis are summarized in Table 3-35. Annual abandoned coal mine \(\text{CH}_4 \) emissions in 2016 were estimated to be between 5.5 and 8.2 MMT CO\(_2\) Eq. at a 95 percent confidence level. This indicates a range of 18 percent below to 22 percent above the 2016 emission estimate of 6.7 MMT CO\(_2\) Eq. One of the reasons for the relatively narrow range is that mine-specific data is available for use in the methodology for mines closed after 1972. Emissions from mines closed prior to 1972 have the largest degree of uncertainty because no mine-specific CH\(_4\) liberation rates exist. Pre-1972 mines represent 17 percent of the total abandoned mine inventory.

Table 3-35: Approach 2 Quantitative Uncertainty Estimates for CH\(_4\) Emissions from Abandoned Underground Coal Mines (MMT CO\(_2\) Eq. and Percent)

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>2016 Emission Estimate (MMT CO(_2) Eq.)</th>
<th>Uncertainty Range Relative to Emission Estimate(^a) (MMT CO(_2) Eq.)</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Underground Coal Mines</td>
<td>CH(_4)</td>
<td>6.7</td>
<td>-18%</td>
<td>5.5</td>
<td>8.2</td>
<td>-18%</td>
<td>22%</td>
</tr>
</tbody>
</table>

\(^a\) Range of emission estimates predicted by Monte Carlo Simulation for a 95 percent confidence interval.

Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990 through 2016. Details on the emission trends through time are described in more detail in the Methodology section, above.

3.6 Petroleum Systems (CRF Source Category 1B2a)

Methane emissions from petroleum systems are primarily associated with onshore and offshore crude oil production, transportation, and refining operations. During these activities, \(\text{CH}_4 \) is released to the atmosphere as leak emissions, vented emissions (including emissions from operational upsets) and emissions from fuel combustion. Leak and vented CO\(_2\) emissions from petroleum systems are primarily associated with crude oil production and refining operations but are negligible in transportation operations. Total \(\text{CH}_4 \) emissions from petroleum systems in 2016 were 38.6 MMT CO\(_2\) Eq. (1,544 kt), a decrease of 3 percent from 1990. Total CO\(_2\) emissions from petroleum systems in 2016 were 22.8 MMT CO\(_2\) Eq. (22,767 kt), an increase of a factor of 3 from 1990.

Each year, some estimates in the Inventory are recalculated with improved methods and/or data. These improvements are implemented consistently across the previous Inventory’s time series (i.e., 1990 to 2015) to ensure that the trend is accurate. Recalculations in petroleum systems in this year’s Inventory include:

- Estimated flaring emissions specific to petroleum production; where previous methodology assigned all emissions (including flaring from miscellaneous sources and associated gas) to the natural gas production segment.
- Revised CO\(_2\) emission estimation methods for production segment sources to use GHGRP data (for consistency with the approach applied for \(\text{CH}_4 \) emission estimates): associated gas venting and flaring, oil tanks, pneumatic controllers, and chemical injection pumps.

The section below, titled Recalculations Discussion, provides more details on the updated methods.

Exploration. Exploration includes well drilling, testing, and completions. Exploration accounts for approximately 5 percent of total \(\text{CH}_4 \) emissions from petroleum systems. The predominant sources of emissions from exploration are hydraulically fractured oil well completions and well testing. Other sources include well completions without
hydraulic fracturing and well drilling. Since 1990, exploration CH\textsubscript{4} emissions have increased 168 percent due to increases in the number of wells completed. Emissions of CH\textsubscript{4} from exploration decreased 7 percent from 2015 to 2016. Exploration accounts for less than 1 percent of total CO\textsubscript{2} emissions from petroleum systems. Emissions of CO\textsubscript{2} from exploration in 2016 decreased by 84 percent from 1990, and 85 percent from 2015, due to a decrease in well testing flaring CO\textsubscript{2} emissions.

Production. Production accounts for approximately 92 percent of total CH\textsubscript{4} emissions from petroleum systems. The predominant sources of emissions from production field operations are pneumatic controllers, offshore oil platforms, oil tanks, gas engines, chemical injection pumps, and leaks from oil wellheads. Since 1990, CH\textsubscript{4} emissions from production have decreased by 7 percent, due to decreases in emissions from tanks, pneumatic controllers, and offshore platforms. Overall, production segment methane emissions increased by 1 percent from 2015 levels, although emissions from tanks increased by 54 percent, emissions from associated gas venting and flaring decreased by 36 percent, and emissions from miscellaneous production flaring decreased by 34 percent in 2016 compared to 2015. The change in CH\textsubscript{4} emissions from 2015 to 2016 for tanks, associated gas venting and flaring, and miscellaneous production flaring reflects differences in reported GHGRP subpart W emissions levels for reporting year (RY) 2016 as compared to RY2015. Production emissions account for approximately 84 percent of the total CO\textsubscript{2} emissions from petroleum systems. The principal sources of CO\textsubscript{2} emissions are associated gas flaring, oil tanks with flares, and miscellaneous production flaring. These three sources together account for over 99 percent of the CO\textsubscript{2} emissions from production.

Crude Oil Transportation. Crude oil transportation activities account for less than 1 percent of total CH\textsubscript{4} emissions from the oil industry. Vented emissions from tanks, truck loading, rail loading, and marine vessel loading operations account for 85 percent of CH\textsubscript{4} emissions from crude oil transportation. Leak emissions, almost entirely from floating roof tanks, account for approximately 11 percent of CH\textsubscript{4} emissions from crude oil transportation. Since 1990, CH\textsubscript{4} emissions from transportation have increased by 27 percent. However, because emissions from crude oil transportation account for such a small percentage of the total emissions from the petroleum industry, this has had little impact on the overall emissions. Methane emissions from transportation in 2016 decreased by less than 1 percent from 2015 levels.

Crude Oil Refining. Crude oil refining processes and systems account for approximately 2 percent of total CH\textsubscript{4} emissions from the oil industry. This low share is because most of the CH\textsubscript{4} in crude oil is removed or escapes before the crude oil is delivered to the refineries. There is an insignificant amount of CH\textsubscript{4} in all refined products. Within refineries, incomplete combustion accounts for 38 percent of the CH\textsubscript{4} emissions, while vented and leak emissions account for approximately 52 and 10 percent, respectively. Flaring accounts for 82 percent of combustion CH\textsubscript{4} emissions. Refinery system blowdowns for maintenance and process vents are the primary venting contributors (97 percent). Most of the leak CH\textsubscript{4} emissions from refineries are from equipment leaks and storage tanks (85 percent). Methane emissions from refining of crude oil have increased by approximately 51 percent since 1990; however, similar to the transportation subcategory, this increase has had little effect on the overall emissions of CH\textsubscript{4}. From 1990 to 2015, CH\textsubscript{4} emissions from crude oil refining fluctuated between 24 and 28 kt; in 2016, emissions increased to 37 kt as process vent emissions increased. Crude oil refining processes and systems account for approximately 16 percent of total CO\textsubscript{2} emissions from the oil industry. Almost all (97 percent) of the CO\textsubscript{2} from refining is from flaring. Refinery CO\textsubscript{2} emissions increased by approximately 13 percent from 1990 to 2016.

Table 3-36: CH\textsubscript{4} Emissions from Petroleum Systems (MMT CO\textsubscript{2} Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration*</td>
<td>0.8</td>
<td>1.0</td>
<td>2.8</td>
<td>3.0</td>
<td>3.3</td>
<td>2.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Production (Total)</td>
<td>38.3</td>
<td>30.3</td>
<td>29.0</td>
<td>32.7</td>
<td>34.4</td>
<td>34.9</td>
<td>35.4</td>
</tr>
<tr>
<td>Pneumatic controller venting</td>
<td>19.1</td>
<td>16.6</td>
<td>14.3</td>
<td>17.2</td>
<td>17.9</td>
<td>18.0</td>
<td>18.5</td>
</tr>
<tr>
<td>Offshore platforms</td>
<td>5.3</td>
<td>4.6</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Associated gas venting and flaring</td>
<td>1.0</td>
<td>0.7</td>
<td>1.1</td>
<td>1.3</td>
<td>1.6</td>
<td>1.7</td>
<td>1.1</td>
</tr>
<tr>
<td>Tanks</td>
<td>6.4</td>
<td>2.1</td>
<td>1.4</td>
<td>1.6</td>
<td>1.9</td>
<td>2.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Gas engines</td>
<td>2.1</td>
<td>1.8</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Chemical injection pumps</td>
<td>1.2</td>
<td>1.7</td>
<td>2.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Other Sources</td>
<td>3.0</td>
<td>2.8</td>
<td>3.4</td>
<td>3.7</td>
<td>3.9</td>
<td>4.0</td>
<td>3.7</td>
</tr>
<tr>
<td>Crude Oil Transportation</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Refining</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Table 3-37: CH₄ Emissions from Petroleum Systems (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration*</td>
<td>31</td>
<td>39</td>
<td>113</td>
<td>120</td>
<td>131</td>
<td>89</td>
<td>82</td>
</tr>
<tr>
<td>Production (Total)</td>
<td>1,531</td>
<td>1,212</td>
<td>1,161</td>
<td>1,309</td>
<td>1,377</td>
<td>1,398</td>
<td>1,416</td>
</tr>
<tr>
<td>Pneumatic controller venting</td>
<td>766</td>
<td>663</td>
<td>570</td>
<td>687</td>
<td>716</td>
<td>721</td>
<td>739</td>
</tr>
<tr>
<td>Offshore platforms</td>
<td>211</td>
<td>185</td>
<td>188</td>
<td>188</td>
<td>188</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Associated gas venting and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flaring</td>
<td>40</td>
<td>30</td>
<td>45</td>
<td>52</td>
<td>62</td>
<td>67</td>
<td>43</td>
</tr>
<tr>
<td>Tanks</td>
<td>258</td>
<td>84</td>
<td>57</td>
<td>65</td>
<td>77</td>
<td>82</td>
<td>127</td>
</tr>
<tr>
<td>Gas Engines</td>
<td>85</td>
<td>70</td>
<td>83</td>
<td>87</td>
<td>92</td>
<td>93</td>
<td>89</td>
</tr>
<tr>
<td>Chemical injection pumps</td>
<td>49</td>
<td>67</td>
<td>80</td>
<td>82</td>
<td>85</td>
<td>85</td>
<td>81</td>
</tr>
<tr>
<td>Other Sources</td>
<td>122</td>
<td>113</td>
<td>138</td>
<td>147</td>
<td>158</td>
<td>161</td>
<td>150</td>
</tr>
<tr>
<td>Crude Oil Transportation</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Refining</td>
<td>24</td>
<td>28</td>
<td>27</td>
<td>27</td>
<td>26</td>
<td>28</td>
<td>37</td>
</tr>
<tr>
<td>Total</td>
<td>1,592</td>
<td>1,284</td>
<td>1,307</td>
<td>1,463</td>
<td>1,543</td>
<td>1,523</td>
<td>1,544</td>
</tr>
</tbody>
</table>

* Exploration includes well drilling, testing, and completions.
Note: Totals may not sum due to independent rounding.

Table 3-38: CO₂ Emissions from Petroleum Systems (MMT CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>+</td>
</tr>
<tr>
<td>Production</td>
<td>4.2</td>
<td>7.8</td>
<td>15.6</td>
<td>18.8</td>
<td>22.6</td>
<td>24.5</td>
<td>19.0</td>
</tr>
<tr>
<td>Transportation</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>Crude Refining</td>
<td>3.3</td>
<td>3.7</td>
<td>3.4</td>
<td>3.6</td>
<td>3.4</td>
<td>4.0</td>
<td>3.7</td>
</tr>
<tr>
<td>Total</td>
<td>7.7</td>
<td>11.7</td>
<td>19.3</td>
<td>22.6</td>
<td>26.3</td>
<td>28.8</td>
<td>22.8</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.
+ Does not exceed 0.05 MMT CO₂.
NE (Not Estimated)

Table 3-39: CO₂ Emissions from Petroleum Systems (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration</td>
<td>243</td>
<td>207</td>
<td>247</td>
<td>255</td>
<td>264</td>
<td>262</td>
<td>39</td>
</tr>
<tr>
<td>Production</td>
<td>4,164</td>
<td>7,768</td>
<td>15,628</td>
<td>18,752</td>
<td>22,645</td>
<td>24,476</td>
<td>19,018</td>
</tr>
<tr>
<td>Transportation</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>Crude Refining</td>
<td>3,282</td>
<td>3,726</td>
<td>3,425</td>
<td>3,605</td>
<td>3,414</td>
<td>4,014</td>
<td>3,710</td>
</tr>
<tr>
<td>Total</td>
<td>7,689</td>
<td>11,700</td>
<td>19,300</td>
<td>22,611</td>
<td>26,324</td>
<td>28,752</td>
<td>22,767</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.
NE (Not Estimated)

Methodology

See Annex 3.5 for the full time series of emissions data, activity data, and emission factors, and additional information on methods and data sources.

Petroleum systems includes emission estimates for activities occurring in petroleum systems from the oil wellhead through crude oil refining, including activities for crude oil exploration, production field operations, crude oil transportation activities, and refining operations. Emissions are estimated for each activity by multiplying emission factors (e.g., emission rate per equipment or per activity) by corresponding activity data (e.g., equipment count or frequency of activity).

The emission factors for pneumatic controllers and chemical injection pumps were developed using GHGRP data for reporting year 2014. The emission factors for tanks, well testing, associated gas venting and flaring, and miscellaneous production flaring were developed using GHGRP data for reporting year 2015 and 2016. Emission factors for hydraulically fractured (HF) oil well completions (controlled and uncontrolled) were developed using DrillingInfo data analyzed for the 2015 NSPS OOOOa proposal. For offshore oil production, two emission factors were calculated using data collected for all federal offshore platforms; one for oil platforms in shallow water, and one for oil platforms in deep water. For most sources, emission factors were held constant for the period 1990 through 2016, and trends in emissions reflect changes in activity levels. For tanks, well testing, and associated gas venting and flaring, year-specific emission factors were developed for 2015 and 2016 and the 2015 emission factors were applied back to 1990. For miscellaneous production flaring, year-specific emission factors were developed for 2015 and 2016, an emission factor of 0 was assumed for 1990 through 1992, and linear interpolation was applied to develop emission factors for 1993 through 2014. Emission factors from EPA 1999 are used for all other production and transportation activities.

For associated gas venting and flaring and miscellaneous production flaring, emission factors were developed on a production basis (i.e., emissions per unit oil produced). Additionally, for these two sources, basin-specific activity and emission factors were developed for each basin that in any year from 2011 through 2016 contributed at least 10 percent of total source emissions (on a CO2 Eq. basis) in the GHGRP. For associated gas venting and flaring, basin-specific factors were developed for four basins: Williston, Permian, Gulf Coast, and Anadarko; for miscellaneous production flaring, basin-specific factors were developed for three basins: Williston, Permian, and Gulf Coast. Data from all other basins were combined, and activity and emission factors developed for the other basins as a single group for each emission source.

Activity Data. References for activity data include DrillingInfo (2017), Energy Information Administration (EIA) reports, Methane Emissions from the Natural Gas Industry by the Gas Research Institute and EPA (EPA/GRI 1996), Estimates of Methane Emissions from the U.S. Oil Industry (EPA 1999), consensus of industry peer review panels, BOEM reports, the Oil & Gas Journal, the Interstate Oil and Gas Compact Commission, the United States Army Corps of Engineers, and analysis of GHGRP data (EPA 2017).

For many sources, complete activity data were not available for all years of the time series. In such cases, one of three approaches was employed to estimate values, consistent with IPCC good practice. Where appropriate, the activity data were calculated from related statistics using ratios developed based on EPA/GRI 1996 and/or GHGRP data. For floating roof tanks, the activity data were held constant from 1990 through 2016 based on EPA 1999. In some cases, activity data are developed by interpolating between recent data points (such as from GHGRP) and earlier data points, such as from EPA/GRI 1996. Lastly, the previous year’s data were used for domestic barges and tankers as current year were not yet available. For offshore production, the number of platforms in shallow water and the number of platforms in deep water are used as activity data and are taken from BOEM datasets.

For the production segment, in general, CO2 emissions for each source are estimated with GHGRP data or by multiplying CO2 emission factors by the corresponding CH4 data, as the CO2 content of gas relates to the CH4 content of gas. Sources with CO2 emissions calculated from GHGRP data are associated gas venting and flaring, tanks, well testing, pneumatic controllers, chemical injection pumps, and miscellaneous production flaring. For these sources, CO2 was calculated using the same methods as used for CH4. Emission factors for offshore oil production (shallow and deep water) were derived using data from BOEM. For other sources, the production field operations emission factors for CO2 are generally estimated by multiplying the CH4 emission factors by a conversion factor, which is the ratio of CO2 content and CH4 content in produced associated gas.

For petroleum refining activities, 2010 to 2016 emissions were directly obtained from EPA’s GHGRP. All U.S. refineries have been required to report CH4 and CO2 emissions for all major activities starting with emissions that occurred in 2010. However, GHGRP does have provisions that refineries are not required to report to the GHGRP if their emissions fall below certain thresholds (see Planned Improvements for additional discussion). The reported total of CH4 and CO2 emissions for each activity was used for the 2010 to 2016 emissions. To estimate CH4 and CO2 emissions for 1990 to 2009, the 2010 to 2013 emissions data from GHGRP along with the refinery feed data for
2010 to 2013 were used to derive CH₄ and CO₂ emission factors (i.e., sum of activity emissions/sum of refinery feed), which were then applied to the annual refinery feed in years 1990 to 2009.

A complete list of references for emission factors and activity data by emission source is provided in Annex 3.5.

EPA received stakeholder feedback on updates in the Inventory through EPA’s stakeholder process on oil and gas in the Inventory. Stakeholder feedback is noted below in Uncertainty and Time-Series Consistency, Recalculations Discussion, and Planned Improvements.

Uncertainty and Time-Series Consistency

In recent years, EPA has made significant revisions to the Inventory methodology to use updated activity and emissions data. To update its characterization of uncertainty, EPA has conducted a quantitative uncertainty analysis using the IPCC Approach 2 methodology (Monte Carlo Simulation technique). For more information, please see the memorandum Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Natural Gas and Petroleum Systems Uncertainty Estimates (2018 Uncertainty Memo).⁷⁹

EPA used Microsoft Excel's @RISK add-in tool to estimate the 95 percent confidence bound around methane emissions from petroleum systems for the current Inventory, then applied the calculated bounds to both CH₄ and CO₂ emissions estimates. For the analysis, EPA focused on the five highest methane-emitting sources for the year 2016, which together emitted 78 percent of methane from petroleum systems in 2016, and extrapolated the estimated uncertainty for the remaining sources. The @RISK add-in provides for the specification of probability density functions (PDFs) for key variables within a computational structure that mirrors the calculation of the inventory estimate. The IPCC guidance notes that in using this method, “some uncertainties that are not addressed by statistical means may exist, including those arising from omissions or double counting, or other conceptual errors, or from incomplete understanding of the processes that may lead to inaccuracies in estimates developed from models.” As a result, the understanding of the uncertainty of emission estimates for this category evolves and improves as the underlying methodologies and datasets improve. The uncertainty bounds reported below only reflect those uncertainties that EPA has been able to quantify and do not incorporate considerations such as modeling uncertainty, data representativeness, measurement errors, misreporting or misclassification.

The results presented below provide the 95 percent confidence bound within which actual emissions from this source category are likely to fall for the year 2016, using the recommended IPCC methodology. The results of the Approach 2 uncertainty analysis are summarized in Table 3-40. Petroleum systems CH₄ emissions in 2016 were estimated to be between 27.1 and 51.9 MMT CO₂ Eq., while CO₂ emissions were estimated to be between 16.0 and 30.6 MMT CO₂ Eq. at a 95 percent confidence level. Uncertainty bounds for other years of the time series have not been calculated, but uncertainty is expected to vary over the time series. For example, years where many emission sources are calculated with interpolated data would likely have higher uncertainty than years with predominantly year-specific data.

Table 3-40: Approach 2 Quantitative Uncertainty Estimates for CH₄ Emissions from Petroleum Systems (MMT CO₂ Eq. and Percent)

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>2016 Emission Estimate (MMT CO₂ Eq.)b</th>
<th>Uncertainty Range Relative to Emission Estimatea (MMT CO₂ Eq.)</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum Systems</td>
<td>CH₄</td>
<td>38.6</td>
<td></td>
<td>27.1</td>
<td>51.9</td>
<td>-30%</td>
<td>+34%</td>
</tr>
<tr>
<td>Petroleum Systems</td>
<td>CO₂</td>
<td>22.8</td>
<td></td>
<td>16.0</td>
<td>30.6</td>
<td>-30%</td>
<td>+34%</td>
</tr>
</tbody>
</table>

⁷⁹ See <https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems>
GHGRP data available starting in 2010 for refineries and in 2011 for other sources have improved estimates of emissions from petroleum systems. Many of the previously available datasets were collected in the 1990s. To develop a consistent time series for 1990 through 2016, for sources with new data, EPA reviewed available information on factors that may have resulted in changes over the time series (e.g., regulations, voluntary actions) and requested stakeholder feedback on trends as well. For most sources, EPA developed annual data for 1993 through 2014 by interpolating activity data or emission factors or both between 1992 and 2010 or 2015 data points. Information on time-series consistency for sources updated in this year’s Inventory can be found in the Recalculations Discussion below, with additional detail provided in supporting memos (relevant memos are cited in the Recalculations Discussion). For information on other sources, please see the Methodology Discussion above.

QA/QC and Verification Discussion

The petroleum systems emission estimates in the Inventory are continually being reviewed and assessed to determine whether emission factors and activity factors accurately reflect current industry practices. A QA/QC analysis was performed for data gathering and input, documentation, and calculation. QA/QC checks are consistently conducted to minimize human error in the model calculations. EPA performs a thorough review of information associated with new studies, GHGRP data, regulations, public webcasts, and the Natural Gas STAR Program to assess whether the assumptions in the Inventory are consistent with current industry practices. EPA has a multi-step data verification process for GHGRP data, including automatic checks during data-entry, statistical analyses on completed reports, and staff review of the reported data. Based on the results of the verification process, EPA follows up with facilities to resolve mistakes that may have occurred.80

As in previous years, EPA conducted early engagement and communication with stakeholders on updates prior to Public Review. EPA held stakeholder workshops on greenhouse gas data for oil and gas in June and October of 2017, and held webinars in April and August of 2017 and March of 2018. In advance of each workshop, EPA released memos detailing updates under consideration and requesting stakeholder feedback. Stakeholder feedback received through these processes is discussed in the Recalculations Discussion and Planned Improvements sections below.

In recent years, several studies have measured emissions at the source level and at the national or regional level and calculated emission estimates that may differ from the Inventory. There are a variety of potential uses of data from new studies, including replacing a previous estimate or factor, verifying or QA of an existing estimate or factor, and identifying areas for updates. In general, there are two major types of studies related to oil and gas greenhouse gas data: studies that focus on measurement or quantification of emissions from specific activities, processes, and equipment, and studies that use tools such as inverse modeling to estimate the level of overall emissions needed to account for measured atmospheric concentrations of greenhouse gases at various scales. The first type of study can lead to direct improvements to or verification of Inventory estimates. In the past few years, EPA has reviewed and in many cases, incorporated data from these data sources. The second type of study can provide general indications on potential over- and under-estimates. A key challenge in using these types of studies to assess Inventory results is having a relevant basis for comparison (i.e., the independent study should assess data from the Inventory and not another data set, such as EDGAR). In an effort to improve the ability to compare the national-level Inventory with measurement results that may be at other scales, a team at Harvard University along with EPA and other coauthors developed a gridded inventory of U.S. anthropogenic methane emissions with 0.1 degree x 0.1 degree spatial resolution, monthly temporal resolution, and detailed scale-dependent error characterization.81 The gridded methane inventory is designed to be consistent with the U.S. EPA *Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014* estimates for the year 2012, which presents national totals.82

81 See <https://www.epa.gov/ghgemissions/gridded-2012-methane-emissions>
Recalculations Discussion

EPA received information and data related to the emission estimates through GHGRP reporting, the annual Inventory formal public notice periods, stakeholder feedback on updates under consideration, and new studies. In June and October 2017, EPA released draft memoranda that discussed changes under consideration, and requested stakeholder feedback on those changes. EPA then created updated versions of the memoranda to document the methodology implemented into the current Inventory. Final memoranda cited in the Recalculations Discussion below are, Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Revisions to Create Year-Specific Emissions and Activity Factors (2018 Year-Specific Revisions Memo) and Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Revisions to CO₂ Emissions Estimation Methodologies (2018 CO₂ Memo).

EPA thoroughly evaluated relevant information available, and made updates to exploration and production segment methodologies for the Inventory, including to define an exploration segment separate from production (not a methodological change, but a change in presentation of information), revising activity and CH₄ and CO₂ emissions data for associated gas venting and flaring, miscellaneous production flaring, and well testing. Production segment CO₂ emissions data were also revised for oil tanks, pneumatic controllers, and chemical injection pumps.

The combined impact of revisions to 2015 petroleum systems CH₄ emissions, compared to the previous Inventory, is a decrease from 39.9 to 38.1 MMT CO₂ Eq. (1.8 MMT CO₂ Eq., or 4.5 percent). The recalculations resulted in an average decrease in CH₄ emission estimates across the 1990 through 2015 time series, compared to the previous Inventory, of 13 MMT CO₂ Eq., or 28 percent. The CH₄ emissions estimate decrease was primarily due to recalculations related to associated gas venting and flaring which were updated to use a basin-level approach, and has the largest impact on years prior to 2013.

The combined impact of revisions to 2015 petroleum systems CO₂ emissions, compared to the previous Inventory, is an increase from 3.6 to 28.8 MMT CO₂ (25.2 MMT CO₂, or by a factor of 7). The recalculations resulted in an average increase in emission estimates across the 1990 through 2015 time series, compared to the previous Inventory, of 9.1 MMT CO₂ Eq., or 240 percent. The CO₂ emissions estimate increase was primarily due to recalculations related to the reallocation of CO₂ from flaring to petroleum systems from natural gas systems. Previously, data were not available to disaggregate flared emissions between natural gas systems and petroleum systems. The largest sources of CO₂ from flaring are associated gas flaring, tanks with flares, and miscellaneous production flaring.

In Table 3-41 and Table 3-42 below are categories in Petroleum Systems with recalculations resulting in a change of greater than 0.05 MMT CO₂ Eq., comparing the previous estimate for 2015 to the current (recalculated) estimate for 2015. For more information, please see the Recalculations Discussion, below.

| Table 3-41: Recalculations of CO₂ in Petroleum Systems (MMT CO₂) |
|-------------------|------------------|-------------------|
| | Previous Estimate| Current Estimate | Current Estimate |
| | Year 2015, 2017 Inventory | Year 2015, 2018 Inventory | Year 2016, 2018 Inventory |
| Exploration | NA | 0.3 | + |
| Well Testing | NE | 0.3 | + |
| Production | 0.6 | 24.5 | 19.0 |
| Associated Gas Venting & Flaring | NE | 12.2 | 9.1 |
| Tanks | 0.5 | 8.7 | 7.4 |
| Miscellaneous Flaring* | NE | 3.4 | 2.5 |
| Transportation | NE | NE | NE |
| Refining | 2.9 | 4.0 | 3.7 |
| Petroleum Systems Total | 3.6 | 28.8 | 22.8 |

83 Draft and final memoranda for the 1990-2016 Inventory are available here <https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems>
*In the 2017 Inventory, emissions were generally included within the natural gas production flaring emissions estimate.
NA (Not Applicable)
NE (Not Estimated)
+ Does not exceed 0.05 MMT CO₂.

Table 3-42: Recalculations of CH₄ in Petroleum Systems (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th>Source</th>
<th>Previous Estimate Year 2015, 2017 Inventory</th>
<th>Current Estimate Year 2015, 2018 Inventory</th>
<th>Current Estimate Year 2016, 2018 Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration</td>
<td>NA</td>
<td>2.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Well Testing</td>
<td>NE</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Production</td>
<td>39.0</td>
<td>34.9</td>
<td>35.4</td>
</tr>
<tr>
<td>Associated Gas Venting & Flaring</td>
<td>3.7</td>
<td>1.7</td>
<td>1.1</td>
</tr>
<tr>
<td>Tanks</td>
<td>2.0</td>
<td>2.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Miscellaneous Flaring*</td>
<td>NE</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Transportation</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Refining</td>
<td>0.6</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Petroleum Systems Total</td>
<td>39.9</td>
<td>38.1</td>
<td>38.6</td>
</tr>
</tbody>
</table>

*In the 2017 Inventory, emissions were generally included within the natural gas production flaring emissions estimate.
NA (Not Applicable)
NE (Not Estimated)
+ Does not exceed 0.05 MMT CO₂.

Exploration

Petroleum systems was reorganized for the current Inventory to include an exploration segment to improve conformance with the IPCC guidelines. Exploration activities were previously included under the production segment. The activities included under exploration are hydraulically fractured oil well completions, oil well completions without hydraulic fracturing, well drilling, and well testing. Of these activities, well testing was the only source with a new methodology, which is discussed below.

Well Testing

EPA developed a new estimate for oil well testing (during non-completion events) using GHGRP data. In previous Inventories, only well testing conducted as part of a completion event was included. CH₄ and CO₂ emission factors were developed, on a per-event basis, for vented and flared oil well testing events using RY2015 and RY2016 data. EPA developed activity factors (i.e., number of events per oil well) to determine the number of well testing events in a year, also using RY2015 and RY2016 data. GHGRP RY2015 activity and emission factors are applied to all prior years of the time series. Methane emissions from well testing averaged 8.1 kt (or 0.2 MMT CO₂ Eq.) over the time series. There was a large decrease in emissions from oil well testing from 2015 to 2016 as observed in reported GHGRP data. Carbon dioxide emissions from well testing averaged 216 kt (0.2 MMT CO₂) over the time series. See the 2018 Year-Specific Revisions Memo for additional discussion.

Table 3-43: Oil Well Testing National CH₄ Emissions (Metric Tons CH₄)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Completion Well Testing - Vented</td>
<td>8,043</td>
<td>6,819</td>
<td>8,022</td>
<td>8,272</td>
<td>8,559</td>
<td>8,567</td>
<td>2,811</td>
</tr>
<tr>
<td>Non-Completion Well Testing - Flared</td>
<td>961</td>
<td>815</td>
<td>959</td>
<td>989</td>
<td>1,023</td>
<td>1,024</td>
<td>157</td>
</tr>
</tbody>
</table>

Table 3-44: Oil Well Testing National CO₂ Emissions (Metric Tons CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Completion Well Testing - Vented</td>
<td>363</td>
<td>308</td>
<td>363</td>
<td>374</td>
<td>387</td>
<td>387</td>
<td>566</td>
</tr>
<tr>
<td>Non-Completion Well Testing - Flared</td>
<td>241,362</td>
<td>204,643</td>
<td>240,754</td>
<td>248,234</td>
<td>256,853</td>
<td>257,101</td>
<td>34,481</td>
</tr>
</tbody>
</table>
Production

CO₂ Updates

EPA updated CO₂ emissions for a number of sources in the Inventory. See the 2018 CO₂ Memo for more details. The overall impact was an average increase of 9.1 MMT CO₂ (or 240 percent) over the time series in petroleum systems, which is primarily due to the reallocation of flaring CO₂ emissions from natural gas systems to petroleum systems, which was not possible in the past because the previous data source aggregated venting and flaring activity data from both petroleum and natural gas systems, but is now possible through use of the GHGRP data. A stakeholder noted that the update uses the best available data for this source.

Sources with the largest impacts include associated gas flaring, tanks with flares, and miscellaneous production flaring. These sources are discussed in detail below. Other sources (i.e., pneumatic controllers and chemical injection pumps) had increases or decreases of less than 1 MMT CO₂.

Associated Gas Venting and Flaring

EPA developed a new estimate for CO₂ from associated gas venting and flaring. EPA’s final methodology for this source is documented in the 2018 CO₂ Memo. As noted above in the Methodology section, EPA used a basin-level aggregation and production-based scaling approach to calculate emissions from this source. EPA evaluated basin-level associated gas venting and flaring data reported to GHGRP from 2011 to 2016; if a basin contributed at least 10 percent of total annual emissions (on a CO₂ Eq. basis) from associated gas venting and flaring in any year, then basin-specific emission factors and activity factors were developed. Four basins met this criteria: Williston, Permian, Gulf Coast, and Anadarko. Associated gas venting and flaring data in all other basins were combined, and emission factors and activity factors developed for the other basins as a single group. For each basin or group, emission factors were calculated for 2015 and 2016; the 2015 emission factors were applied to all prior years. Two activity factors were also calculated for each basin or group: the percent of oil production with either flaring or venting of associated gas and, within that subset of production, the fraction that vents and the fraction that flares. Each activity factor was calculated for 2015 and 2016, and the 2015 activity factors applied to all prior years. Stakeholder comments support the updates, though stakeholders have noted that past (e.g., 1990 through 2010) associated gas venting and flaring likely varied significantly from year to year and from region to region. However, data are not presently available to take variation prior to 2011 into account.

Table 3-45: Associated Gas Venting and Flaring National CO₂ Emissions (kt CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated Gas Venting Emissions</td>
<td>27</td>
<td>19</td>
<td>19</td>
<td>20</td>
<td>22</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>Associated Gas Flaring Emissions</td>
<td>4,001</td>
<td>3,295</td>
<td>7,475</td>
<td>9,173</td>
<td>11,226</td>
<td>12,211</td>
<td>9,103</td>
</tr>
<tr>
<td>Total Associated Gas Venting and Flaring</td>
<td>4,028</td>
<td>3,314</td>
<td>7,494</td>
<td>9,193</td>
<td>11,248</td>
<td>12,234</td>
<td>9,108</td>
</tr>
<tr>
<td>Previous Estimated emissions from stripper wells</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>NA</td>
</tr>
<tr>
<td>NA (Not Applicable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3-46: Basin-Level Detail Associated Gas Venting and Flaring CO₂ Emissions (kt CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gulf Coast Basin</td>
<td>202</td>
<td>108</td>
<td>283</td>
<td>420</td>
<td>553</td>
<td>590</td>
<td>299</td>
</tr>
<tr>
<td>Anadarko Basin</td>
<td>101</td>
<td>61</td>
<td>160</td>
<td>195</td>
<td>229</td>
<td>232</td>
<td>2</td>
</tr>
<tr>
<td>Williston Basin</td>
<td>925</td>
<td>1,186</td>
<td>4,721</td>
<td>6,006</td>
<td>7,463</td>
<td>8,049</td>
<td>6,193</td>
</tr>
<tr>
<td>Permian Basin</td>
<td>1,636</td>
<td>1,124</td>
<td>1,555</td>
<td>1,767</td>
<td>2,126</td>
<td>2,440</td>
<td>2,325</td>
</tr>
<tr>
<td>Other basins</td>
<td>1,165</td>
<td>835</td>
<td>774</td>
<td>804</td>
<td>877</td>
<td>924</td>
<td>289</td>
</tr>
</tbody>
</table>
The CH₄ methodology was developed for the previous Inventory and used a national-level approach. EPA updated its CH₄ calculations for associated gas venting and flaring to be consistent with the basin-level, production based approach to calculate CO₂ emissions from this source. Overall, the change decreased calculated CH₄ emissions over the time series by around 90 percent for combined associated gas venting and associated gas flaring, with the largest decreases occurring early in the time series.

Table 3-47: Associated Gas Venting and Flaring National CH₄ Emissions (Metric Tons CH₄)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated Gas Well Venting</td>
<td>24,159</td>
<td>17,133</td>
<td>19,018</td>
<td>20,827</td>
<td>23,746</td>
<td>25,564</td>
<td>14,375</td>
</tr>
<tr>
<td>Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associated Gas Well Flaring</td>
<td>15,671</td>
<td>12,413</td>
<td>25,807</td>
<td>31,452</td>
<td>38,358</td>
<td>41,749</td>
<td>28,782</td>
</tr>
<tr>
<td>Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous Associated Gas Well</td>
<td>608,758</td>
<td>511,701</td>
<td>482,816</td>
<td>214,665</td>
<td>89,333</td>
<td>42,518</td>
<td>NA</td>
</tr>
<tr>
<td>Venting Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous Associated Gas Well</td>
<td>76,176</td>
<td>64,031</td>
<td>104,513</td>
<td>146,292</td>
<td>149,694</td>
<td>105,706</td>
<td>NA</td>
</tr>
<tr>
<td>Flaring Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA (Not Applicable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tanks

EPA developed CO₂ emissions estimates for oil tanks using GHGRP data and a throughput-based approach. This approach is identical to the methodology to calculate CH₄ emissions; for more information, please see the 2017 Production Memo.⁸⁴ The overall impact of the change is an increase in calculated CO₂ emissions by a factor of nine on average over the time series.

Table 3-48: National Tank CO₂ Emissions by Category and National Emissions (kt CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Tanks w/ Flares</td>
<td>NO</td>
<td>3,407</td>
<td>5,978</td>
<td>6,870</td>
<td>8,054</td>
<td>8,657</td>
<td>7,282</td>
</tr>
<tr>
<td>Large Tanks w/ VRU</td>
<td>NO</td>
<td>6</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Large Tanks w/o Control</td>
<td>25</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Small Tanks w/ Flares</td>
<td>NO</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>Small Tanks w/o Flares</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Malfunctioning Dump Valves</td>
<td>20</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>23</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Total Emissions</td>
<td>53</td>
<td>3,444</td>
<td>6,023</td>
<td>6,922</td>
<td>8,115</td>
<td>8,722</td>
<td>7,351</td>
</tr>
<tr>
<td>Previous Estimated Emissions</td>
<td>329</td>
<td>247</td>
<td>366</td>
<td>433</td>
<td>520</td>
<td>520</td>
<td>NA</td>
</tr>
<tr>
<td>NA (Not Occurring)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA (Not Applicable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous Production Flaring

The EPA developed new estimates for CO₂ and CH₄ emissions from miscellaneous production flaring using GHGRP subpart W data. Along with other updates to flaring emissions in both oil and gas production, this replaces the estimate for flaring that was previously reported in the natural gas systems emissions totals. As noted above in the Methodology section, EPA used a production-based scaling and basin-level aggregation approach to calculate emissions from this source. To implement the production-based scaling approach, EPA apportioned miscellaneous production flaring emissions reported to GHGRP (as “flare stacks” emissions) between natural gas and petroleum systems according to the reported counts of gas and oil wells at each facility, then calculated production type-

specific emission factors as emissions per unit gas or unit oil production. To implement the basin-level approach, EPA evaluated basin-level miscellaneous production flaring data reported to GHGRP from 2011 to 2016; if a basin contributed at least 10 percent of total annual emissions (on a CO₂ Eq. basis) from flare stacks in any year, then basin-specific emission factors and activity data were developed. Three basins met this criteria: Gulf Coast, Williston, and Permian. Miscellaneous production flaring data in all other basins were combined, and emission factors and activity data developed for the other basins as a single group. For each basin or group, emission factors were calculated for 2015 and 2016, an emission factor of 0 was assumed for 1990 through 1992, and linear interpolation was applied to develop emission factors for 1993 through 2014. Stakeholder comments support this approach for calculating emissions from miscellaneous production flaring. Details are provided in the 2018 CO₂ Memo.

Table 3-49: Miscellaneous Production Flaring National CO₂ Emissions (kt CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Flaring-Gulf</td>
<td>NO</td>
<td>99</td>
<td>379</td>
<td>587</td>
<td>806</td>
<td>860</td>
<td>389</td>
</tr>
<tr>
<td>Coast Basin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Flaring-Williston</td>
<td>NO</td>
<td>78</td>
<td>468</td>
<td>624</td>
<td>811</td>
<td>874</td>
<td>337</td>
</tr>
<tr>
<td>Basin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Flaring-Permian</td>
<td>NO</td>
<td>139</td>
<td>288</td>
<td>342</td>
<td>430</td>
<td>494</td>
<td>775</td>
</tr>
<tr>
<td>Basin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Flaring-Other</td>
<td>NO</td>
<td>612</td>
<td>896</td>
<td>988</td>
<td>1,134</td>
<td>1,190</td>
<td>953</td>
</tr>
<tr>
<td>basins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Flaring-</td>
<td>NO</td>
<td>929</td>
<td>2,031</td>
<td>2,541</td>
<td>3,181</td>
<td>3,418</td>
<td>2,455</td>
</tr>
<tr>
<td>National Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous Estimated emissions</td>
<td>9,093</td>
<td>7,193</td>
<td>12,704</td>
<td>15,684</td>
<td>17,629</td>
<td>17,629</td>
<td>NA</td>
</tr>
<tr>
<td>from flaring (natural gas and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>petroleum)^{a}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^{a} The previous estimated emissions from flaring included emissions from multiple sources in the production and processing segments, and also included petroleum systems flaring emissions.

NO (Not Occurring)
NA (Not Applicable)

Table 3-50: Miscellaneous Production Flaring National CH₄ Emissions (Metric Tons CH₄)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Flaring-Gulf</td>
<td>NO</td>
<td>409</td>
<td>1,563</td>
<td>2,421</td>
<td>3,328</td>
<td>3,548</td>
<td>1,630</td>
</tr>
<tr>
<td>Coast Basin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Flaring-Williston</td>
<td>NO</td>
<td>196</td>
<td>1,172</td>
<td>1,562</td>
<td>2,029</td>
<td>2,188</td>
<td>957</td>
</tr>
<tr>
<td>Basin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Flaring-Permian</td>
<td>NO</td>
<td>533</td>
<td>1,103</td>
<td>1,312</td>
<td>1,650</td>
<td>1,893</td>
<td>2,738</td>
</tr>
<tr>
<td>Basin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Flaring-Other</td>
<td>NO</td>
<td>2,106</td>
<td>3,083</td>
<td>3,398</td>
<td>3,902</td>
<td>4,094</td>
<td>2,378</td>
</tr>
<tr>
<td>basins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Production</td>
<td>NO</td>
<td>3,245</td>
<td>6,921</td>
<td>8,694</td>
<td>10,909</td>
<td>11,724</td>
<td>7,703</td>
</tr>
<tr>
<td>Flaring – National Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous Estimated emissions</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NA</td>
</tr>
<tr>
<td>from flaring^a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^{a} Prior Inventories did not estimate methane emissions from a source similar to miscellaneous production flaring.

NO (Not Occurring)
NE (Not Estimated)
NA (Not Applicable)

Activity Data Updates

Well Counts

EPA has used a more recent version of the DrillingInfo data set to update well counts data in the Inventory. There are not methodological changes to this source in the current Inventory or major changes to the activity data, but because this is a key input, results are highlighted here.
In December 2017, EIA released a 2000 through 2016 time series of national oil and gas well counts. EIA total (oil and gas) well counts for 2016 were 1,010,441. EPA’s total well counts were 978,845. Over the 2000 to 2016 time series, EPA’s well counts were on average 2 percent lower than EIA’s. EIA’s well counts include side tracks, completions, and recompletions, and therefore are expected to be higher than EPA’s which include only producing wells. EPA and EIA use a different threshold for distinguishing between oil versus gas (EIA uses 6 mcf/bbl, while EPA uses 100 mcf/bbl), which results in EPA having a lower fraction of oil wells and a higher fraction of gas wells than EPA. Across the 2000 through 2016 EIA time series, EIA estimates on average 111,420 (or 20 percent) fewer oil wells in each year than EPA.

Equipment Counts

EPA recalculated activity factors of equipment per well using the GHGRP RY2015 data, which included some resubmissions. This resulted in minor changes across the time series. For example, the number of heater/treaters per well decreased by 9 percent over the time series, the number of separators and headers per well decreased by 4 percent and 3 percent, respectively, while chemical injection pumps and pneumatic controllers per well increased by 4 percent and less than 1 percent, respectively. The impact of the changes in equipment counts per well along with changes in well counts resulted in minor changes in methane emissions across the time series for heater/treaters (-12 percent), separators (17 percent), headers (-5 percent), pneumatic controllers (-2 percent), and chemical injection pumps (2 percent).

Transportation

Recalculations due to updated activity data for quantity of petroleum transported by barge or tanker in the transportation segment have resulted in an average decrease in calculated emissions over the time series from this segment of less than 0.01 percent.

Refining

Recalculations due to resubmitted GHGRP data in particular from flaring in the refining segment have resulted in an average increase in calculated CH\(_4\) emissions over the time series from this segment of 3 percent and an average increase in calculated CO\(_2\) emissions over the time series of 6 percent.

Planned Improvements

Oil Well Completions with Hydraulic Fracturing

The GHGRP began collecting data on oil well completions with hydraulic fracturing in RY2016; for the 2019 Inventory, two years of reporting data will be available, which EPA plans to review for consideration toward implementing methodological improvements for this emission source. Stakeholders support considering this data source and developing annual emission factors.

Refineries

The GHGRP includes provisions at 40 CFR 98.2(i) that allows facilities to discontinue complying with the GHGRP if their emissions fall below certain thresholds. EPA is assessing to what extent this provision has affected the subpart Y reported emissions. Based on preliminary assessments of subpart Y data for years 2011 through 2016,
EPA has not identified active refineries that have discontinued reporting to the GHGRP. If certain refineries are identified as not reporting emissions to the GHGRP, options to address this will be considered.

Offshore Platforms

EPA is considering updates to the offshore platform emissions calculation methodology, as discussed in the memorandum *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Additional Revisions Under Consideration (2018 Other Updates Memo).* The current emission factors were based on data from the 2011 DOI/Bureau of Ocean Energy Management’s (BOEM) Gulf Offshore Activity Data System (GOADS), and 2014 GOADS data is available. A different source for platform counts is also being considered.

N₂O Emissions

N₂O emissions are currently not included in petroleum systems estimates, but EPA is considering developing a methodology to estimate N₂O emissions. The 2018 Other Updates Memo provides discussion on this topic. EPA will consider options such as using GHGRP data for sources that already rely on GHGRP data for CH₄ or CO₂ estimates. GHGRP RY2015 and RY2016 reported N₂O flaring emissions specific to petroleum systems were 124 metric tons (or 0.04 MMT CO₂ Eq.) and 110 metric tons (or 0.03 MMT CO₂ Eq.), respectively. In addition, reported N₂O flaring emissions were 36 metric tons (or 0.01 MMT CO₂ Eq.) and 48 metric tons (or 0.01 MMT CO₂ Eq.) for GHGRP RY2015 and RY2016, respectively, for sources that fall within both natural gas and petroleum systems.

Well-Related Activity Data

As described in the Recalculations Discussion, EPA has updated the emission factors for certain well-related emission sources, including well testing. EPA will continue to assess available data, including data from the GHGRP and stakeholder feedback on considerations, to improve activity estimates for sources that rely on well-related activity data. For example, EPA will review GHGRP data regarding reported well workover rates; review DrillingInfo data to possibly estimate numbers of wells drilled in recent years (as the current EIA data source is not maintained after 2010); and seek information on other data sets that might inform estimates of non-hydraulically fractured oil well completions and workovers.

Floating Roof Tanks

EPA is considering removing production segment floating roof tanks from the Inventory or revising the methodology. The number of floating roof tanks and their emissions are minimal in the context of the petroleum production segment, and available data are limited; data on the number of floating roof tanks are only available for 1995, and the 1995 count is applied to all other years. EPA seeks stakeholder input on whether and how it is appropriate to include floating roof tank emission estimates in the production segment. The emission estimate for this source is 159 metric tons CH₄ in each year, or 0.01 percent of CH₄ emissions in 2016.

Upcoming Data, and Additional Data that Could Inform the Inventory

EPA will assess new data received by the Methane Challenge Program on an ongoing basis, which may be used to confirm or improve existing estimates and assumptions.

EPA continues to track studies that contain data that may be used to update the Inventory, such as an upcoming field study by API on pneumatic controllers. EPA will also continue to assess studies that include and compare both top-down and bottom-up estimates, and which could lead to improved understanding of unassigned high emitters (e.g., identification of emission sources and information on frequency of high emitters) as recommended in stakeholder comments.

85 See <https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems>
EPA also continues to seek new data that could be used to assess or update the estimates in the Inventory. For example, stakeholder comments have highlighted areas where additional data that could inform the Inventory are currently limited or unavailable:

- Tank malfunction and control efficiency data.
- Activity data and emissions data for production facilities that do not report to GHGRP.
- Associated gas venting and flaring data on practices from 1990 through 2010.
- Refineries emissions data. One stakeholder noted a recent study (Lavoie et al. 2017) that measured three refineries and found higher average emissions than in the Inventory, and the stakeholder suggested that EPA evaluate the study and any additional information available on this source.

One stakeholder suggested that the Inventory should be updated with site-level and basin-level data, noting the EPA could first use basin-level data to assess the inventory, and that future research could focus on collecting data in basins with the largest discrepancies.

EPA will continue to seek available data on these and other sources as part of the process to update the Inventory.

Box 3-7: Carbon Dioxide Transport, Injection, and Geological Storage

Carbon dioxide is produced, captured, transported, and used for Enhanced Oil Recovery (EOR) as well as commercial and non-EOR industrial applications. This CO₂ is produced from both naturally-occurring CO₂ reservoirs and from industrial sources such as natural gas processing plants and ammonia plants. In the Inventory, emissions from naturally-produced CO₂ are estimated based on the specific application.

In the Inventory, CO₂ that is used in non-EOR industrial and commercial applications (e.g., food processing, chemical production) is assumed to be emitted to the atmosphere during its industrial use. These emissions are discussed in the Carbon Dioxide Consumption section. The naturally-occurring CO₂ used in EOR operations is assumed to be fully sequestered. Additionally, all anthropogenic CO₂ emitted from natural gas processing and ammonia plants is assumed to be emitted to the atmosphere, regardless of whether the CO₂ is captured or not. These emissions are currently included in the Natural Gas Systems and the Ammonia Production sections of the Inventory report, respectively.

IPCC includes methodological guidance to estimate emissions from the capture, transport, injection, and geological storage of CO₂. The methodology is based on the principle that the carbon capture and storage system should be handled in a complete and consistent manner across the entire Energy sector. The approach accounts for CO₂ captured at natural and industrial sites as well as emissions from capture, transport, and use. For storage specifically, a Tier 3 methodology is outlined for estimating and reporting emissions based on site-specific evaluations. However, IPCC (IPCC 2006) notes that if a national regulatory process exists, emissions information available through that process may support development of CO₂ emission estimates for geologic storage.

In the United States, facilities that produce CO₂ for various end-use applications (including capture facilities such as acid gas removal plants and ammonia plants), importers of CO₂, exporters of CO₂, facilities that conduct geologic sequestration of CO₂, and facilities that inject CO₂ underground, are required to report greenhouse gas data annually to EPA through its GHGRP. Facilities conducting geologic sequestration of CO₂ are required to develop and implement an EPA-approved site-specific monitoring, reporting and verification plan, and to report the amount of CO₂ sequestered using a mass balance approach.

GHGRP data relevant for this inventory estimate consists of national-level annual quantities of CO₂ captured and extracted for EOR applications for 2010 to 2016. However, for 2015 and 2016, data from EPA’s GHGRP (Subpart PP) were unavailable for use in the current Inventory report due to data confidentiality reasons. The estimate for 2014 was held constant here to estimate 2015 and 2016 emissions. EPA will continue to evaluate the availability of additional GHGRP data and other opportunities for improving the emission estimates. For reporting year 2016, one facility reported data to the GHGRP under subpart RR (Geologic Sequestration of Carbon Dioxide). This facility reported 3.1 MMT of CO₂ sequestered in subsurface geological formations and 56 metric tons of CO₂ emitted from surface equipment leaks and vents.

These estimates indicate that the amount of CO₂ captured and extracted from natural and industrial sites for EOR applications in 2016 is 59.3 MMT CO₂ Eq. (59,318 kt) (see Table 3-52 and Table 3-53). Site-specific monitoring and reporting data for CO₂ injection sites (i.e., EOR operations) were not readily available, therefore, the quantity of
CO₂ captured and extracted is noted here for information purposes only; CO₂ captured and extracted from industrial and commercial processes is assumed to be emitted and included in emissions totals from those processes.

Table 3-52: Quantity of CO₂ Captured and Extracted for EOR Operations (MMT CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture Facilities</td>
<td>4.8</td>
<td>6.5</td>
<td>9.3</td>
<td>12.2</td>
<td>13.1</td>
<td>13.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Extraction Facilities</td>
<td>20.8</td>
<td>28.3</td>
<td>48.9</td>
<td>47.0</td>
<td>46.2</td>
<td>46.2</td>
<td>46.2</td>
</tr>
<tr>
<td>Total</td>
<td>25.6</td>
<td>34.7</td>
<td>58.1</td>
<td>59.2</td>
<td>59.3</td>
<td>59.3</td>
<td>59.3</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.

Table 3-53: Quantity of CO₂ Captured and Extracted for EOR Operations (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture Facilities</td>
<td>4,832</td>
<td>6,475</td>
<td>9,267</td>
<td>12,205</td>
<td>13,093</td>
<td>13,093</td>
<td>13,093</td>
</tr>
<tr>
<td>Extraction Facilities</td>
<td>20,811</td>
<td>28,267</td>
<td>48,869</td>
<td>46,984</td>
<td>46,225</td>
<td>46,225</td>
<td>46,225</td>
</tr>
<tr>
<td>Total</td>
<td>25,643</td>
<td>34,742</td>
<td>58,136</td>
<td>59,189</td>
<td>59,318</td>
<td>59,318</td>
<td>59,318</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.

3.7 Natural Gas Systems (CRF Source Category 1B2b)

The U.S. natural gas system encompasses hundreds of thousands of wells, hundreds of processing facilities, and over a million miles of transmission and distribution pipelines. Overall, natural gas systems emitted 163.5 MMT CO₂ Eq. (6,541 kt) of CH₄ in 2016, a 16 percent decrease compared to 1990 emissions, and a 1.7 percent decrease compared to 2015 emissions (see Table 3-54, Table 3-55, and Table 3-56) and 25.5 MMT CO₂ Eq. (25,516 kt) of non-combustion CO₂ in 2016, a 14 percent decrease compared to 1990 emissions.

The 1990 to 2016 trend in CH₄ is not consistent across segments. Overall, the 1990 to 2016 decrease in CH₄ emissions is due primarily to the decrease in emissions from distribution (72 percent decrease), transmission and storage (44 percent decrease), processing (48 percent decrease), and exploration (81 percent decrease) segments. Over the same time period, the production segments saw increased methane emissions of 58 percent (with onshore production emissions increasing 27 percent, offshore production emissions increasing 7 percent, and gathering and boosting emissions increasing 103 percent). The 1990 to 2016 decrease in CO₂ is due primarily to decreases in acid gas removal emissions in the processing segment, where acid gas removal emissions per plant have decreased over time.

Methane and non-combustion CO₂ emissions from natural gas systems include those resulting from normal operations, routine maintenance, and system upsets. Emissions from normal operations include: natural gas engine and turbine uncombusted exhaust, bleed and discharge emissions from pneumatic controllers, and fugitive emissions from system components. Routine maintenance emissions originate from pipelines, equipment, and wells during repair and maintenance activities. Pressure surge relief systems and accidents can lead to system upset emissions. Below is a characterization of the five major stages of the natural gas system. Each of the stages is described and the different factors affecting CH₄ and non-combustion CO₂ emissions are discussed.

Each year, some estimates in the Inventory are recalculated with improved methods and/or data. These improvements are implemented consistently across the previous Inventory’s time series (i.e., 1990 to 2015) to ensure that the trend is accurate. Recalculations in natural gas systems in this year’s Inventory include:

- Estimated flaring emissions specific to natural gas production, natural gas processing, and petroleum production; where previous methodology assigned all emissions (including flaring from miscellaneous sources and associated gas) to the natural gas production segment.
- Added emissions from flaring at transmission and storage stations that were not previously reported in the inventory.
- Revised CO₂ emission estimation methods for production segment sources to use GHGRP data (for consistency with the approach applied for CH₄ emission estimates): gas well hydraulically fractured completions and workovers, pneumatic controllers, chemical injection pumps, and liquids unloading.
- Revised CO₂ emission estimation methods for processing segment sources to use GHGRP data (for consistency with the approach applied for CH₄ emission estimates): grouped emission sources (reciprocating compressors, centrifugal compressors, dehydrators, flares, and fugitives), blowdowns, and acid gas removal (AGR) units.
- Revised CO₂ emission estimation methods for transmission and storage pneumatic controllers to use GHGRP data (for consistency with the approach applied for CH₄ emission estimates).

Exploration. Exploration includes well drilling, testing, and completions. Emissions from exploration account for 0.5 percent of both CH₄ emissions and of CO₂ emissions from natural gas systems in 2016. Well completions account for most of the CH₄ emissions in 2016, with well testing and drilling also contributing emissions. Flaring emissions account for most of the non-combustion CO₂ emissions. Methane emissions from exploration decreased by 81 percent from 1990 to 2016, with the largest decreases coming from hydraulically fractured gas well completions without reduced emissions completions (RECs) or flaring. Carbon dioxide emissions from exploration decreased by 66 percent from 1990 to 2016 due to decreases in flaring.

Production (including gathering and boosting). In the production stage, wells are used to withdraw raw gas from underground formations. Emissions arise from the wells themselves, and well-site gas treatment equipment such as dehydrators and separators. Gathering and boosting emission sources are included within the production sector. The gathering and boosting sources include gathering and boosting stations (with multiple emission sources on site) and gathering pipelines. The gathering and boosting stations receive natural gas from production sites and transfer it, via gathering pipelines, to transmission pipelines or processing facilities (custody transfer points are typically used to segregate sources between each segment). Emissions from production (including gathering and boosting) account for 65 percent of CH₄ emissions and 13 percent of non-combustion CO₂ emissions from natural gas systems in 2016. Emissions from gathering stations, pneumatic controllers, gas engines, gathering pipelines, liquids unloading, and offshore platforms account for most of the CH₄ emissions in 2016. Flaring emissions account for most of the non-combustion CO₂ emissions with the highest emissions coming from flaring from tanks, miscellaneous production flaring, and offshore flaring. Methane emissions from production increased by 58 percent from 1990 to 2016, due primarily to increases in emissions from gathering and boosting stations (driven by an increase in gas production), increases in emissions from pneumatic controllers (due to an increase in the number of controllers, particularly in the number of intermittent bleed controllers), and gas engines. Carbon dioxide emissions from production increased by a factor of 2.7 from 1990 to 2016 due to increases in flaring.

Processing. In this stage, natural gas liquids and various other constituents from the raw gas are removed, resulting in “pipeline quality” gas, which is injected into the transmission system. Fugitive CH₄ emissions from compressors, including compressor seals, are the primary emission source from this stage. Most of the non-combustion CO₂ emissions come from acid gas removal (AGR) units, which are designed to remove CO₂ from natural gas. Processing plants account for 7 percent of CH₄ emissions and 86 percent of non-combustion CO₂ emissions from natural gas systems. Methane emissions from processing decreased by 48 percent from 1990 to 2016 as emissions from compressors (leaks and venting) and equipment leaks decreased. Carbon dioxide emissions from processing decreased by 22 percent from 1990 to 2016, due to a decrease in acid gas removal emissions.

Transmission and Storage. Natural gas transmission involves high pressure, large diameter pipelines that transport gas long distances from field production and processing areas to distribution systems or large volume customers such as power plants or chemical plants. Compressor station facilities are used to move the gas throughout the U.S. transmission system. Leak CH₄ emissions from these compressor stations, and venting from pneumatic controllers account for most of the emissions from this stage. Uncombusted engine exhaust and pipeline venting are also sources of CH₄ emissions from transmission. Natural gas is also injected and stored in underground formations, or liquefied and stored in above ground tanks, during periods of low demand (e.g., summer), and withdrawn, processed, and distributed during periods of high demand (e.g., winter). In 2016, emissions from the final months of the Aliso Canyon leak event in Southern California contributed 0.5 MMT CO₂ Eq. to transmission and storage emissions, around 2 percent of total emissions for this segment. Compressors and dehydrators are the primary contributors to emissions from storage. Methane emissions from the transmission and storage sector account for
approximately 20 percent of emissions from natural gas systems, while CO₂ emissions from transmission and storage account for less than 1 percent of the non-combustion CO₂ emissions from natural gas systems. CH₄ emissions from this source decreased by 44 percent from 1990 to 2016 due to reduced compressor station emissions (including emissions from compressors and leaks). CO₂ emissions from transmission and storage have decreased by 14 percent from 1990 to 2016, also due to reduced compressor station emissions.

Distribution. Distribution pipelines take the high-pressure gas from the transmission system at “city gate” stations, reduce the pressure and distribute the gas through primarily underground mains and service lines to individual end users. There were 1,284,241 miles of distribution mains in 2016, an increase of over 340,000 miles since 1990 (PHMSA 2017a; PHMSA 2017b). Distribution system emissions, which account for 7 percent of CH₄ emissions from natural gas systems and less than 1 percent of non-combustion CO₂ emissions, result mainly from leak emissions from pipelines and stations. An increased use of plastic piping, which has lower emissions than other pipe materials, has reduced both CH₄ and CO₂ emissions from this stage, as have station upgrades at metering and regulating (M&R) stations. Distribution system CH₄ emissions in 2016 were 72 percent lower than 1990 levels (changed from 43.5 MMT CO₂ Eq. to 12.0 MMT CO₂ Eq.), while distribution CO₂ emissions in 2016 were 72 percent lower than 1990 levels (CO₂ emission from this segment are less than 0.1 MMT CO₂ Eq. across the time series).

Total CH₄ emissions for the five major stages of natural gas systems are shown in MMT CO₂ Eq. (Table 3-54) and kt (Table 3-55). Table 3-56 provides additional information on how the estimates in Table 3-52 were calculated. With recent updates to the Inventory, most emissions are calculated using a net emission approach. However, certain sources are still calculated with a potential emission approach. Table 3-56 shows the calculated potential CH₄ release (i.e., potential emissions before any controls are applied) from each stage, and the amount of CH₄ that is estimated to have been flared, captured, or otherwise controlled, and therefore not emitted to the atmosphere. Subtracting the value for CH₄ that is controlled, from the value for calculated potential release of CH₄, results in the total net emissions values. More disaggregated information on potential emissions and emissions is available in Annex 3.6. See Methodology for Estimating CH₄ and CO₂ Emissions from Natural Gas Systems.

Table 3-54: CH₄ Emissions from Natural Gas Systems (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration</td>
<td>4.0</td>
<td>11.0</td>
<td>2.5</td>
<td>3.0</td>
<td>1.0</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Production</td>
<td>67.7</td>
<td>88.5</td>
<td>106.5</td>
<td>106.9</td>
<td>107.8</td>
<td>108.0</td>
<td>106.8</td>
</tr>
<tr>
<td>Offshore Production</td>
<td>35.8</td>
<td>50.3</td>
<td>52.0</td>
<td>51.5</td>
<td>48.4</td>
<td>46.2</td>
<td>45.4</td>
</tr>
<tr>
<td>Onshore Production</td>
<td>3.5</td>
<td>4.3</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Gathering and Boosting</td>
<td>28.4</td>
<td>33.8</td>
<td>50.8</td>
<td>51.7</td>
<td>55.7</td>
<td>58.2</td>
<td>57.7</td>
</tr>
<tr>
<td>Processing</td>
<td>21.3</td>
<td>11.6</td>
<td>10.0</td>
<td>10.8</td>
<td>11.0</td>
<td>11.0</td>
<td>11.2</td>
</tr>
<tr>
<td>Transmission and Storage</td>
<td>58.6</td>
<td>34.7</td>
<td>28.1</td>
<td>30.9</td>
<td>32.3</td>
<td>34.1</td>
<td>32.8</td>
</tr>
<tr>
<td>Distribution</td>
<td>43.5</td>
<td>23.3</td>
<td>12.4</td>
<td>12.3</td>
<td>12.2</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Total</td>
<td>195.2</td>
<td>169.1</td>
<td>159.6</td>
<td>163.8</td>
<td>164.3</td>
<td>166.3</td>
<td>163.5</td>
</tr>
</tbody>
</table>

*a These values represent CH₄ emitted to the atmosphere. CH₄ that is captured, flared, or otherwise controlled (and not emitted to the atmosphere) has been calculated and removed from emission totals.

*b Exploration includes well drilling, testing, and completions.

*c Gathering and boosting includes gathering and boosting stations, gathering pipeline leaks, and gathering and boosting station episodic events.

Note: Totals may not sum due to independent rounding.

Table 3-55: CH₄ Emissions from Natural Gas Systems (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration</td>
<td>161</td>
<td>439</td>
<td>101</td>
<td>119</td>
<td>39</td>
<td>42</td>
<td>30</td>
</tr>
<tr>
<td>Production</td>
<td>2,708</td>
<td>3,541</td>
<td>4,261</td>
<td>4,276</td>
<td>4,313</td>
<td>4,322</td>
<td>4,272</td>
</tr>
<tr>
<td>Offshore Production</td>
<td>1,432</td>
<td>2,014</td>
<td>2,081</td>
<td>2,062</td>
<td>1,936</td>
<td>1,848</td>
<td>1,815</td>
</tr>
<tr>
<td>Onshore Production</td>
<td>141</td>
<td>173</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>151</td>
<td>151</td>
</tr>
<tr>
<td>Gathering and Boosting</td>
<td>1,136</td>
<td>1,354</td>
<td>2,029</td>
<td>2,064</td>
<td>2,226</td>
<td>2,324</td>
<td>2,307</td>
</tr>
<tr>
<td>Processing</td>
<td>853</td>
<td>463</td>
<td>401</td>
<td>430</td>
<td>441</td>
<td>441</td>
<td>448</td>
</tr>
<tr>
<td>Transmission and Storage</td>
<td>2,343</td>
<td>1,389</td>
<td>1,125</td>
<td>1,237</td>
<td>1,292</td>
<td>1,365</td>
<td>1,311</td>
</tr>
<tr>
<td>Distribution</td>
<td>1,741</td>
<td>932</td>
<td>496</td>
<td>490</td>
<td>488</td>
<td>481</td>
<td>480</td>
</tr>
<tr>
<td>Total</td>
<td>7,806</td>
<td>6,765</td>
<td>6,384</td>
<td>6,553</td>
<td>6,572</td>
<td>6,651</td>
<td>6,541</td>
</tr>
</tbody>
</table>
These values represent CH₄ emitted to the atmosphere. CH₄ that is captured, flared, or otherwise controlled (and not emitted to the atmosphere) has been calculated and removed from emission totals.

Exploration includes well drilling, testing, and completions.

Gathering and boosting includes gathering and boosting stations, gathering pipeline leaks, and gathering and boosting station episodic events.

Note: Totals may not sum due to independent rounding.

Table 3-56: Calculated Potential CH₄ and Captured/Combusted CH₄ from Natural Gas Systems (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated Potential</td>
<td>195.2</td>
<td>183.0</td>
<td>175.6</td>
<td>178.9</td>
<td>179.4</td>
<td>181.4</td>
<td>178.6</td>
</tr>
<tr>
<td>Exploration</td>
<td>4.0</td>
<td>11.0</td>
<td>2.5</td>
<td>3.0</td>
<td>1.0</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Production</td>
<td>67.7</td>
<td>94.0</td>
<td>113.3</td>
<td>113.8</td>
<td>114.8</td>
<td>115.0</td>
<td>113.7</td>
</tr>
<tr>
<td>Processing</td>
<td>21.3</td>
<td>11.6</td>
<td>10.0</td>
<td>10.8</td>
<td>11.0</td>
<td>11.0</td>
<td>11.2</td>
</tr>
<tr>
<td>Transmission and Storage</td>
<td>58.6</td>
<td>43.2</td>
<td>37.3</td>
<td>39.1</td>
<td>40.5</td>
<td>42.3</td>
<td>40.9</td>
</tr>
<tr>
<td>Distribution</td>
<td>43.5</td>
<td>23.3</td>
<td>12.4</td>
<td>12.3</td>
<td>12.2</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Captured/Combusted</td>
<td>NA</td>
<td>13.9</td>
<td>NA</td>
<td>15.1</td>
<td>15.1</td>
<td>15.1</td>
<td>15.1</td>
</tr>
<tr>
<td>Exploration</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Production</td>
<td>NA</td>
<td>5.5</td>
<td>6.8</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Processing</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Transmission and Storage</td>
<td>NA</td>
<td>8.4</td>
<td>9.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Distribution</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Net Emissions</td>
<td>195.2</td>
<td>169.1</td>
<td>159.6</td>
<td>163.8</td>
<td>164.3</td>
<td>166.3</td>
<td>163.5</td>
</tr>
<tr>
<td>Exploration</td>
<td>4.0</td>
<td>11.0</td>
<td>2.5</td>
<td>3.0</td>
<td>1.0</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Production</td>
<td>67.7</td>
<td>88.5</td>
<td>106.5</td>
<td>106.9</td>
<td>107.8</td>
<td>108.0</td>
<td>106.8</td>
</tr>
<tr>
<td>Processing</td>
<td>21.3</td>
<td>11.6</td>
<td>10.0</td>
<td>10.8</td>
<td>11.0</td>
<td>11.0</td>
<td>11.2</td>
</tr>
<tr>
<td>Transmission and Storage</td>
<td>58.6</td>
<td>34.7</td>
<td>28.1</td>
<td>30.9</td>
<td>32.3</td>
<td>34.1</td>
<td>32.8</td>
</tr>
<tr>
<td>Distribution</td>
<td>43.5</td>
<td>23.3</td>
<td>12.4</td>
<td>12.3</td>
<td>12.2</td>
<td>12.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>

* In this context, “potential” means the total emissions calculated before voluntary reductions and regulatory controls are applied.
NA (Not Applicable)

Note: Totals may not sum due to independent rounding.

Table 3-57: Non-combustion CO₂ Emissions from Natural Gas Systems (MMT)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration</td>
<td>0.4</td>
<td>1.8</td>
<td>1.3</td>
<td>1.2</td>
<td>0.9</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Production</td>
<td>0.9</td>
<td>1.7</td>
<td>2.7</td>
<td>3.0</td>
<td>3.3</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Processing</td>
<td>28.3</td>
<td>18.9</td>
<td>19.1</td>
<td>20.5</td>
<td>21.0</td>
<td>21.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Transmission and Storage</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Distribution</td>
<td>0.1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Total</td>
<td>29.8</td>
<td>22.5</td>
<td>23.3</td>
<td>24.8</td>
<td>25.3</td>
<td>24.9</td>
<td>25.5</td>
</tr>
</tbody>
</table>

* Does not exceed 0.1 MMT CO₂ Eq.

Note: Totals may not sum due to independent rounding.

Table 3-58: Non-combustion CO₂ Emissions from Natural Gas Systems (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration</td>
<td>404</td>
<td>1,761</td>
<td>1,323</td>
<td>1,159</td>
<td>851</td>
<td>287</td>
<td>138</td>
</tr>
<tr>
<td>Production</td>
<td>871</td>
<td>1,709</td>
<td>2,683</td>
<td>3,003</td>
<td>3,278</td>
<td>3,396</td>
<td>3,212</td>
</tr>
<tr>
<td>Processing</td>
<td>28,338</td>
<td>18,875</td>
<td>19,120</td>
<td>20,508</td>
<td>21,044</td>
<td>21,044</td>
<td>22,009</td>
</tr>
<tr>
<td>Transmission and Storage</td>
<td>166</td>
<td>140</td>
<td>135</td>
<td>142</td>
<td>148</td>
<td>147</td>
<td>143</td>
</tr>
<tr>
<td>Distribution</td>
<td>51</td>
<td>27</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>29,831</td>
<td>22,512</td>
<td>23,276</td>
<td>24,827</td>
<td>25,336</td>
<td>24,888</td>
<td>25,516</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.
Methodology

See Annex 3.6 for the full time series of emissions data, activity data, and emission factors, and additional information on methods and data sources—for example, the specific years of reporting data from EPA’s Greenhouse Gas Reporting Program (GHGRP) that are used to develop certain factors.

This section provides a general overview of the methodology for natural gas emission estimates in the Inventory, which involves the calculation of CH₄ and CO₂ emissions for over 100 emissions sources, and then the summation of emissions for each natural gas segment.

The approach for calculating emissions for natural gas systems generally involves the application of emission factors to activity data. For most sources, the approach uses technology-specific emission factors or emission factors that vary over time and take into account changes to technologies and practices, which are used to calculate net emissions directly. For others, the approach uses what are considered “potential methane factors” and reduction data to calculate net emissions.

Emission Factors. Key references for emission factors for CH₄ and non-combustion-related CO₂ emissions from the U.S. natural gas industry include a 1996 study published by the Gas Research Institute (GRI) and EPA (GRI/EPA 1996), the EPA’s GHGRP (EPA 2017), and others.

The EPA/GRI study developed over 80 CH₄ emission factors to characterize emissions from the various components within the operating stages of the U.S. natural gas system. The EPA/GRI study was based on a combination of process engineering studies, collection of activity data, and measurements at representative gas facilities conducted in the early 1990s. Year-specific natural gas CH₄ compositions are calculated using U.S. Department of Energy’s Energy Information Administration (EIA) annual gross production for National Energy Modeling System (NEMS) oil and gas supply module regions in conjunction with data from the Gas Technology Institute (GTI, formerly GRI) Unconventional Natural Gas and Gas Composition Databases (GTI 2001). These year-specific CH₄ compositions are applied to emission factors, which therefore may vary from year to year due to slight changes in the CH₄ composition for each NEMS region.

GHGRP Subpart W data were used to develop both CH₄ and CO₂ emission factors for several sources in the Inventory. In the onshore production segment, GHGRP data were used to develop emission factors used for all time series years for well testing, gas well completions and workovers with and without hydraulic fracturing, pneumatic controllers and chemical injection pumps, condensate tanks, liquids unloading, and miscellaneous flaring. In the processing segment, for recent years of the times series, GHGRP data were used to develop emission factors for fugitives, compressors, flares, dehydrators, and blowdowns/venting. In the transmission and storage segment, for recent years of the times series, GHGRP data were used to develop factors for pneumatic controllers.

Other data sources used for CH₄ emission factors include Marchese et al. (2015) for gathering stations, Zimmerle et al. (2015) for transmission and storage station fugitives and compressors, and Lamb et al. (2015) for recent years for distribution pipelines and meter/regulator stations.

For sources in the exploration, production and processing segments that use emission factors not directly calculated from GHGRP data, data from the 1996 GRI/EPA study and a 2001 GTI publication were used to adapt the CH₄ emission factors into non-combustion related CO₂ emission factors. For sources in the transmission and storage segment that use emission factors not directly calculated from GHGRP data, and for sources in the distribution segment, data from the 1996 GRI/EPA study and a 1993 GTI publication were used to adapt the CH₄ emission factors into non-combustion related CO₂ emission factors. See Annex 3.6 for more detailed information on the methodology and data used to calculate CH₄ and non-combustion CO₂ emissions from natural gas systems.

Activity Data. Activity data were taken from various published data sets, as detailed in Annex 3.6. Key activity data sources include data sets developed and maintained by EPA’s GHGRP; DrillingInfo, Inc.; U.S. Department of the Interior’s Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE, previously Minerals and Management Service); Federal Energy Regulatory Commission (FERC); EIA; the Natural Gas STAR Program annual emissions savings data; Oil and Gas Journal; PHMSA; the Wyoming Conservation Commission; and the Alabama State Oil and Gas Board.

For a few sources, recent direct activity data are not available. For these sources, either 2015 data were used as a proxy for 2016 data, or a set of industry activity data drivers was developed and used to calculate activity data over the time series. Drivers include statistics on gas production, number of wells, system throughput, miles of various
kinds of pipe, and other statistics that characterize the changes in the U.S. natural gas system infrastructure and operations. More information on activity data and drivers is available in Annex 3.6.

A complete list of references for emission factors and activity data by emission source is provided in Annex 3.6.

Calculating Net Emissions. For most sources, net emissions are calculated directly by applying emission factors to activity data. Emission factors used in net emission approaches reflect technology-specific information, and take into account regulatory and voluntary reductions. However, for certain sectors, some sources are calculated using potential emission factors, and the step of deducting CH₄ that is not emitted from the total CH₄ potential estimates to develop net CH₄ emissions is applied. To take into account use of such technologies and practices that result in lower emissions but are not reflected in “potential” emission factors, data are collected on both regulatory and voluntary reductions. Regulatory actions addressed using this method include National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations for dehydrator vents. Voluntary reductions included in the Inventory are those reported to Natural Gas STAR for certain sources in the production and transmission and storage segments.

In fall of 2015, a well in a California storage field began leaking methane at an initial average rate of around 50 metric tons (MT) of methane (CH₄) an hour, and continued leaking until it was permanently sealed in February of 2016. An emission estimate from the leak event was included for 2015 and 2016, using the estimate of the leak published by the California Air Resources Board (99,638 MT CH₄ for the duration of the leak). The 2015 and 2016 emission estimates of 78,350 MT CH₄ and 21,288 MT CH₄, respectively, were added to the 2015 and 2016 estimates of fugitive emissions from storage wells. For more information, please see *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2015: Update for Storage Segment Emissions.*

Through EPA’s stakeholder process on oil and gas in the Inventory, EPA received initial stakeholder feedback on updates under consideration for the Inventory. Stakeholder feedback is noted below in Uncertainty and Time-Series Consistency, Recalculations Discussion, and Planned Improvements.

Uncertainty and Time-Series Consistency

In recent years, EPA has made significant revisions to the Inventory methodology to use updated activity and emissions data. To update its characterization of uncertainty, EPA has conducted a quantitative uncertainty analysis using the IPCC Approach 2 methodology (Monte Carlo Simulation technique). For more information, please see the memorandum *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Natural Gas and Petroleum Systems Uncertainty Estimates (2018 Uncertainty Memo).* EPA used Microsoft Excel's @RISK add-in tool to estimate the 95 percent confidence bound around CH₄ emissions from natural gas systems for the current Inventory, then applied the calculated bounds to both CH₄ and CO₂ emissions estimates. For the analysis, EPA focused on the 16 highest-emitting sources for the year 2016, which together emitted 78 percent of methane from natural gas systems in 2016, and extrapolated the estimated uncertainty for the remaining sources. The @RISK add-in provides for the specification of probability density functions (PDFs) for key variables within a computational structure that mirrors the calculation of the inventory estimate. The IPCC guidance notes that in using this method, “some uncertainties that are not addressed by statistical means may exist, including those arising from omissions or double counting, or other conceptual errors, or from incomplete understanding of the processes that may lead to inaccuracies in estimates developed from models.” The uncertainty bounds reported below only reflect those uncertainties that EPA has been able to quantify and do not incorporate considerations such as modeling uncertainty, data representativeness, measurement errors, misreporting or misclassification. The understanding of the uncertainty of emission estimates for this category evolves and improves as the underlying methodologies and datasets improve.

The results presented below provide the 95 percent confidence bound within which actual emissions from this source category are likely to fall for the year 2016, using the IPCC methodology. The results of the Approach 2 uncertainty analysis are summarized in Table 3-59. Natural gas systems CH₄ emissions in 2016 were estimated to be between 138.0 and 191.8 MMT CO₂ Eq. at a 95 percent confidence level. Natural gas systems non-energy CO₂ emissions in 2016 were estimated to be between 21.5 and 29.9 MMT CO₂ Eq. at a 95 percent confidence level. Uncertainty bounds for other years of the time series have not been calculated, but uncertainty is expected to vary over the time series. For example, years where many emission sources are calculated with interpolated data would likely have higher uncertainty than years with predominantly year-specific data.

Table 3-59: Approach 2 Quantitative Uncertainty Estimates for CH₄ and Non-energy CO₂ Emissions from Natural Gas Systems (MMT CO₂ Eq. and Percent)

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>2016 Emission Estimate (MMT CO₂ Eq.)</th>
<th>Uncertainty Range Relative to Emission Estimatea (MMT CO₂ Eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower Boundb Upper Boundb Lower Boundb Upper Boundb</td>
</tr>
<tr>
<td>Natural Gas Systems</td>
<td>CH₄</td>
<td>163.5</td>
<td>138.0 191.8 -16% +17%</td>
</tr>
<tr>
<td>Natural Gas Systemsc</td>
<td>CO₂</td>
<td>25.5</td>
<td>21.5 29.9 -16% +17%</td>
</tr>
</tbody>
</table>

a Range of emission estimates estimated by applying the 95 percent confidence intervals obtained from the Monte Carlo Simulation analysis conducted for the year 2016 CH₄ emissions.

b All reported values are rounded after calculation. As a result, lower and upper bounds may not be duplicable from other rounded values as shown in Table 3-54 and Table 3-55.

c An uncertainty analysis for the non-energy CO₂ emissions was not performed. The relative uncertainty estimated (expressed as a percent) from the CH₄ uncertainty analysis was applied to the point estimate of non-energy CO₂ emissions.

GHGRP data available (starting in 2011) and other recent data sources have improved estimates of emissions from natural gas systems. To develop a consistent time series for 1990 through 2016, for sources with new data, EPA reviewed available information on factors that may have resulted in changes over the time series (e.g., regulations, voluntary actions) and requested stakeholder feedback on trends as well. For most sources, EPA developed annual data for 1993 through 2010 by interpolating activity data or emission factors or both between 1992 and 2011 data points. Information on time-series consistency for sources updated in this year’s Inventory can be found in the Recalculations Discussion below, with additional detail provided in supporting memos (relevant memos are cited in the Recalculations Discussion). For detailed documentation of methodologies, please see Annex 3.5.

QA/QC and Verification Discussion

The natural gas emission estimates in the Inventory are continually being reviewed and assessed to determine whether emission factors and activity factors accurately reflect current industry practices. A QA/QC analysis was performed for data gathering and input, documentation, and calculation. QA/QC checks are consistently conducted to minimize human error in the model calculations. EPA performs a thorough review of information associated with new studies, GHGRP data, regulations, public webcasts, and the Natural Gas STAR Program to assess whether the assumptions in the Inventory are consistent with current industry practices. The EPA has a multi-step data verification process for GHGRP data, including automatic checks during data-entry, statistical analyses on completed reports, and staff review of the reported data. Based on the results of the verification process, the EPA follows up with facilities to resolve mistakes that may have occurred.89

As in previous years, EPA conducted early engagement and communication with stakeholders on updates prior to public review. EPA held stakeholder workshops on greenhouse gas data for oil and gas in June and October of 2017, and held webinars in April and August of 2017, and March of 2018. In advance of each workshop, EPA released memos detailing updates under consideration and requesting stakeholder feedback. Stakeholder feedback received through these processes is discussed in the Recalculations Discussion and Planned Improvements sections below.

In recent years, several studies have measured emissions at the source level and at the national or regional level and calculated emission estimates that may differ from the Inventory. There are a variety of potential uses of data from

new studies, including replacing a previous estimate or factor, verifying or QA of an existing estimate or factor, and identifying areas for updates. In general, there are two major types of studies related to oil and gas greenhouse gas data: studies that focus on measurement or quantification of emissions from specific activities, processes and equipment, and studies that use tools such as inverse modeling to estimate the level of overall emissions needed to account for measured atmospheric concentrations of greenhouse gases at various scales. The first type of study can lead to direct improvements to or verification of Inventory estimates. In the past few years, EPA has reviewed and in many cases, incorporated data from these data sources. The second type of study can provide general indications on potential over- and under-estimates. A key challenge in using these types of studies to assess Inventory results is having a relevant basis for comparison (i.e., the independent study should assess data from the Inventory and not another data set, such as EDGAR.). In an effort to improve the ability to compare the national-level inventory with measurement results that may be at other scales, a team at Harvard University along with EPA and other coauthors developed a gridded inventory of U.S. anthropogenic methane emissions with $0.1\degree \times 0.1\degree$ spatial resolution, monthly temporal resolution, and detailed scale-dependent error characterization. The gridded methane inventory is designed to be consistent with the 2016 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014 estimates for the year 2012, which presents national totals.

Recalculations Discussion

EPA received information and data related to the emission estimates through GHGRP reporting, the annual Inventory formal public notice periods, stakeholder feedback on updates under consideration, and new studies. In June and October 2017, EPA released draft memoranda that discussed changes under consideration, and requested stakeholder feedback on those changes. EPA then created updated versions of the memoranda to document the methodology implemented into the current Inventory. Final memoranda cited in the Recalculations Discussion below are, Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Revisions to Create Year-Specific Emissions and Activity Factors (2018 Year-Specific Revisions Memo) and Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Revisions to CO$_2$ Emissions Estimation Methodologies (2018 CO$_2$ Memo).

EPA thoroughly evaluated relevant information available, and made several updates to the Inventory, including: to define an exploration segment separate from production (not a methodological change, but a change in presentation of information); calculate activity and emission factors for well testing and non-hydraulically fractured completions from GHGRP data; using GHGRP data to calculate year-specific emission factors for hydraulically fractured gas well completions and workovers and liquids unloading; recalculate production segment major equipment activity factors using updated GHGRP data; and calculate new CO$_2$ emission factors for several sources throughout all segments directly from GHGRP data.

The combined impact of revisions to 2015 natural gas sector CH$_4$ emissions, compared to the previous Inventory, is an increase from 162.4 to 166.3 MMT CO$_2$ Eq. (3.9 MMT CO$_2$ Eq., or 2.4 percent). The recalculations resulted in an average increase in CH$_4$ emission estimates across the 1990 through 2015 time series, compared to the previous Inventory, of 5.1 MMT CO$_2$ Eq., or 3.1 percent.

The combined impact of revisions to 2015 natural gas sector CO$_2$ emissions, compared to the previous Inventory, is a decrease from 42.4 to 24.9 MMT CO$_2$ (17.5 MMT CO$_2$, or 41 percent). The recalculations resulted in an average decrease in emission estimates across the 1990 through 2015 time series, compared to the previous Inventory, of 10.5 MMT CO$_2$ Eq., or 29 percent. The decreased estimate results primarily from recalculations related to the reallocation of CO$_2$ from flaring to petroleum systems from natural gas systems. Previously, data were not available to disaggregate flared emissions between natural gas and petroleum.

In Table 3-60 and Table 3-61 below are categories in Natural Gas Systems with recalculations resulting in a change of greater than 0.05 MMT CO$_2$ Eq., comparing the previous estimate for 2015 to the current (recalculated) estimate for 2015.

90 See <https://www.epa.gov/ghgemissions/gridded-2012-methane-emissions>.
92 Draft and final memoranda for the 1990-2016 Inventory are available here <https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems>
Table 3-60: Recalculations of CO₂ in Natural Gas Systems (MMT CO₂)

<table>
<thead>
<tr>
<th>Stage and Emission Source</th>
<th>Previous Estimate</th>
<th>Current Estimate</th>
<th>Current Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year 2015, 2017 Inventory</td>
<td>Year 2015, 2018 Inventory</td>
<td>Year 2016, 2018 Inventory</td>
</tr>
<tr>
<td>Exploration</td>
<td>NA</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>HF Completions</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Production</td>
<td>17.6</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Miscellaneous Flaring*</td>
<td>17.6</td>
<td>1.4</td>
<td>1.1</td>
</tr>
<tr>
<td>Tanks</td>
<td>+</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>HF Workovers</td>
<td>+</td>
<td>0.1</td>
<td>+</td>
</tr>
<tr>
<td>Processing</td>
<td>23.7</td>
<td>21.0</td>
<td>22.0</td>
</tr>
<tr>
<td>AGR Vents</td>
<td>23.6</td>
<td>14.9</td>
<td>16.6</td>
</tr>
<tr>
<td>Plant Grouped Sources</td>
<td>0.1</td>
<td>6.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Transmission and Storage</td>
<td>+</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Transmission Flares</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Distribution</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Total</td>
<td>42.4</td>
<td>24.9</td>
<td>25.5</td>
</tr>
</tbody>
</table>

* The previous estimate represents flaring from natural gas production, gas processing, and petroleum production.

NA (Not Applicable)
+ Does not exceed 0.05 MMT CO₂.

Table 3-61: Recalculations of CH₄ in Natural Gas Systems (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th>Stage and Emission Source</th>
<th>Previous Estimate</th>
<th>Current Estimate</th>
<th>Current Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year 2015, 2017 Inventory</td>
<td>Year 2015, 2018 Inventory</td>
<td>Year 2016, 2018 Inventory</td>
</tr>
<tr>
<td>Exploration</td>
<td>NA</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Non-HF Completions</td>
<td>+</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Well Testing</td>
<td>NE</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Production</td>
<td>106.6</td>
<td>108.0</td>
<td>106.8</td>
</tr>
<tr>
<td>Miscellaneous Flaring*</td>
<td>NE</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>HF Workovers</td>
<td>+</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Liquids Unloading</td>
<td>5.2</td>
<td>3.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Processing</td>
<td>111</td>
<td>11.0</td>
<td>11.2</td>
</tr>
<tr>
<td>Transmission and Storage</td>
<td>33.7</td>
<td>34.1</td>
<td>32.8</td>
</tr>
<tr>
<td>Distribution</td>
<td>11.0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>162.4</td>
<td>166.3</td>
<td>163.5</td>
</tr>
</tbody>
</table>

* The previous estimate represents flaring from natural gas production, gas processing, and petroleum production.

NA (Not Applicable)
NE (Not Estimated)
+ Does not exceed 0.05 MMT CO₂ Eq.

Exploration

The natural gas system segments were reorganized for the current Inventory and now include a specific exploration segment to improve conformance with the IPCC guidelines. Exploration activities were previously included under the production segment. The activities included under exploration are hydraulically fractured (HF) gas well completions, gas well completions without HF, well drilling, and well testing. EPA developed a new methodology to estimate emissions from well testing (not during completions) using GHGRP data, revised the methodology for non-HF gas well completions to use GHGRP data, and updated the HF gas well completions methodology for CO₂ emissions. These recalculations are discussed below.
Well Testing

EPA developed a new estimate for gas well testing (during non-completion events) using GHGRP data. In previous Inventories, only well testing conducted as part of a completion event was included. CH₄ and CO₂ emission factors were developed, on a per-event basis, for vented and flared gas well testing events using RY2015 and RY2016 data. EPA developed activity factors (i.e., number of events per gas well) to determine the number of well testing events in a year, also using RY2015 and RY2016 data. GHGRP RY2015 activity and emission factors are applied to all prior years of the time series. Methane emissions from well testing averaged 1.5 kt (or less than 0.05 MMT CO₂ Eq.) over the time series. There was a large decrease in methane emissions from gas well testing from 2015 to 2016 as observed in reported GHGRP data. Carbon dioxide emission from well testing averaged 3.1 kt (or less than 0.05 MMT CO₂) over the time series. See the 2018 Year-Specific Revisions Memo for additional discussion.

Table 3-62: Gas Well Testing National CH₄ Emissions (Metric Tons CH₄)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Completion Well Testing - Vented</td>
<td>949</td>
<td>1,673</td>
<td>2,080</td>
<td>2,054</td>
<td>2,071</td>
<td>2,043</td>
<td>614</td>
</tr>
<tr>
<td>Non-Completion Well Testing - Flared</td>
<td>13</td>
<td>23</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3-63: Gas Well Testing National CO₂ Emissions (Metric Tons CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Completion Well Testing - Vented</td>
<td>30</td>
<td>53</td>
<td>66</td>
<td>65</td>
<td>65</td>
<td>64</td>
<td>39</td>
</tr>
<tr>
<td>Non-Completion Well Testing - Flared</td>
<td>1,914</td>
<td>3,375</td>
<td>4,198</td>
<td>4,144</td>
<td>4,179</td>
<td>4,123</td>
<td>323</td>
</tr>
</tbody>
</table>

Non-HF Gas Well Completions

EPA developed new emission factors for controlled and uncontrolled non-HF gas well completions using GHGRP data, and applied the new factors over all time series years. The emission factor for non-HF gas well completions in the Inventory was previously derived from the GRI 1996 study which defines the factor as covering both gas well completions and well flow testing, and based on the assumption that all gas is flared. CH₄ and CO₂ emission factors were developed, on a per-event basis, for vented and flared gas well non-HF completion events using RY2011 through RY2016 GHGRP data. EPA did not revise the overall counts of non-HF gas well completions. For the split between vented and flared events, EPA used GHGRP data for year 2011 forward, and 2011 data (which show 3 percent of events flared) as a proxy for all earlier years. Methane emissions from non-HF completions averaged 8.6 kt CH₄ (or 0.2 MMT CO₂ Eq.) over the time series. The previous estimate was an average of 0.011 kt CH₄ over the time series. Carbon dioxide emission from non-HF completions averaged 7.3 kt (or less than 0.05 MMT CO₂) over the time series. The previous estimate was an average of 0.001 kt CH₄ over the time series. See the 2018 Year-Specific Revisions Memo for additional discussion.

Table 3-64: Non-HF Gas Well Completions National CH₄ Emissions (Metric Tons CH₄)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-HF Completions - Vented</td>
<td>5,713</td>
<td>10,074</td>
<td>11,009</td>
<td>5,890</td>
<td>1,404</td>
<td>13,680</td>
<td>8,065</td>
</tr>
<tr>
<td>Non-HF Completions - Flared</td>
<td>20</td>
<td>35</td>
<td>2</td>
<td>39</td>
<td>12</td>
<td>36</td>
<td>89</td>
</tr>
</tbody>
</table>

Table 3-65: Non-HF Gas Well Completions National CO₂ Emissions (Metric Tons CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-HF Completions - Vented</td>
<td>216</td>
<td>381</td>
<td>101</td>
<td>182</td>
<td>72</td>
<td>172</td>
<td>829</td>
</tr>
<tr>
<td>Non-HF Completions - Flared</td>
<td>4,643</td>
<td>8,187</td>
<td>565</td>
<td>6,695</td>
<td>2,683</td>
<td>5,909</td>
<td>16,407</td>
</tr>
</tbody>
</table>
HF Gas Well Completions

EPA revised the HF gas well completions CH$_4$ methodology to calculate year-specific emission factors from GHGRP data. Year-specific emission factors were developed for 2011 through 2016. The 2011 emission factors were then applied for all prior years. The emission factors are also specific to the type of completion event: non-reduced emission completions (REC) with venting, non-REC with flaring, REC with venting, and REC with flaring. The previous methodology calculated an average emission factor from 2011 through 2013 GHGRP emissions data. EPA did not change the activity data methodology for this source, other than to break out HF completions and workovers as separate line items (where completions are included in Exploration and workovers remain within the Production segment). Stakeholder feedback supported the approach of calculating emission factors on an annual basis from 2011-on. See the 2018 Year-Specific Revisions Memo for additional discussion.

Table 3-66: HF Gas Well Completions National CH$_4$ Emissions (Metric Tons CH$_4$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HF Completions - Non-REC with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venting</td>
<td>151,134</td>
<td>409,344</td>
<td>67,918</td>
<td>94,813</td>
<td>28,287</td>
<td>923</td>
<td>1,210</td>
</tr>
<tr>
<td>HF Completions - Non-REC with</td>
<td>2,140</td>
<td>7,305</td>
<td>3,404</td>
<td>1,623</td>
<td>1,837</td>
<td>781</td>
<td>57</td>
</tr>
<tr>
<td>Flaring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF Completions - REC with</td>
<td>NO</td>
<td>6,943</td>
<td>11,060</td>
<td>9,238</td>
<td>2,768</td>
<td>14,913</td>
<td>13,775</td>
</tr>
<tr>
<td>Venting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF Completions - REC with</td>
<td>NO</td>
<td>1,984</td>
<td>4,025</td>
<td>4,732</td>
<td>1,608</td>
<td>8,777</td>
<td>5,184</td>
</tr>
<tr>
<td>Flaring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous Estimated Emissions*</td>
<td>119,901</td>
<td>338,215</td>
<td>124,026</td>
<td>92,931</td>
<td>24,813</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

*Completions and workover emissions were calculated together in the previous Inventory. Completion-specific emissions were estimated based on underlying activity data.

NO (Not Occurring)
NA (Not Applicable)

EPA developed new CO$_2$ emission factors for the four control categories of HF gas well completions using the same GHGRP data sets and methodology used to calculate CH$_4$ emissions.

Table 3-67: HF Gas Well Completions National CO$_2$ Emissions (kt CO$_2$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HF Completions - Non-REC with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venting</td>
<td>10</td>
<td>28</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HF Completions - Non-REC with</td>
<td>387</td>
<td>1,322</td>
<td>621</td>
<td>324</td>
<td>487</td>
<td>58</td>
<td>9</td>
</tr>
<tr>
<td>Flaring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF Completions - REC with</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>Venting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF Completions - REC with</td>
<td>0</td>
<td>396</td>
<td>693</td>
<td>812</td>
<td>354</td>
<td>218</td>
<td>111</td>
</tr>
<tr>
<td>Flaring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Emissions</td>
<td>387</td>
<td>1,748</td>
<td>1,318</td>
<td>1,148</td>
<td>844</td>
<td>277</td>
<td>120</td>
</tr>
<tr>
<td>Previous Estimated Emissions</td>
<td>74</td>
<td>305</td>
<td>99</td>
<td>75</td>
<td>66</td>
<td>66</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA (Not Applicable)
+ Does not exceed 0.5 kt CO$_2$.

Production

In addition to the memos discussed above, this section references the memorandum, *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2015: Revisions for Natural Gas and Petroleum Systems Production Emissions (2017 Production Memo)*.93

Non-HF Gas Well Workovers

EPA developed new emission factors for controlled and uncontrolled non-HF gas well workovers using GHGRP data, and applied the new factors over all time series years. The emission factor for non-HF gas well workovers in the Inventory was previously derived from the GRI 1996 study. Methane and CO₂ emission factors were developed, on a per-event basis, for vented and flared gas well non-HF workover events using RY2011 through RY2016 GHGRP data. EPA did not revise the overall counts of non-HF gas well workovers. For the split between vented and flared events, EPA used GHGRP data for year 2011 forward, and interpolated to 100 percent vented and 0 percent flared in year 1992 (GRI basis). Methane emissions from non-HF workovers averaged 0.6 kt CH₄ (or 0.02 MMT CO₂ Eq.) over the time series. The previous estimate was an average of 0.4 kt CH₄ over the time series. Carbon dioxide emission from non-HF workovers averaged 2.2 kt (or less than 0.05 MMT CO₂) over the time series. The previous estimate was an average of 0.03 kt CH₄ over the time series. See the 2018 Year-Specific Revisions Memo for additional discussion.

| Table 3-68: Non-HF Gas Well Workovers National CH₄ Emissions (Metric Tons CH₄) |
|-----------------------------------|------|------|------|------|------|------|------|
| Non-HF Workovers - Vented | 509 | 631 | 1,486| 429 | 441 | 525 | 517 |
| Non-HF Workovers - Flared | NO | 19 | + | 6 | 2 | 26 | 1 |
| NO (Not Occurring) | | | | | | | |
| + Does not exceed 0.5 mt CH₄ | | | | | | | |

| Table 3-69: Non-HF Gas Well Workovers National CO₂ Emissions (Metric Tons CO₂) |
|-----------------------------------|------|------|------|------|------|------|------|
| Non-HF Workovers - Vented | 30 | 38 | 92 | 24 | 28 | 45 | 25 |
| Non-HF Workovers - Flared | NO | 3,164| 97 | 942 | 548 | 3,192| 5,836|
| NO (Not Occurring) | | | | | | | |

HF Gas Well Workovers

EPA revised the HF gas well workovers methodology to calculate year-specific emission factors from GHGRP data. Year-specific emission factors were developed for 2011 through 2016. The 2011 emission factors were then applied for all prior years. The emission factors are also specific to the type of workover event: non-REC with venting, non-REC with flaring, REC with venting, and REC with flaring. The previous methodology calculated an average emission factor from 2011 through 2013 GHGRP emissions data. EPA did not change the activity data methodology for this source, other than to break out HF completions and workovers as separate line items (where completions are included in Exploration and workovers remain within the Production segment). Stakeholder feedback supported the approach of calculating emission factors on an annual basis from 2011-on. See the 2018 Year-Specific Revisions Memo for additional discussion.

| Table 3-70: HF Gas Well Workovers National CH₄ Emissions (MMT CO₂ Eq.) |
|-----------------------------------|------|------|------|------|------|------|------|
| HF Workovers - Non-REC with | | | | | | | |
| Venting | 0.6 | 1.6 | 1.4 | 1.7 | 0.6 | 0.1 | 0.2 |
| Flaring | + | + | + | + | + | + | + |
| HF Workovers - REC with | | | | | | | |
| Vventing | NO | + | + | 0.1 | + | 0.2 | 0.2 |
| Flaring | NO | + | + | + | + | 0.1 | + |
| Total Emissions | 0.6 | 1.7 | 1.5 | 1.8 | 0.7 | 0.3 | 0.4 |
| Previous Estimated Emissions | 0.5 | 1.2 | 0.5 | 0.2 | 0.2 | + | NA |
| NO (Not Occurring) | | | | | | | |
| NA (Not Applicable) | | | | | | | |
| + Does not exceed 0.05 MMT CO₂ Eq.| | | | | | | |
EPA developed new CO\textsubscript{2} emission factors for the four control categories of HF gas well workovers using the same GHGRP data sets and methodology used to calculate CH\textsubscript{4} emissions.

Table 3-71: HF Gas Well Workovers National CO\textsubscript{2} Emissions (kt CO\textsubscript{2})

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HF Workovers - Non-REC with Venting</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HF Workovers - Non-REC with Flaring</td>
<td>64</td>
<td>185</td>
<td>52</td>
<td>69</td>
<td>150</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>HF Workovers - REC with Venting</td>
<td>NO</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HF Workovers - REC with Flaring</td>
<td>NO</td>
<td>1</td>
<td>10</td>
<td>47</td>
<td>4</td>
<td>59</td>
<td>33</td>
</tr>
<tr>
<td>Total Emissions</td>
<td>65</td>
<td>190</td>
<td>65</td>
<td>125</td>
<td>156</td>
<td>77</td>
<td>44</td>
</tr>
<tr>
<td>Previous Estimated Emissions</td>
<td>15</td>
<td>44</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>NA</td>
</tr>
</tbody>
</table>

NO (Not Occurring)
NA (Not Applicable)
+ Does not exceed 0.5 kt CO\textsubscript{2}.

Liquids Unloading

EPA revised the liquids unloading methodology to calculate year-specific emission factors from GHGRP data. Year-specific emission factors were developed for 2011 through 2016. The 2011 emission factors were then applied for all prior years. The emission factors are also specific to the type of event: liquids unloading with plunger lifts and liquids unloading without plunger lifts. The previous methodology calculated an average emission factor from 2011 through 2015 GHGRP emissions data. The methodology to calculate activity data did not change from the previous Inventory. Methane emissions from liquids unloading averaged 8.6 MMT CO\textsubscript{2} Eq. over the time series, which is an average increase across the time series of 14 percent (or 1.1 MMT CO\textsubscript{2} Eq.).

Table 3-72: Liquids Unloading National CH\textsubscript{4} Emissions (MMT CO\textsubscript{2} Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unloading with Plunger Lifts</td>
<td>NO</td>
<td>3.0</td>
<td>3.9</td>
<td>2.9</td>
<td>1.9</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Unloading without Plunger Lifts</td>
<td>9.5</td>
<td>6.1</td>
<td>2.3</td>
<td>2.6</td>
<td>3.1</td>
<td>2.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Total Emissions</td>
<td>9.5</td>
<td>9.1</td>
<td>6.3</td>
<td>5.5</td>
<td>5.1</td>
<td>3.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Previous Estimated Emissions</td>
<td>8.8</td>
<td>7.5</td>
<td>5.4</td>
<td>5.4</td>
<td>5.4</td>
<td>5.2</td>
<td>NA</td>
</tr>
</tbody>
</table>

NO (Not Occurring)

EPA developed new CO\textsubscript{2} emission factors for liquids unloading using the same GHGRP data sets and methodology used to calculate CH\textsubscript{4} emissions. CO\textsubscript{2} emissions from liquids unloading averaged 63.1 kt CO\textsubscript{2} over the time series, which is an average decrease across the time series of 93 kt CO\textsubscript{2}, or 53 percent. Stakeholder feedback supported calculating emissions using a year-specific and basin-level approach. EPA analyzed approaches of calculating year-specific emissions at a basin level and at the national level and found that calculated results from the two approaches were very similar. See the 2018 Year-Specific Revisions Memo for additional discussion.

Table 3-73: Liquids Unloading National CO\textsubscript{2} Emissions (kt CO\textsubscript{2})

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unloading with Plunger Lifts</td>
<td>NO</td>
<td>10</td>
<td>23</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Unloading without Plunger Lifts</td>
<td>85</td>
<td>55</td>
<td>32</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Total Emissions</td>
<td>85</td>
<td>65</td>
<td>55</td>
<td>12</td>
<td>11</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Previous Estimated Emissions</td>
<td>236</td>
<td>179</td>
<td>40</td>
<td>40</td>
<td>39</td>
<td>39</td>
<td>NA</td>
</tr>
</tbody>
</table>

NO (Not Occurring)
NA (Not Applicable)
Activity Data Updates

Well Counts

EPA has used a more recent version of the DrillingInfo data set to update well counts data in the Inventory. There are not methodological changes to this source in the 2018 Inventory or major changes to the activity data, but because this is a key input, results are highlighted here.

Table 3-74: Producing Gas Well Count Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Gas Wells</td>
<td>197,626</td>
<td>348,470</td>
<td>433,390</td>
<td>427,828</td>
<td>431,446</td>
<td>425,651</td>
<td>416,881</td>
</tr>
<tr>
<td>Previous Estimate</td>
<td>202,628</td>
<td>355,234</td>
<td>438,672</td>
<td>431,926</td>
<td>433,941</td>
<td>421,893</td>
<td>NA</td>
</tr>
<tr>
<td>NA (Not Applicable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In December 2017, EIA released a 2000 through 2016 time series of national oil and gas well counts. EIA total (oil and gas) well counts for 2016 were 1,010,441. EPA’s total well counts were 978,845. Over the 2000 through 2016 time series, EPA’s well counts were on average 2 percent lower than EIA’s. EIA’s well counts include side tracks, completions, and recompletions, and therefore are expected to be higher than EPA’s which include only producing wells. EPA and EIA use different thresholds for distinguishing between oil and gas (EIA uses 6 mcf/bbl, while EPA uses 100 mcf/bbl), which results in EIA having a lower fraction of oil wells and a higher fraction of gas wells than EPA. Across the 2000 through 2016 EIA time series, EIA estimates (which include multiple well categories, as noted above) on average 128,335 (or 31 percent) more gas wells in each year than EPA’s gas well counts (which include only producing wells).

Equipment Counts

EPA recalculated activity factors of equipment per well using the GHGRP RY2015 data. This resulted in changes across the time series. For example, the number of heaters per well decreased by 20 percent over the time series, the number of chemical injection pumps per well decreased by 4 percent, and the number of dehydrators per well increased by 5 percent. The impact of the changes in equipment counts per well along with changes in well counts resulted in changes in methane emissions across the time series for heaters (-21 percent), chemical injection pumps (-6 percent), and dehydrators (+3 percent).

CO₂ Updates

EPA updated CO₂ emissions for a number of sources in the production segment. See the 2018 CO₂ Memo for more details. The overall impact was an average decrease of 8.9 MMT CO₂ (or 74 percent) over the time series, which is partially due to the reallocation of CO₂ emissions from associated gas and miscellaneous onshore production flaring from natural gas systems to petroleum systems, which was not possible in the past because the previous data source aggregated flaring activity data from both petroleum and natural gas systems, but is now possible through use of the GHGRP data.

Sources with the largest impacts include miscellaneous production flaring (decrease of 10.2 MMT CO₂ on average over the time series), and tanks (increase of 0.5 MMT CO₂ over the time series). These sources are discussed in detail below. Other sources recalculated had increases or decreases of less than 0.5 MMT CO₂ (and certain CO₂ updates were already discussed above).

Miscellaneous Production Flaring

EPA developed new estimates for CO₂ and CH₄ emissions from miscellaneous production flaring using GHGRP subpart W data. Along with other updates to flaring emissions in both oil and gas production, this replaces the estimate for onshore flaring that was previously reported in the natural gas systems CO₂ emissions totals. EPA used a production-based scaling and basin-level aggregation approach to calculate emissions from this source. To implement the production-based scaling approach, EPA apportioned miscellaneous production flaring emissions reported to GHGRP (as "flare stacks" emissions) between natural gas and petroleum systems according to the reported counts of gas and oil wells at each facility, then calculated production type-specific emission factors as emissions per unit gas or unit oil production. To implement the basin-level approach, EPA evaluated basin-level miscellaneous production flaring data reported to GHGRP from 2011 to 2016; if a basin contributed at least 10...
percent of total annual emissions (on a CO₂ Eq. basis) from flare stacks in any year, then basin-specific emission factors and activity data were developed. Three basins met this criteria: Gulf Coast, Williston, and Permian. Miscellaneous production flaring data in all other basins were combined, and emission factors and activity data developed for the other basins as a single group. For each basin or group, emission factors were calculated for 2015 and 2016, an emission factor of 0 was assumed for 1990 through 1992, and linear interpolation was applied to develop emission factors for 1993 through 2014. Stakeholder feedback supports this approach to calculating emission from miscellaneous production flaring.

Table 3-75: Miscellaneous Production Flaring National CO₂ Emissions (kt CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Flaring-Gulf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Basin</td>
<td>NO</td>
<td>170</td>
<td>228</td>
<td>274</td>
<td>323</td>
<td>361</td>
<td>246</td>
</tr>
<tr>
<td>Miscellaneous Flaring-Williston</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basin</td>
<td>NO</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Miscellaneous Flaring-Permian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basin</td>
<td>NO</td>
<td>270</td>
<td>398</td>
<td>454</td>
<td>561</td>
<td>674</td>
<td>474</td>
</tr>
<tr>
<td>Miscellaneous Flaring-Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basins</td>
<td>NO</td>
<td>132</td>
<td>312</td>
<td>329</td>
<td>357</td>
<td>380</td>
<td>409</td>
</tr>
<tr>
<td>Miscellaneous Flaring-National</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>NO</td>
<td>572</td>
<td>938</td>
<td>1,057</td>
<td>1,241</td>
<td>1,415</td>
<td>1,129</td>
</tr>
<tr>
<td>Previous Estimated emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>from flaring (natural gas and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>petroleum)*</td>
<td>9,093</td>
<td>7,193</td>
<td>12,704</td>
<td>15,684</td>
<td>17,629</td>
<td>17,629</td>
<td>NA</td>
</tr>
</tbody>
</table>

* The previous estimated emissions from flaring included emissions from multiple sources in the production and processing segments, and also included petroleum systems flaring emissions.
NO (Not Occurring)
NA (Not Applicable)
+ Does not exceed 0.5 kt CO₂.

Table 3-76: Miscellaneous Production Flaring National CH₄ Emissions (Metric Tons CH₄)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Flaring-Gulf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Basin</td>
<td>NO</td>
<td>608</td>
<td>815</td>
<td>977</td>
<td>1,152</td>
<td>1,288</td>
<td>672</td>
</tr>
<tr>
<td>Miscellaneous Flaring-Williston</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basin</td>
<td>NO</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Miscellaneous Flaring-Permian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basin</td>
<td>NO</td>
<td>1,197</td>
<td>1,767</td>
<td>2,017</td>
<td>2,490</td>
<td>2,992</td>
<td>2,095</td>
</tr>
<tr>
<td>Miscellaneous Flaring-Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basins</td>
<td>NO</td>
<td>569</td>
<td>1,345</td>
<td>1,418</td>
<td>1,540</td>
<td>1,639</td>
<td>1,895</td>
</tr>
<tr>
<td>Miscellaneous Flaring-National</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>NO</td>
<td>2,374</td>
<td>3,926</td>
<td>4,411</td>
<td>5,182</td>
<td>5,918</td>
<td>4,662</td>
</tr>
<tr>
<td>Previous Estimated emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>from flaring (natural gas and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>petroleum)*</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
</tbody>
</table>

* Prior Inventories did not estimate methane emissions from a source similar to miscellaneous production flaring.
NO (Not Occurring)
NE (Not Estimated)
NA (Not Applicable)
+ Does not exceed 0.5 MT CH₄.

Tanks

EPA developed CO₂ emissions estimates for condensate tanks using GHGRP data and a throughput-based approach. This approach is identical to the methodology to calculate CH₄ emissions; for more information, please see the 2017 Production Memo. The overall impact of the change is an average increase in calculated CO₂ emissions of 0.5 MMT CO₂ over the time series.
Table 3-77: National Condensate Tank Emissions by Category and National Emissions (kt CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Tanks w/ Flares</td>
<td>287</td>
<td>363</td>
<td>819</td>
<td>985</td>
<td>1,030</td>
<td>1,041</td>
<td>1,172</td>
</tr>
<tr>
<td>Large Tanks w/ VRU</td>
<td>NO</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Large Tanks w/o Control</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Small Tanks w/ Flares</td>
<td>NO</td>
<td>9</td>
<td>27</td>
<td>33</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Small Tanks w/o Flares</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Malfunctioning Dump Valves</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Total Emissions</td>
<td>294</td>
<td>378</td>
<td>857</td>
<td>1,030</td>
<td>1,078</td>
<td>1,089</td>
<td>1,224</td>
</tr>
</tbody>
</table>

Previous Estimated Emissions | 12 | 12 | 25 | 30 | 30 | 30 | NA |

NA (Not Applicable)
NO (Not Occurring)
+ Does not exceed 0.5 kt CO₂.

Gas STAR Revisions

EPA updated the methodology to calculate Gas STAR reductions for the production segment. Most Gas STAR reductions in the production segment are not directly attributable to specific sources, and are therefore grouped together as “other” reductions. However, because most emission sources in the production segment use a net approach to calculate emissions, applying all of the “other” reductions is not warranted, since many reduction activities within this grouping likely pertain to sources that use a net calculation approach. Therefore, EPA calculates a scaling factor to apply to the "other" reductions for the production segment, so that only a fraction of such reductions is used in emission calculations. The “other” reductions scaling factor is calculated as one minus the sum of emissions from sources with net approaches, divided by the sum of all production segment emissions. This approach was updated this year to increase accuracy by including offshore platform emissions as a net source (previously it was not), and to include regulatory reductions in the denominator (they were previously excluded from the analysis). The GasSTAR reductions from 2013 were also applied directly to the following years, as year-specific Gas STAR reductions data have not been processed after year 2013. As a result of the update, Gas STAR reductions averaged 3.8 MMT CO₂ Eq. over the time series, which is an average decrease across the time series of 7 percent (or 0.5 MMT CO₂ Eq.).

Table 3-78: Production Segment Gas STAR Reductions (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas STAR Reductions</td>
<td>NA</td>
<td>5.2</td>
<td>6.6</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Previous Estimate</td>
<td>NA</td>
<td>5.5</td>
<td>7.7</td>
<td>7.9</td>
<td>8.4</td>
<td>9.0</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA (Not Applicable)

Processing

There were no updates to the CH₄ emissions estimation methodology for the processing segment. Updates to activity data resulted in a minor decrease (less than 0.1 MMT CO₂ Eq., or 0.5 percent) in CH₄ emissions estimates for this segment across the time series. EPA updated CO₂ emissions for a number of sources in the processing segment to use emission factors directly calculated from subpart W data. See the 2018 CO₂ Memo for more details. The overall impact was an average decrease of 1.7 MMT CO₂ (or 8 percent) over the time series, which is primarily due to the incorporation of GHGRP data for acid gas removal vents. Acid gas removal CO₂ emissions decreased by an average of 4.7 MMT CO₂, or 21 percent over the time series. Incorporation of GHGRP data for flaring in processing increased emissions by 3.0 MMT CO₂.

Table 3-79: Processing CO₂ Updates, National Emissions (kt CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid Gas Removal</td>
<td>28,282</td>
<td>15,320</td>
<td>13,579</td>
<td>14,565</td>
<td>14,946</td>
<td>14,946</td>
<td>16,565</td>
</tr>
<tr>
<td>Previous Acid Gas Removal</td>
<td>27,708</td>
<td>21,694</td>
<td>21,404</td>
<td>21,690</td>
<td>23,643</td>
<td>23,643</td>
<td>NA</td>
</tr>
</tbody>
</table>
Transmission and Storage

Changes in the estimates for CH$_4$ from transmission and storage include the addition of flaring emissions, recalculations due to updated data (e.g., GHGRP station counts, the GHGRP split between dry and wet seal centrifugal compressors, and GHGRP pneumatic controller data), and adjustments to GasSTAR data. These changes resulted in an average increase in calculated methane emissions over the time series from this segment of 1.2 MMT CO$_2$ Eq., or 3 percent.

Additional information on inclusion of the Aliso Canyon emissions can be found in the Methodology section above and in the memorandum *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2015: Update to Storage Segment Emissions* and not in the Recalculation Discussion section as it did not involve recalculation of a previous year of the Inventory.

Table 3-80: Transmission and Storage CH$_4$ Updates to Flaring, National Emissions (MT CH$_4$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission-flaring*</td>
<td>307</td>
<td>276</td>
<td>281</td>
<td>303</td>
<td>326</td>
<td>326</td>
<td>395</td>
</tr>
<tr>
<td>Storage-flaring*</td>
<td>235</td>
<td>223</td>
<td>231</td>
<td>232</td>
<td>232</td>
<td>227</td>
<td>198</td>
</tr>
<tr>
<td>Previous flaring (transmission and storage)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

EPA updated CO$_2$ emissions for pneumatic controllers and flares in the transmission and storage segment. See the 2018 CO$_2$ Memo for more details. The overall impact was an average increase of 0.1 MMT CO$_2$ (or by a factor of 3) over the time series. The updated CO$_2$ data for pneumatic controllers increased estimated emissions from pneumatic controllers by less than 0.01 MMT CO$_2$, or 53 percent over the time series. The addition of an estimate for flares increased CO$_2$ emissions from transmission and storage by an average of 0.1 MMT CO$_2$ over the time series.

Table 3-81: Transmission and Storage CO$_2$ Updates, National Emissions (kt CO$_2$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission-pneumatic controllers</td>
<td>6.3</td>
<td>4.0</td>
<td>2.9</td>
<td>3.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Previous transmission pneumatic controllers</td>
<td>6.1</td>
<td>2.1</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>NA</td>
</tr>
<tr>
<td>Storage-pneumatic controllers</td>
<td>1.3</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>Previous Storage pneumatic controllers</td>
<td>1.3</td>
<td>1.0</td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>NA</td>
</tr>
<tr>
<td>Transmission-flaring*</td>
<td>78.8</td>
<td>71.0</td>
<td>72.2</td>
<td>78.0</td>
<td>83.7</td>
<td>83.9</td>
<td>88.4</td>
</tr>
<tr>
<td>Storage-flaring*</td>
<td>24.5</td>
<td>23.2</td>
<td>24.0</td>
<td>24.1</td>
<td>24.1</td>
<td>23.6</td>
<td>15.3</td>
</tr>
<tr>
<td>Previous flaring (transmission and storage)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

* Estimates are developed from GHGRP data, wherein compressor stations that service underground storage fields might be classified as transmission compression as the primary function. A significant fraction of the transmission station flaring emissions presented in this table likely occurs at stations that service storage facilities; such stations typically require flares, compared to a typical transmission compressor station used solely for mainline compression that does not require liquids separation, dehydration, and flaring.

Gas STAR Revisions

EPA reviewed the GasSTAR data reported for the transmission and storage segment and made the following revisions. EPA removed the transmission station fugitives reductions (as this source was previously updated to use a net emissions approach) and certain “other” reductions because the emissions are minimal, and most transmission and storage sources have net emissions approaches. The GasSTAR reductions from 2013 were also applied directly to the following years. As a result of the revisions, Gas STAR reductions averaged 5.4 MMT CO₂ Eq. over the time series, which is an average decrease across the time series of 19 percent (or 1.2 MMT CO₂ Eq.).

Table 3-82: Transmission and Storage Segment Gas STAR Reductions (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas STAR reductions</td>
<td>NA</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Previous Estimate</td>
<td>NA</td>
<td>12.4</td>
<td>9.4</td>
<td>8.3</td>
<td>8.4</td>
<td>8.5</td>
<td>NA</td>
</tr>
</tbody>
</table>

Distribution

There were no methodological updates to the distribution segment, but there were GasSTAR revisions and recalculations due to updated data (e.g., GHGRP M&R station counts) that resulted in an average increase in calculated emissions over the time series from this segment of 1.2 MMT CO₂ Eq. CH₄ (or 6.3 percent) and less than 0.01 MMT CO₂ (or 1.9 percent).

Gas STAR revisions

EPA reviewed the GasSTAR data reported for the distribution segment and removed all GasSTAR reductions. EPA removed the mishaps/dig-ins and distribution main blowdown reductions, because in reviewing recent measurement data compared to current emission factors, it was determined it was inappropriate to apply the Gas STAR reduction data. EPA also removed the “other” GasSTAR reductions because most distribution segment sources have net emissions approaches (including the sources most likely related to the “other” reductions).

Table 3-83: Distribution Segment Gas STAR Reductions (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas STAR reductions</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Previous Estimate</td>
<td>NA</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>NA</td>
</tr>
</tbody>
</table>

Planned Improvements

EPA seeks stakeholder feedback on the improvements noted below for future Inventories.

Gathering and Boosting and Transmission Pipeline GHGRP Data

EPA will continue to review data available from its GHGRP, in particular new data on gathering and boosting stations, gathering pipelines, and transmission pipeline blowdowns and new well-specific information, available in
2017 (for reporting year 2016) for the first time. EPA will consider revising its methods to take into account the new GHGRP data.

Liquids Unloading

The emissions and activity data methodology used in the current Inventory rely exclusively on recently collected data (from 2011 or later). EPA is evaluating the liquids unloading data collected for the 1996 GRI/EPA study to determine if it better represents early time series years.

Year-Specific Emission Factors

EPA will continue to consider the development of year-specific emission factors, using GHGRP data, for sources with annual emissions currently calculated with data from one year or an average of a several years.

Well-Related Activity Data

As described in the Recalculations Discussion, EPA has updated the emission factors for several well-related emission sources, including testing, completions, and workovers. EPA will continue to assess available data, including data from the GHGRP and stakeholder feedback on considerations, to improve activity estimates for sources that rely on well-related activity data. For example, EPA will review GHGRP data regarding reported well workover rates; review DrillingInfo data to possibly estimate numbers of wells drilled in recent years (as the current EIA data source is not maintained after 2010); and seek information on other data sets that might inform estimates of non-hydraulically fractured oil well completions and workovers.

LNG Segment Emissions

The current Inventory estimates emissions from LNG storage stations and LNG import terminals in the transmission and storage segment of natural gas systems. The emission factors are based on the 1996 GRI/EPA study, which developed emission factors using underground natural gas storage and transmission compressor station data; specific emissions data for LNG storage stations and LNG import terminals were not available in the GRI/EPA study. EPA’s GHGRP subpart W collects data from LNG storage and LNG import and export facilities that meet a reporting threshold of 25,000 metric tons of CO$_2$ equivalent (MT CO$_2$ Eq.) emissions. EPA is considering approaches and seeking stakeholder feedback on incorporating GHGRP data to improve LNG emissions estimates in the Inventory. Refer to the memorandum *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Additional Revisions Under Consideration (2018 Other Updates Memo)* for additional details. Incorporating GHGRP data would likely decrease emissions from this segment.

N$_2$O Emissions

N$_2$O emissions are currently not included in petroleum systems estimates, but EPA is considering developing a methodology to estimate N$_2$O emissions. The *2018 Other Updates Memo* provides discussion on this topic. EPA will consider options such as using GHGRP data directly for sources that already rely on GHGRP data for CH$_4$ or CO$_2$ estimates. GHGRP RY2015 and RY2016 reported N$_2$O flaring emissions specific to natural gas systems were 26 metric tons (or less than 0.01 MMT CO$_2$ Eq.) and 14 metric tons (or less than 0.01 MMT CO$_2$ Eq.), respectively. In addition, reported N$_2$O flaring emissions were 36 metric tons N$_2$O (or 0.01 MMT CO$_2$ Eq.) and 48 metric tons (or 0.01 MMT CO$_2$ Eq.) for GHGRP RY2015 and RY2016, respectively, for sources that fall within both natural gas and petroleum systems.

Offshore Platforms

EPA is considering updates to the offshore platform emissions calculation methodology, as discussed in the *2018 Other Updates Memo*. The current emission factors were based on data from the 2011 DOI/Bureau of Ocean Energy

95 See <https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems>
Management’s (BOEM) Gulf Offshore Activity Data System (GOADS), and 2014 GOADS data is available. A different source for platform counts is also being considered.

Upcoming Data, and Additional Data that Could Inform the Inventory

EPA will assess new data received by the Methane Challenge Program on an ongoing basis, which may be used to confirm or improve existing estimates and assumptions.

EPA continues to track studies that contain data that may be used to update the Inventory. Key studies in progress include: DOE-funded work on vintage and new plastic pipelines (distribution segment), industrial meters (distribution segment), and sources within the gathering and storage segments; an API field study on pneumatic controllers; and a Pipeline Research Council International (PRCI) project in which researchers are gathering and analyzing subpart W data on transmission compressor stations and underground storage facilities. EPA will also continue to assess studies that include and compare both top-down and bottom-up estimates, and which could lead to improved understanding of unassigned high emitters (e.g., identification of emission sources and information on frequency of high emitters) as recommended in stakeholder comments.

EPA also continues to seek new data that could be used to assess or update the estimates in the Inventory. For example, stakeholder comments have highlighted areas where additional data that could inform the Inventory are currently limited or unavailable:

- Tank malfunction and control efficiency data.
- Consider updating engine emission factors, including using subpart W data to the extent possible, and considering whether and how to represent differences between rich- and lean-burn engines.
- Activity data and emissions data for production facilities that do not report to GHGRP.
- Natural gas leaks at point of use estimates. A recent study (Lavoie et al. 2017) measured three natural gas power plants and found them to be large sources of natural gas leak emissions, and the stakeholder suggested that EPA evaluate the study and any additional information available on this source. At least one country, the United Kingdom, includes an emission estimate for residential and commercial customer natural gas use leaks (e.g., domestic heating boiler cycling and pre-ignition losses from domestic and commercial gas appliances) in its national greenhouse gas emissions inventory; the EPA seeks available data to estimate emissions from this source in the U.S. Stakeholder feedback (one stakeholder) supports use of data from Lavoie et al. or use of the U.K. approach to calculate emissions from this source.

One stakeholder suggested that the Inventory should be updated with site-level and basin-level data, noting EPA could first use basin-level data to assess the Inventory, and that future research could focus on collecting data in basins with the largest discrepancies.

EPA will continue to seek available data on these and other sources as part of the process to update the Inventory.

3.8 Abandoned Oil and Gas Wells (CRF Source Categories 1B2a and 1B2b)

The term "abandoned wells" encompasses various types of wells:

- Wells with no recent production, and not plugged. Common terms (such as those used in state databases) might include: inactive, temporarily abandoned, shut-in, dormant, and idle.
- Wells with no recent production and no responsible operator. Common terms might include: orphaned, deserted, long-term idle, and abandoned.
- Wells that have been plugged to prevent migration of gas or fluids.

The U.S. population of abandoned wells is around 3.1 million (with around 2.6 million abandoned oil wells and 0.6 million abandoned gas wells). Abandoned wells emit both CH₄ and CO₂. Wells that are plugged have much lower emissions than wells that are unplugged (less than 1 kg CH₄ per well per year, versus over 100 kg CH₄ per well per year). Around 30 percent of the abandoned well population in the United States is plugged. This fraction has increased over the time series (from around 19 percent in 1990) as more wells fall under regulations and programs requiring or promoting plugging of abandoned wells.

Abandoned oil wells. Abandoned oil wells emitted 230 kt CH₄ and 5 kt CO₂ in 2016. Emissions of both gases increased by 3 percent from 1990, as the total population of abandoned oil wells increased 25 percent. Emissions of both gases decreased by 1 percent between 2015 and 2016 as a result of well plugging activities.

Abandoned gas wells. Abandoned gas wells emitted 54 kt CH₄ in 2016 and 2 kt CO₂. Emissions of both gases increased by 51 percent from 1990, as the total population of abandoned gas wells increased 73 percent. Emissions of both gases decreased by 1 percent between 2015 and 2016 as a result of well plugging activities.

Table 3-84: CH₄ Emissions from Abandoned Oil and Gas Wells (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Oil Wells</td>
<td>5.6</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Abandoned Gas Wells</td>
<td>0.9</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Total</td>
<td>6.5</td>
<td>6.9</td>
<td>7.0</td>
<td>7.0</td>
<td>7.1</td>
<td>7.2</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.

Table 3-85: CH₄ Emissions from Abandoned Oil and Gas Wells (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Oil Wells</td>
<td>224</td>
<td>233</td>
<td>231</td>
<td>230</td>
<td>230</td>
<td>232</td>
<td>230</td>
</tr>
<tr>
<td>Abandoned Gas Wells</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>50</td>
<td>52</td>
<td>55</td>
<td>54</td>
</tr>
<tr>
<td>Total</td>
<td>260</td>
<td>275</td>
<td>279</td>
<td>280</td>
<td>282</td>
<td>286</td>
<td>284</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.

Table 3-86: CO₂ Emissions from Abandoned Oil and Gas Wells (MMT CO₂)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Oil Wells</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Abandoned Gas Wells</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Total</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ Does not exceed 0.05 MMT CO₂

Table 3-87: CO₂ Emissions from Abandoned Oil and Gas Wells (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Oil Wells</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Abandoned Gas Wells</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.

Methodology

EPA developed abandoned well CH₄ emission factors using data from Kang et al. (2016) and Townsend-Small et al. (2016). Plugged and unplugged abandoned well CH₄ emission factors were developed at the national-level (emission data from Townsend-Small et al.) and for the Appalachia region (using emission data from measurements in Pennsylvania and Ohio conducted by Kang et al. and Townsend-Small et al., respectively). The Appalachia region emissions factors were applied to abandoned wells in states in the Appalachian basin region, and the national-level emission factors were applied to all other abandoned wells.
EPA developed abandoned well CO₂ emission factors using the CH₄ emission factors and an assumed ratio of CO₂-to-CH₄ gas content, similar to the approach used to calculate CO₂ emissions for many sources in Petroleum Systems and Natural Gas Systems. For abandoned oil wells, EPA used the Petroleum Systems default production segment associated gas ratio of 0.020 MT CO₂/MT CH₄, which was derived through API TankCalc modeling runs. For abandoned gas wells, EPA used the Natural Gas Systems default production segment CH₄ and CO₂ gas content values (GRI/EPA 1996, GTI 2001) to develop a ratio of 0.044 MT CO₂/MT CH₄.

The total population of abandoned wells over the time series was estimated using historical data and DrillingInfo data. The abandoned well population was then split into plugged and unplugged wells by assuming that all abandoned wells were unplugged in 1950, 31 percent of abandoned wells were plugged in 2016 (based on an analysis of DrillingInfo data), and applying linear interpolation for intermediate years. See the memorandum Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Abandoned Wells in Natural Gas and Petroleum Systems (2018 Abandoned Wells Memo) for details.⁹⁷

Abandoned Oil Wells

Table 3-88: Abandoned Oil Wells Activity Data, CH₄ and CO₂ Emissions (Metric Tons)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plugged abandoned oil wells</td>
<td>382,446</td>
<td>610,884</td>
<td>719,901</td>
<td>736,830</td>
<td>754,118</td>
<td>776,450</td>
<td>788,396</td>
</tr>
<tr>
<td>Unplugged abandoned oil wells</td>
<td>1,666,399</td>
<td>1,769,214</td>
<td>1,768,266</td>
<td>1,769,425</td>
<td>1,770,862</td>
<td>1,783,308</td>
<td>1,771,362</td>
</tr>
<tr>
<td>Total Abandoned Oil Wells</td>
<td>2,048,846</td>
<td>2,380,098</td>
<td>2,488,167</td>
<td>2,506,255</td>
<td>2,524,980</td>
<td>2,559,758</td>
<td>2,559,758</td>
</tr>
<tr>
<td>Abandoned oil wells in Appalachia</td>
<td>26%</td>
<td>24%</td>
<td>24%</td>
<td>23%</td>
<td>23%</td>
<td>23%</td>
<td>23%</td>
</tr>
<tr>
<td>Abandoned oil wells outside of Appalachia</td>
<td>74%</td>
<td>76%</td>
<td>76%</td>
<td>77%</td>
<td>77%</td>
<td>77%</td>
<td>77%</td>
</tr>
<tr>
<td>CH₄ from plugged abandoned oil wells (MT)</td>
<td>314</td>
<td>471</td>
<td>539</td>
<td>549</td>
<td>560</td>
<td>574</td>
<td>582</td>
</tr>
<tr>
<td>CH₄ from unplugged abandoned oil wells (MT)</td>
<td>223,780</td>
<td>232,546</td>
<td>230,070</td>
<td>229,885</td>
<td>229,735</td>
<td>231,011</td>
<td>229,464</td>
</tr>
<tr>
<td>Total CH₄ from Abandoned oil wells (MT)</td>
<td>224,094</td>
<td>233,017</td>
<td>230,609</td>
<td>230,434</td>
<td>230,295</td>
<td>231,585</td>
<td>230,046</td>
</tr>
<tr>
<td>Total CO₂ from Abandoned oil wells (MT)</td>
<td>4,547</td>
<td>4,728</td>
<td>4,679</td>
<td>4,676</td>
<td>4,673</td>
<td>4,699</td>
<td>4,668</td>
</tr>
</tbody>
</table>

Abandoned Gas Wells

Table 3-89: Abandoned Gas Wells Activity Data, CH₄ and CO₂ Emissions (Metric Tons)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plugged abandoned gas wells</td>
<td>59,480</td>
<td>103,379</td>
<td>138,537</td>
<td>146,187</td>
<td>156,144</td>
<td>167,011</td>
<td>169,580</td>
</tr>
<tr>
<td>Unplugged abandoned gas wells</td>
<td>259,166</td>
<td>299,402</td>
<td>340,284</td>
<td>351,053</td>
<td>366,666</td>
<td>383,580</td>
<td>381,011</td>
</tr>
<tr>
<td>Total Abandoned Gas Wells</td>
<td>318,645</td>
<td>402,781</td>
<td>478,821</td>
<td>497,239</td>
<td>522,810</td>
<td>550,591</td>
<td>550,591</td>
</tr>
<tr>
<td>Abandoned gas wells in Appalachia</td>
<td>28%</td>
<td>29%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Abandoned gas wells outside of Appalachia</td>
<td>72%</td>
<td>71%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>CH₄ from plugged abandoned gas wells (MT)</td>
<td>53</td>
<td>96</td>
<td>131</td>
<td>139</td>
<td>149</td>
<td>159</td>
<td>162</td>
</tr>
<tr>
<td>CH₄ from unplugged abandoned gas wells (MT)</td>
<td>35,810</td>
<td>42,064</td>
<td>48,176</td>
<td>49,754</td>
<td>52,024</td>
<td>54,483</td>
<td>54,118</td>
</tr>
<tr>
<td>Total CH₄ from abandoned gas wells (MT)</td>
<td>35,863</td>
<td>42,160</td>
<td>48,307</td>
<td>49,893</td>
<td>52,173</td>
<td>54,643</td>
<td>54,280</td>
</tr>
</tbody>
</table>

⁹⁷ See <https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems>
Uncertainty and Time-Series Consistency

To characterize uncertainty surrounding estimates of abandoned well emissions, EPA conducted a quantitative uncertainty analysis using the IPCC Approach 2 methodology (Monte Carlo simulation technique). See the 2018 Abandoned Wells Memo for the uncertainty analysis details. EPA used Microsoft Excel's @RISK add-in tool to estimate the 95 percent confidence bound around total methane emissions from abandoned oil and gas wells, then applied the calculated bounds to both CH₄ and CO₂ emissions estimates for each population. The @RISK add-in provides for the specification of probability density functions (PDFs) for key variables within a computational structure that mirrors the calculation of the inventory estimate. EPA used measurement data from the Kang et al. (2016) and Townsend-Small et al. (2016) studies to characterize the CH₄ emission factor PDFs. For activity data inputs (e.g., total count of abandoned wells, split between plugged and unplugged), EPA assigned default uncertainty bounds of +/- 10 percent based on expert judgment.

The IPCC guidance notes that in using this method, "some uncertainties that are not addressed by statistical means may exist, including those arising from omissions or double counting, or other conceptual errors, or from incomplete understanding of the processes that may lead to inaccuracies in estimates developed from models." As a result, the understanding of the uncertainty of emission estimates for this category evolves and improves as the underlying methodologies and datasets improve. The uncertainty bounds reported below only reflect those uncertainties that EPA has been able to quantify and do not incorporate considerations such as modeling uncertainty, data representativeness, measurement errors, misreporting or misclassification.

The results presented below in Table 3-90 provide the 95 percent confidence bound within which actual emissions from abandoned oil and gas wells are likely to fall for the year 2016, using the recommended IPCC methodology. Abandoned oil well CH₄ emissions in 2016 were estimated to be between 1.0 and 18.1 MMT CO₂ Eq., while abandoned gas well CH₄ emissions were estimated to be between 0.2 and 4.3 MMT CO₂ Eq. at a 95 percent confidence level. Uncertainty bounds for other years of the time series have not been calculated, but uncertainty is expected to vary over the time series.

Table 3-90: Approach 2 Quantitative Uncertainty Estimates for CH₄ and CO₂ Emissions from Petroleum and Natural Gas Systems (MMT CO₂ Eq. and Percent)

<table>
<thead>
<tr>
<th>Source</th>
<th>Gas</th>
<th>2016 Emission Estimate (MMT CO₂ Eq.)</th>
<th>Uncertainty Range Relative to Emission Estimatea (MMT CO₂ Eq.)</th>
<th>2016 Emission Estimate (MMT CO₂ Eq.)</th>
<th>Uncertainty Range Relative to Emission Estimatea (MMT CO₂ Eq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Oil Wells</td>
<td>CH₄</td>
<td>5.8</td>
<td>Lower Bound: 1.0, Upper Bound: 18.1</td>
<td>Lower Bound: -83%, Upper Bound: +215%</td>
<td></td>
</tr>
<tr>
<td>Abandoned Gas Wells</td>
<td>CH₄</td>
<td>1.4</td>
<td>Lower Bound: 0.2, Upper Bound: 4.3</td>
<td>Lower Bound: -83%, Upper Bound: +215%</td>
<td></td>
</tr>
<tr>
<td>Abandoned Oil Wells</td>
<td>CO₂</td>
<td>0.005</td>
<td>Lower Bound: 0.001, Upper Bound: 0.015</td>
<td>Lower Bound: -83%, Upper Bound: +215%</td>
<td></td>
</tr>
<tr>
<td>Abandoned Gas Wells</td>
<td>CO₂</td>
<td>0.007</td>
<td>Lower Bound: 0.001, Upper Bound: 0.022</td>
<td>Lower Bound: -83%, Upper Bound: +215%</td>
<td></td>
</tr>
</tbody>
</table>

a Range of emission estimates obtained by applying the 95 percent confidence intervals obtained from the Monte Carlo simulation conducted for the year 2016 for total abandoned oil and gas well CH₄ emissions.

b All reported values are rounded after calculation. As a result, lower and upper bounds may not be duplicable from other rounded values as shown in table.

To calculate a time series of emissions for abandoned wells, EPA developed annual activity data for 1990 through 2016 by summing an estimate of total abandoned wells not included in recent databases, to an annual estimate of abandoned wells in the DrillingInfo data set. As discussed above, the abandoned well population was split into plugged and unplugged wells by assuming that all abandoned wells were unplugged in 1950, 31 percent of abandoned wells were plugged in 2016 (based on an analysis of DrillingInfo data), and applying linear interpolation for intermediate years. The same emission factors were applied to the corresponding categories for each year of the time series.
QA/QC and Verification Discussion

The emission estimates in the Inventory are continually being reviewed and assessed to determine whether emission factors and activity factors accurately reflect current industry practices. A QA/QC analysis was performed for data gathering and input, documentation, and calculation. QA/QC checks are consistently conducted to minimize human error in the model calculations.

As in previous years, EPA conducted early engagement and communication with stakeholders on updates prior to public review. EPA held stakeholder workshops on greenhouse gas data for oil and gas in June and October of 2017, and held webinars in April and August of 2017 and March of 2018. In advance of each workshop, EPA released memos detailing updates under consideration and requesting stakeholder feedback. Stakeholder feedback received through these processes is discussed in the Planned Improvements sections below.

Planned Improvements

Through EPA’s stakeholder process on oil and gas in the Inventory, EPA received initial stakeholder feedback on the abandoned wells update to the Inventory. Stakeholders noted varying definitions regarding abandoned well populations and subpopulations and plugging status, and noted varying degrees of plugging, due to state-level programs to plug abandoned wells. A stakeholder noted limited coverage of abandoned wells studies in the U.S., and cautioned that it may be premature to develop national level estimates for this source, while another stakeholder supported the inclusion of this emission sources and noted that the update uses the best available data for this source.

EPA will also continue to assess new data and stakeholder feedback on considerations (such as the disaggregation of the well population into Appalachia and other regions) to improve the abandoned well count estimates and emission factors.

3.9 Energy Sources of Indirect Greenhouse Gas Emissions

In addition to the main greenhouse gases addressed above, many energy-related activities generate emissions of indirect greenhouse gases. Total emissions of nitrogen oxides (NOx), carbon monoxide (CO), and non-CH4 volatile organic compounds (NMVOCs) from energy-related activities from 1990 to 2016 are reported in Table 3-91.

Table 3-91: NOx, CO, and NMVOC Emissions from Energy-Related Activities (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>21,106</td>
<td>16,602</td>
<td>11,271</td>
<td>10,747</td>
<td>10,161</td>
<td>9,323</td>
<td>8,352</td>
</tr>
<tr>
<td>Mobile Fossil Fuel Combustion</td>
<td>10,862</td>
<td>10,295</td>
<td>6,871</td>
<td>6,448</td>
<td>6,024</td>
<td>5,417</td>
<td>4,814</td>
</tr>
<tr>
<td>Oil and Gas Activities</td>
<td>139</td>
<td>321</td>
<td>663</td>
<td>704</td>
<td>745</td>
<td>745</td>
<td>745</td>
</tr>
<tr>
<td>Waste Combustion</td>
<td>82</td>
<td>128</td>
<td>82</td>
<td>91</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>International Banker Fuelsa</td>
<td>1,956</td>
<td>1,704</td>
<td>1,398</td>
<td>1,139</td>
<td>1,139</td>
<td>1,226</td>
<td>1,322</td>
</tr>
<tr>
<td>CO</td>
<td>125,640</td>
<td>64,985</td>
<td>42,164</td>
<td>40,239</td>
<td>38,315</td>
<td>36,348</td>
<td>34,401</td>
</tr>
<tr>
<td>Mobile Fossil Fuel Combustion</td>
<td>119,360</td>
<td>58,615</td>
<td>36,153</td>
<td>34,000</td>
<td>31,848</td>
<td>29,881</td>
<td>27,934</td>
</tr>
<tr>
<td>Stationary Fossil Fuel Combustion</td>
<td>5,000</td>
<td>4,648</td>
<td>4,027</td>
<td>3,884</td>
<td>3,741</td>
<td>3,741</td>
<td>3,741</td>
</tr>
<tr>
<td>Waste Combustion</td>
<td>978</td>
<td>1,403</td>
<td>1,318</td>
<td>1,632</td>
<td>1,947</td>
<td>1,947</td>
<td>1,947</td>
</tr>
<tr>
<td>Oil and Gas Activities</td>
<td>302</td>
<td>318</td>
<td>666</td>
<td>723</td>
<td>780</td>
<td>780</td>
<td>780</td>
</tr>
<tr>
<td>International Banker Fuelsa</td>
<td>103</td>
<td>133</td>
<td>133</td>
<td>129</td>
<td>135</td>
<td>141</td>
<td>146</td>
</tr>
<tr>
<td>NMVOCs</td>
<td>12,620</td>
<td>7,191</td>
<td>7,558</td>
<td>7,357</td>
<td>7,154</td>
<td>6,867</td>
<td>6,581</td>
</tr>
<tr>
<td>Mobile Fossil Fuel Combustion</td>
<td>10,932</td>
<td>5,724</td>
<td>4,243</td>
<td>3,924</td>
<td>3,605</td>
<td>3,318</td>
<td>3,032</td>
</tr>
<tr>
<td>Oil and Gas Activities</td>
<td>554</td>
<td>510</td>
<td>2,651</td>
<td>2,786</td>
<td>2,921</td>
<td>2,921</td>
<td>2,921</td>
</tr>
<tr>
<td>Stationary Fossil Fuel Combustion</td>
<td>912</td>
<td>716</td>
<td>569</td>
<td>539</td>
<td>507</td>
<td>507</td>
<td>507</td>
</tr>
<tr>
<td>Waste Combustion</td>
<td>222</td>
<td>241</td>
<td>94</td>
<td>108</td>
<td>121</td>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>International Banker Fuelsa</td>
<td>57</td>
<td>54</td>
<td>46</td>
<td>41</td>
<td>42</td>
<td>47</td>
<td>50</td>
</tr>
</tbody>
</table>

3.10 International Bunker Fuels (CRF Source Category 1: Memo Items)

Emissions resulting from the combustion of fuels used for international transport activities, termed international bunker fuels under the UNFCCC, are not included in national emission totals, but are reported separately based upon location of fuel sales. The decision to report emissions from international bunker fuels separately, instead of allocating them to a particular country, was made by the Intergovernmental Negotiating Committee in establishing the Framework Convention on Climate Change. These decisions are reflected in the IPCC methodological guidance, including IPCC (2006), in which countries are requested to report emissions from ships or aircraft that depart from their ports with fuel purchased within national boundaries and are engaged in international transport separately from national totals (IPCC 2006).99

Two transport modes are addressed under the IPCC definition of international bunker fuels: aviation and marine.100 Greenhouse gases emitted from the combustion of international bunker fuels, like other fossil fuels, include CO₂, CH₄, and N₂O for marine transport modes, and CO₂ and N₂O for aviation transport modes. Emissions from ground

98 See report of the Intergovernmental Negotiating Committee for a Framework Convention on Climate Change on the work of its ninth session, held at Geneva from 7 to 18 February 1994 (A/AC.237/55, annex I, para. 1c).
99 Note that the definition of international bunker fuels used by the UNFCCC differs from that used by the International Civil Aviation Organization.
100 Most emission related international aviation and marine regulations are under the rubric of the International Civil Aviation Organization (ICAO) or the International Maritime Organization (IMO), which develop international codes, recommendations, and conventions, such as the International Convention of the Prevention of Pollution from Ships (MARPOL).
transport activities—by road vehicles and trains—even when crossing international borders are allocated to the country where the fuel was loaded into the vehicle and, therefore, are not counted as bunker fuel emissions.

The 2006 IPCC Guidelines distinguish between different modes of air traffic. Civil aviation comprises aircraft used for the commercial transport of passengers and freight, military aviation comprises aircraft under the control of national armed forces, and general aviation applies to recreational and small corporate aircraft. The 2006 IPCC Guidelines further define international bunker fuel use from civil aviation as the fuel combusted (e.g., commercial) aviation purposes by aircraft arriving or departing on international flight segments. However, as mentioned above, and in keeping with the 2006 IPCC Guidelines, only the fuel purchased in the United States and used by aircraft taking-off (i.e., departing) from the United States are reported here. The standard fuel used for civil aviation is kerosene-type jet fuel, while the typical fuel used for general aviation is aviation gasoline.101

Emissions of CO₂ from aircraft are essentially a function of fuel use. Nitrous oxide emissions also depend upon engine characteristics, flight conditions, and flight phase (i.e., take-off, climb, cruise, decent, and landing). Recent data suggest that little or no CH₄ is emitted by modern engines (Anderson et al. 2011), and as a result, CH₄ emissions from this category are considered zero. In jet engines, N₂O is primarily produced by the oxidation of atmospheric nitrogen, and the majority of emissions occur during the cruise phase. International marine bunkers comprise emissions from fuels burned by ocean-going ships of all flags that are engaged in international transport. Ocean-going ships are generally classified as cargo and passenger carrying, military (i.e., U.S. Navy), fishing, and miscellaneous support ships (e.g., tugboats). For the purpose of estimating greenhouse gas emissions, international bunker fuels are solely related to cargo and passenger carrying vessels, which is the largest of the four categories, and military vessels. Two main types of fuels are used on sea-going vessels: distillate diesel fuel and residual fuel oil. Carbon dioxide is the primary greenhouse gas emitted from marine shipping.

Overall, aggregate greenhouse gas emissions in 2016 from the combustion of international bunker fuels from both aviation and marine activities were 117.7 MMT CO₂ Eq., or 12.6 percent above emissions in 1990 (see Table 3-92 and Table 3-93). Emissions from international flights and international shipping voyages departing from the United States have increased by 94.7 percent and decreased by 35.1 percent, respectively, since 1990. The majority of these emissions were in the form of CO₂; however, small amounts of CH₄ (from marine transport modes) and N₂O were also emitted.

Table 3-92: CO₂, CH₄, and N₂O Emissions from International Bunker Fuels (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>103.5</td>
<td>113.1</td>
<td>105.8</td>
<td>99.8</td>
<td>103.4</td>
<td>110.9</td>
<td>116.6</td>
</tr>
<tr>
<td>Aviation</td>
<td>38.0</td>
<td>60.1</td>
<td>64.5</td>
<td>65.7</td>
<td>69.6</td>
<td>71.9</td>
<td>74.1</td>
</tr>
<tr>
<td>Commercial</td>
<td>30.0</td>
<td>55.6</td>
<td>61.4</td>
<td>62.8</td>
<td>66.3</td>
<td>68.6</td>
<td>70.8</td>
</tr>
<tr>
<td>Military</td>
<td>8.1</td>
<td>4.5</td>
<td>3.1</td>
<td>2.9</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Marine</td>
<td>65.4</td>
<td>53.0</td>
<td>41.3</td>
<td>34.1</td>
<td>33.8</td>
<td>38.9</td>
<td>42.5</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Aviation*</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Marine</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>N₂O</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Aviation</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Marine</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>104.5</td>
<td>114.2</td>
<td>106.8</td>
<td>100.7</td>
<td>104.4</td>
<td>111.9</td>
<td>117.7</td>
</tr>
</tbody>
</table>

* Does not exceed 0.05 MMT CO₂ Eq.

Table 3-93: CO₂, CH₄, and N₂O Emissions from International Bunker Fuels (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>103,463</td>
<td>113,139</td>
<td>105,805</td>
<td>99,763</td>
<td>103,400</td>
<td>110,887</td>
<td>116,594</td>
</tr>
<tr>
<td>Aviation</td>
<td>38,034</td>
<td>60,125</td>
<td>64,524</td>
<td>65,664</td>
<td>69,609</td>
<td>71,942</td>
<td>74,059</td>
</tr>
</tbody>
</table>

101 Naphtha-type jet fuel was used in the past by the military in turbojet and turboprop aircraft engines.
Marine 65,429 53,014 41,281 34,099 33,791 38,946 42,535
CH\(_4\) 7 5 4 3 3 3 4
Aviation* 0 0 0 0 0 0 0
Marine 7 5 4 3 3 3 4
N\(_2\)O 3 3 3 3 3 3 3
Aviation 1 2 2 2 2 2 2
Marine 2 1 1 1 1 1 1

*CH\(_4\) emissions from aviation are estimated to be zero.
Notes: Totals may not sum due to independent rounding. Includes aircraft cruise altitude emissions.

Methodology

Emissions of CO\(_2\) were estimated by applying C content and fraction oxidized factors to fuel consumption activity data. This approach is analogous to that described under Section 3.1 – CO\(_2\) from Fossil Fuel Combustion. Carbon content and fraction oxidized factors for jet fuel, distillate fuel oil, and residual fuel oil were taken directly from EIA and are presented in Annex 2.1, Annex 2.2, and Annex 3.8 of this Inventory. Density conversions were taken from Chevron (2000), ASTM (1989), and USAF (1998). Heat content for distillate fuel oil and residual fuel oil were taken from EIA (2018) and USAF (1998), and heat content for jet fuel was taken from EIA (2018). A complete description of the methodology and a listing of the various factors employed can be found in Annex 2.1. See Annex 3.8 for a specific discussion on the methodology used for estimating emissions from international bunker fuel use by the U.S. military.

Emission estimates for CH\(_4\) and N\(_2\)O were calculated by multiplying emission factors by measures of fuel consumption by fuel type and mode. Emission factors used in the calculations of CH\(_4\) and N\(_2\)O emissions were obtained from the 2006 IPCC Guidelines (IPCC 2006). For aircraft emissions, the following value, in units of grams of pollutant per kilogram of fuel consumed (g/kg), was employed: 0.1 for N\(_2\)O (IPCC 2006). For marine vessels consuming either distillate diesel or residual fuel oil the following values (g/MJ), were employed: 0.32 for CH\(_4\) and 0.08 for N\(_2\)O. Activity data for aviation included solely jet fuel consumption statistics, while the marine mode included both distillate diesel and residual fuel oil.

Activity data on domestic and international aircraft fuel consumption were developed by the U.S. Federal Aviation Administration (FAA) using radar-informed data from the FAA Enhanced Traffic Management System (ETMS) for 1990, 2000 through 2016 as modeled with the Aviation Environmental Design Tool (AEDT). This bottom-up approach is built from modeling dynamic aircraft performance for each flight occurring within an individual calendar year. The analysis incorporates data on the aircraft type, date, flight identifier, departure time, arrival time, departure airport, arrival airport, ground delay at each airport, and real-world flight trajectories. To generate results for a given flight within AEDT, the radar-informed aircraft data is correlated with engine and aircraft performance data to calculate fuel burn and exhaust emissions. Information on exhaust emissions for in-production aircraft engines comes from the International Civil Aviation Organization (ICAO) Aircraft Engine Emissions Databank (EDB). This bottom-up approach is in accordance with the Tier 3B method from the 2006 IPCC Guidelines (IPCC 2006).

International aviation CO\(_2\) estimates for 1990 and 2000 through 2016 are obtained from FAA’s AEDT model (FAA 2017). The radar-informed method that was used to estimate CO\(_2\) emissions for commercial aircraft for 1990, and 2000 through 2016 is not possible for 1991 through 1999 because the radar data set is not available for years prior to 2000. FAA developed OAG schedule-informed inventories modeled with AEDT and great circle trajectories for 1990, 2000 and 2010. Because fuel consumption and CO\(_2\) emission estimates for years 1991 through 1999 are unavailable, consumption estimates for these years were calculated using fuel consumption estimates from the Bureau of Transportation Statistics (DOT 1991 through 2013), adjusted based on 2000 through 2005 data.

Data on U.S. Department of Defense (DoD) aviation bunker fuels and total jet fuel consumed by the U.S. military was supplied by the Office of the Under Secretary of Defense (Installations and Environment), DoD. Estimates of the percentage of each Service’s total operations that were international operations were developed by DoD. Military aviation bunkers included international operations, operations conducted from naval vessels at sea, and operations conducted from U.S. installations principally over international water in direct support of military operations at sea. Military aviation bunker fuel emissions were estimated using military fuel and operations data.
synthesized from unpublished data from DoD’s Defense Logistics Agency Energy (DLA Energy 2017). Together, the data allow the quantity of fuel used in military international operations to be estimated. Densities for each jet fuel type were obtained from a report from the U.S. Air Force (USAF 1998). Final jet fuel consumption estimates are presented in Table 3-94. See Annex 3.8 for additional discussion of military data.

Activity data on distillate diesel and residual fuel oil consumption by cargo or passenger carrying marine vessels departing from U.S. ports were taken from unpublished data collected by the Foreign Trade Division of the U.S. Department of Commerce’s Bureau of the Census (DOC 2017) for 1990 through 2001, 2007 through 2016, and the Department of Homeland Security’s Bunker Report for 2003 through 2006 (DHS 2008). Fuel consumption data for 2002 was interpolated due to inconsistencies in reported fuel consumption data. Activity data on distillate diesel consumption by military vessels departing from U.S. ports were provided by DLA Energy (2017). The total amount of fuel provided to naval vessels was reduced by 21 percent to account for fuel used while the vessels were not under way (i.e., in port). Data on the percentage of steaming hours underway versus not-underway were provided by the U.S. Navy. These fuel consumption estimates are presented in Table 3-95.

Table 3-94: Aviation Jet Fuel Consumption for International Transport (Million Gallons)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. and Foreign Carriers</td>
<td>3,222</td>
<td>5,983</td>
<td>6,604</td>
<td>6,748</td>
<td>7,126</td>
<td>7,383</td>
<td>7,610</td>
</tr>
<tr>
<td>U.S. Military</td>
<td>862</td>
<td>462</td>
<td>321</td>
<td>294</td>
<td>339</td>
<td>341</td>
<td>333</td>
</tr>
<tr>
<td>Total</td>
<td>4,084</td>
<td>6,445</td>
<td>6,925</td>
<td>7,042</td>
<td>7,465</td>
<td>7,725</td>
<td>7,943</td>
</tr>
</tbody>
</table>

Table 3-95: Marine Fuel Consumption for International Transport (Million Gallons)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual Fuel Oil</td>
<td>4,781</td>
<td>3,881</td>
<td>3,069</td>
<td>2,537</td>
<td>2,466</td>
<td>2,718</td>
<td>3,011</td>
</tr>
<tr>
<td>Distillate Diesel Fuel & Other</td>
<td>617</td>
<td>444</td>
<td>280</td>
<td>235</td>
<td>261</td>
<td>492</td>
<td>534</td>
</tr>
<tr>
<td>U.S. Military Naval Fuels</td>
<td>522</td>
<td>471</td>
<td>381</td>
<td>308</td>
<td>331</td>
<td>326</td>
<td>314</td>
</tr>
<tr>
<td>Total</td>
<td>5,920</td>
<td>4,796</td>
<td>3,730</td>
<td>3,081</td>
<td>3,058</td>
<td>3,536</td>
<td>3,858</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.

Uncertainty and Time-Series Consistency

Emission estimates related to the consumption of international bunker fuels are subject to the same uncertainties as those from domestic aviation and marine mobile combustion emissions; however, additional uncertainties result from the difficulty in collecting accurate fuel consumption activity data for international transport activities separate from domestic transport activities. For example, smaller aircraft on shorter routes often carry sufficient fuel to complete several flight segments without refueling in order to minimize time spent at the airport gate or take advantage of lower fuel prices at particular airports. This practice, called tankering, when done on international flights, complicates the use of fuel sales data for estimating bunker fuel emissions. Tankering is less common with the type of large, long-range aircraft that make many international flights from the United States, however. Similar practices occur in the marine shipping industry where fuel costs represent a significant portion of overall operating costs and fuel prices vary from port to port, leading to some tankering from ports with low fuel costs.

Uncertainties exist with regard to the total fuel used by military aircraft and ships, and in the activity data on military operations and training that were used to estimate percentages of total fuel use reported as bunker fuel emissions. Total aircraft and ship fuel use estimates were developed from DoD records, which document fuel sold to the Navy and Air Force from the Defense Logistics Agency. These data may slightly over or under estimate actual total fuel use in aircraft and ships because each Service may have procured fuel from, and/or may have sold to, traded with, and/or given fuel to other ships, aircraft, governments, or other entities. There are uncertainties in aircraft operations and training activity data. Estimates for the quantity of fuel actually used in Navy and Air Force flying activities

102 See uncertainty discussions under Carbon Dioxide Emissions from Fossil Fuel Combustion.
reported as bunker fuel emissions had to be estimated based on a combination of available data and expert judgment. Estimates of marine bunker fuel emissions were based on Navy vessel steaming hour data, which reports fuel used while underway and fuel used while not underway. This approach does not capture some voyages that would be classified as domestic for a commercial vessel. Conversely, emissions from fuel used while not underway preceding an international voyage are reported as domestic rather than international as would be done for a commercial vessel. There is uncertainty associated with ground fuel estimates for 1997 through 2001. Small fuel quantities may have been used in vehicles or equipment other than that which was assumed for each fuel type.

There are also uncertainties in fuel end-uses by fuel type, emissions factors, fuel densities, diesel fuel sulfur content, aircraft and vessel engine characteristics and fuel efficiencies, and the methodology used to back-calculate the data set to 1990 using the original set from 1995. The data were adjusted for trends in fuel use based on a closely correlating, but not matching, data set. All assumptions used to develop the estimate were based on process knowledge, Department and military Service data, and expert judgments. The magnitude of the potential errors related to the various uncertainties has not been calculated, but is believed to be small. The uncertainties associated with future military bunker fuel emission estimates could be reduced through additional data collection.

Although aggregate fuel consumption data have been used to estimate emissions from aviation, the recommended method for estimating emissions of gases other than CO₂ in the 2006 IPCC Guidelines (IPCC 2006) is to use data by specific aircraft type, number of individual flights and, ideally, movement data to better differentiate between domestic and international aviation and to facilitate estimating the effects of changes in technologies. The IPCC also recommends that cruise altitude emissions be estimated separately using fuel consumption data, while landing and take-off (LTO) cycle data be used to estimate near-ground level emissions of gases other than CO₂.

There is also concern regarding the reliability of the existing DOC (2017) data on marine vessel fuel consumption reported at U.S. customs stations due to the significant degree of inter-annual variation. Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990 through 2016. Details on the emission trends through time are described in more detail in the Methodology section, above.

QA/QC and Verification

A source-specific QA/QC plan for international bunker fuels was developed and implemented. This effort included a general analysis, as well as portions of a category specific analysis. The category specific procedures that were implemented involved checks specifically focusing on the activity data and emission factor sources and methodology used for estimating CO₂, CH₄, and N₂O from international bunker fuels in the United States. Emission totals for the different sectors and fuels were compared and trends were investigated. No corrective actions were necessary.

Planned Improvements

The feasibility of including data from a broader range of domestic and international sources for bunker fuels, including data from studies such as the Third IMO GHG Study 2014 (IMO 2014), is being considered.

103 U.S. aviation emission estimates for CO, NOₓ, and NMVOCs are reported by EPA’s National Emission Inventory (NEI) Air Pollutant Emission Trends website, and reported under the Mobile Combustion section. It should be noted that these estimates are based solely upon LTO cycles and consequently only capture near ground-level emissions, which are more relevant for air quality evaluations. These estimates also include both domestic and international flights. Therefore, estimates reported under the Mobile Combustion section overestimate IPCC-defined domestic CO, NOₓ, and NMVOC emissions by including landing and take-off (LTO) cycles by aircraft on international flights, but underestimate because they do not include emissions from aircraft on domestic flight segments at cruising altitudes. The estimates in Mobile Combustion are also likely to include emissions from ocean-going vessels departing from U.S. ports on international voyages.
3.11 Wood Biomass and Biofuels Consumption (CRF Source Category 1A)

The combustion of biomass fuels such as wood, charcoal, and wood waste and biomass-based fuels such as ethanol, biogas, and biodiesel generates CO₂ in addition to CH₄ and N₂O already covered in this chapter. In line with the reporting requirements for inventories submitted under the UNFCCC, CO₂ emissions from biomass combustion have been estimated separately from fossil fuel CO₂ emissions and are not directly included in the energy sector contributions to U.S. totals. In accordance with IPCC methodological guidelines, any such emissions are calculated by accounting for net carbon (C) fluxes from changes in biogenic C reservoirs in wooded or crop lands. For a more complete description of this methodological approach, see the Land Use, Land-Use Change, and Forestry chapter (Chapter 6), which accounts for the contribution of any resulting CO₂ emissions to U.S. totals within the Land Use, Land-Use Change, and Forestry sector’s approach.

Therefore, CO₂ emissions from wood biomass and biofuel consumption are not included specifically in summing energy sector totals and are instead included in net carbon fluxes from changes in biogenic carbon reservoirs in the estimates for Land Use, Land-Use Change, and Forestry. However, they are presented here for informational purposes and to provide detail on wood biomass and biofuels consumption.

In 2016, total CO₂ emissions from the burning of woody biomass in the industrial, residential, commercial, and electric power sectors were approximately 208.4 MMT CO₂ Eq. (208,354 kt) (see Table 3-96 and Table 3-97). As the largest consumer of woody biomass, the industrial sector was responsible for 66.4 percent of the CO₂ emissions from this source. The residential sector was the second largest emitter, constituting 18.4 percent of the total, while the commercial and electric power sectors accounted for the remainder.

Table 3-96: CO₂ Emissions from Wood Consumption by End-Use Sector (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial</td>
<td>135.3</td>
<td>136.3</td>
<td>137.3</td>
<td>139.8</td>
<td>140.3</td>
<td>138.5</td>
<td>138.3</td>
</tr>
<tr>
<td>Residential</td>
<td>59.8</td>
<td>44.3</td>
<td>43.3</td>
<td>59.8</td>
<td>60.9</td>
<td>45.4</td>
<td>38.4</td>
</tr>
<tr>
<td>Commercial</td>
<td>6.8</td>
<td>7.2</td>
<td>6.3</td>
<td>7.2</td>
<td>7.8</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td>Electric Power</td>
<td>13.3</td>
<td>19.1</td>
<td>19.6</td>
<td>21.4</td>
<td>25.9</td>
<td>25.1</td>
<td>23.1</td>
</tr>
<tr>
<td>Total</td>
<td>215.2</td>
<td>206.9</td>
<td>206.4</td>
<td>228.2</td>
<td>234.9</td>
<td>217.4</td>
<td>208.4</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.

Table 3-97: CO₂ Emissions from Wood Consumption by End-Use Sector (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial</td>
<td>135,348</td>
<td>136,269</td>
<td>137,256</td>
<td>139,769</td>
<td>140,331</td>
<td>138,537</td>
<td>138,339</td>
</tr>
<tr>
<td>Residential</td>
<td>59,808</td>
<td>44,340</td>
<td>43,309</td>
<td>59,808</td>
<td>60,884</td>
<td>45,359</td>
<td>38,419</td>
</tr>
<tr>
<td>Commercial</td>
<td>6,779</td>
<td>7,218</td>
<td>6,257</td>
<td>7,235</td>
<td>7,760</td>
<td>8,377</td>
<td>8,457</td>
</tr>
<tr>
<td>Electric Power</td>
<td>13,252</td>
<td>19,074</td>
<td>19,612</td>
<td>21,389</td>
<td>25,908</td>
<td>25,146</td>
<td>23,140</td>
</tr>
<tr>
<td>Total</td>
<td>215,186</td>
<td>206,901</td>
<td>206,434</td>
<td>228,200</td>
<td>234,884</td>
<td>217,418</td>
<td>208,354</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.

The transportation sector is responsible for most of the fuel ethanol consumption in the United States. Ethanol used for fuel is currently produced primarily from corn grown in the Midwest, but it can be produced from a variety of biomass feedstocks. Most ethanol for transportation use is blended with gasoline to create a 90 percent gasoline, 10 percent by volume ethanol blend known as E-10 or gasohol.

In 2016, the United States transportation sector consumed an estimated 1,143.0 trillion Btu of ethanol, and as a result, produced approximately 78.2 MMT CO₂ Eq. (78,249 kt) (see Table 3-98 and Table 3-99) of CO₂ emissions. Ethanol fuel production and consumption has grown significantly since 1990 due to the favorable economics of blending ethanol into gasoline and federal policies that have encouraged use of renewable fuels.
The transportation sector is assumed to be responsible for all of the biodiesel consumption in the United States (EIA 2018a). Biodiesel is currently produced primarily from soybean oil, but it can be produced from a variety of biomass feedstocks including waste oils, fats and greases. Biodiesel for transportation use appears in low-level blends (less than 5 percent) with diesel fuel, high-level blends (between 6 and 20 percent) with diesel fuel, and 100 percent biodiesel (EIA 2018b).

In 2016, the United States consumed an estimated 266.1 trillion Btu of biodiesel, and as a result, produced approximately 19.6 MMT CO₂ Eq. (19,648 kt) (see Table 3-100 and Table 3-101) of CO₂ emissions. Biodiesel production and consumption has grown significantly since 2001 due to the favorable economics of blending biodiesel into diesel and federal policies that have encouraged use of renewable fuels (EIA 2018b). There was no measured biodiesel consumption prior to 2001 EIA (2018a).

Table 3-98: CO₂ Emissions from Ethanol Consumption (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>4.1</td>
<td>22.4</td>
<td>71.5</td>
<td>73.4</td>
<td>74.9</td>
<td>76.0</td>
<td>78.2</td>
</tr>
<tr>
<td>Industrial</td>
<td>0.1</td>
<td>0.5</td>
<td>1.1</td>
<td>1.2</td>
<td>1.0</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Commercial</td>
<td>+</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Total</td>
<td>4.2</td>
<td>22.9</td>
<td>72.8</td>
<td>74.7</td>
<td>76.1</td>
<td>78.9</td>
<td>81.2</td>
</tr>
</tbody>
</table>

* + Does not exceed 0.05 MMT CO₂ Eq.
* a See Annex 3.2, Table A-95 for additional information on transportation consumption of these fuels.
* Note: Totals may not sum due to independent rounding.

Table 3-99: CO₂ Emissions from Ethanol Consumption (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>4,136</td>
<td>22,414</td>
<td>71,510</td>
<td>73,359</td>
<td>74,857</td>
<td>75,981</td>
<td>78,249</td>
</tr>
<tr>
<td>Industrial</td>
<td>56</td>
<td>468</td>
<td>1,142</td>
<td>1,202</td>
<td>970</td>
<td>1,201</td>
<td>1,235</td>
</tr>
<tr>
<td>Commercial</td>
<td>34</td>
<td>60</td>
<td>175</td>
<td>183</td>
<td>249</td>
<td>1,752</td>
<td>1,766</td>
</tr>
<tr>
<td>Total</td>
<td>4,227</td>
<td>22,943</td>
<td>72,827</td>
<td>74,743</td>
<td>76,075</td>
<td>78,934</td>
<td>81,250</td>
</tr>
</tbody>
</table>

* a See Annex 3.2, Table A-95 for additional information on transportation consumption of these fuels.
* Note: Totals may not sum due to independent rounding.

Table 3-100: CO₂ Emissions from Biodiesel Consumption (MMT CO₂ Eq.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>0.0</td>
<td>0.9</td>
<td>8.5</td>
<td>13.5</td>
<td>13.3</td>
<td>14.1</td>
<td>19.6</td>
</tr>
<tr>
<td>Total</td>
<td>0.0</td>
<td>0.9</td>
<td>8.5</td>
<td>13.5</td>
<td>13.3</td>
<td>14.1</td>
<td>19.6</td>
</tr>
</tbody>
</table>

* + Does not exceed 0.05 MMT CO₂ Eq.
* a See Annex 3.2, Table A-95 for additional information on transportation consumption of these fuels.
* Note: Totals may not sum due to independent rounding.

Table 3-101: CO₂ Emissions from Biodiesel Consumption (kt)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>0</td>
<td>856</td>
<td>8,470</td>
<td>13,462</td>
<td>13,349</td>
<td>14,077</td>
<td>19,648</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>856</td>
<td>8,470</td>
<td>13,462</td>
<td>13,349</td>
<td>14,077</td>
<td>19,648</td>
</tr>
</tbody>
</table>

* a See Annex 3.2, Table A-95 for additional information on transportation consumption of these fuels.
* Note: Totals may not sum due to independent rounding.

Methodology

Woody biomass emissions were estimated by applying two EIA gross heat contents (Lindstrom 2006) to U.S. consumption data (EIA 2018a) (see Table 3-102), provided in energy units for the industrial, residential, commercial, and electric generation sectors. One heat content (16.95 MMBtu/MT wood and wood waste) was applied to the industrial sector’s consumption, while the other heat content (15.43 MMBtu/MT wood and wood
An EIA emission factor of 0.434 MT C/MT wood (Lindstrom 2006) was then applied to the resulting quantities of woody biomass to obtain CO₂ emission estimates. It was assumed that the woody biomass contains black liquor and other wood wastes, has a moisture content of 12 percent, and is converted into CO₂ with 100 percent efficiency. The emissions from ethanol consumption were calculated by applying an emission factor of 18.7 MMT C/QBtu (EPA 2010) to U.S. ethanol consumption estimates that were provided in energy units (EIA 2018a) (see Table 3-103). The emissions from biodiesel consumption were calculated by applying an emission factor of 20.1 MMT C/QBtu (EPA 2010) to U.S. biodiesel consumption estimates that were provided in energy units (EIA 2018a) (see Table 3-104).

Table 3-102: Woody Biomass Consumption by Sector (Trillion Btu)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial</td>
<td>1,441.9</td>
<td>1,451.7</td>
<td>1,462.2</td>
<td>1,489.0</td>
<td>1,495.0</td>
<td>1,475.9</td>
<td>1,473.8</td>
</tr>
<tr>
<td>Residential</td>
<td>580.0</td>
<td>430.0</td>
<td>420.0</td>
<td>580.0</td>
<td>590.4</td>
<td>439.9</td>
<td>372.6</td>
</tr>
<tr>
<td>Commercial</td>
<td>65.7</td>
<td>70.0</td>
<td>60.7</td>
<td>70.2</td>
<td>75.3</td>
<td>81.2</td>
<td>82.0</td>
</tr>
<tr>
<td>Electric Power</td>
<td>128.5</td>
<td>185.0</td>
<td>190.2</td>
<td>207.4</td>
<td>251.3</td>
<td>243.9</td>
<td>224.4</td>
</tr>
<tr>
<td>Total</td>
<td>2,216.2</td>
<td>2,136.7</td>
<td>2,133.1</td>
<td>2,346.6</td>
<td>2,412.0</td>
<td>2,240.9</td>
<td>2,152.8</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.

Table 3-103: Ethanol Consumption by Sector (Trillion Btu)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>60.4</td>
<td>327.4</td>
<td>1,044.6</td>
<td>1,071.6</td>
<td>1,093.5</td>
<td>1,109.9</td>
<td>1,143.0</td>
</tr>
<tr>
<td>Industrial</td>
<td>0.8</td>
<td>6.8</td>
<td>16.7</td>
<td>17.6</td>
<td>14.2</td>
<td>17.6</td>
<td>18.0</td>
</tr>
<tr>
<td>Commercial</td>
<td>0.5</td>
<td>0.9</td>
<td>2.6</td>
<td>2.7</td>
<td>3.6</td>
<td>25.6</td>
<td>25.8</td>
</tr>
<tr>
<td>Total</td>
<td>61.7</td>
<td>335.1</td>
<td>1,063.8</td>
<td>1,091.8</td>
<td>1,111.3</td>
<td>1,153.1</td>
<td>1,186.9</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.

Table 3-104: Biodiesel Consumption by Sector (Trillion Btu)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td>0.0</td>
<td>11.6</td>
<td>114.7</td>
<td>182.3</td>
<td>180.8</td>
<td>190.6</td>
<td>266.1</td>
</tr>
<tr>
<td>Total</td>
<td>0.0</td>
<td>11.6</td>
<td>114.7</td>
<td>182.3</td>
<td>180.8</td>
<td>190.6</td>
<td>266.1</td>
</tr>
</tbody>
</table>

Note: Totals may not sum due to independent rounding.

Uncertainty and Time-Series Consistency

It is assumed that the combustion efficiency for woody biomass is 100 percent, which is believed to be an overestimate of the efficiency of wood combustion processes in the United States. Decreasing the combustion efficiency would decrease emission estimates for CO₂. Additionally, the heat content applied to the consumption of woody biomass in the residential, commercial, and electric power sectors is unlikely to be a completely accurate representation of the heat content for all the different types of woody biomass consumed within these sectors.

Emission estimates from ethanol and biodiesel production are more certain than estimates from woody biomass consumption due to better activity data collection methods and uniform combustion techniques.

Methodological recalculations were applied to the entire time series to ensure time-series consistency from 1990 through 2016. Details on the emission trends through time are described in more detail in the Methodology section, above.

Recalculations Discussion

EIA updated wood biomass and biofuels consumption statistics across the time series relative to the previous Inventory (EIA 2018a). EIA revised 2010 through 2015 wood energy consumption in the industrial sector, and 2014 through 2015 wood energy consumption in the residential and commercial sectors. Additionally, EIA revised sector allocations of ethanol in 2015, resulting in a shift of ethanol consumption from the industrial and commercial sectors.
Revisions to wood energy consumption resulted in an average annual increase of 3.4 MMT CO$_2$ Eq. (1.7 percent) in CO$_2$ emissions from wood consumption for the period 1990 through 2015, relative to the previous Inventory.

Planned Improvements

Future research will look into the availability of data on woody biomass heat contents and carbon emission factors to see if there are newer, improved data sources available for these factors.

The availability of facility-level combustion emissions through EPA’s GHGRP will be examined to help better characterize the industrial sector’s energy consumption in the United States, and further classify woody biomass consumption by business establishments according to industrial economic activity type. Most methodologies used in EPA’s GHGRP are consistent with IPCC, though for EPA’s GHGRP, facilities collect detailed information specific to their operations according to detailed measurement standards, which may differ with the more aggregated data collected for the Inventory to estimate total, national U.S. emissions. In addition, and unlike the reporting requirements for this chapter under the UNFCCC reporting guidelines, some facility-level fuel combustion emissions reported under EPA’s GHGRP may also include industrial process emissions. In line with UNFCCC reporting guidelines, fuel combustion emissions are included in this chapter, while process emissions are included in the Industrial Processes and Product Use chapter of this report. In examining data from EPA’s GHGRP that would be useful to improve the emission estimates for the CO$_2$ from biomass combustion category, particular attention will also be made to ensure time series consistency, as the facility-level reporting data from EPA’s GHGRP are not available for all inventory years as reported in this Inventory. Additionally, analyses will focus on aligning reported facility-level fuel types and IPCC fuel types per the national energy statistics, ensuring CO$_2$ emissions from biomass are separated in the facility-level reported data, and maintaining consistency with national energy statistics provided by EIA. In implementing improvements and integration of data from EPA’s GHGRP, the latest guidance from the IPCC on the use of facility-level data in national inventories will be relied upon.

Currently emission estimates from biomass and biomass-based fuels included in this inventory are limited to woody biomass, ethanol, and biodiesel. Other forms of biomass-based fuel consumption include biogas. An effort will be made to examine sources of data for biogas including data from EIA for possible inclusion. EIA (2018a) natural gas data already deducts biogas used in the natural gas supply so no adjustments are needed to the natural gas fuel consumption data to account for biogas.

As per discussion in Section 3.1, an additional planned improvement is to evaluate and potentially update EPA’s method for allocating motor gasoline consumption across the Transportation, Industrial and Commercial sectors to improve accuracy and create a more consistent time series. Further research will be conducted to determine if changes also need to be made to ethanol allocation between these sectors to match gasoline’s sectoral distribution.

104 See [https://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf?&page=2].