## The Writing's on the Wall Recent Cool Wall Research and Measures

February 22, 2018

### Hosted by:

**U.S. EPA Heat Island Reduction Program** 





### Urban Climate and Other Cobenefits

George Ban-Weiss University of Southern California









## Investigating the Influence of Cool Wall Adoption on Climate in the Los Angeles Basin

Presenter: Professor George Ban-Weiss (<u>banweiss@usc.edu</u>) University of Southern California

> Jiachen Zhang, Arash Mohegh, Yun Li (USC) Ronnen Levinson (LBNL)



# The urban heat island (UHI) effect describes cities being warmer than rural surroundings





City dwellers are facing severe heat-related challenges

### **Adverse impacts of UHI:**

Heat stroke & exhaustion

Summertime peak energy use





### Some strategies for reducing urban heat

### Cool (reflective) roofs





**Cool** pavements

### Vegetative roofs



### Street level vegetation





## Some strategies for reducing urban heat

# What about solar reflective cool walls?

Have not yet been systematically investigated



### High albedo (a.k.a. solar reflectance)

Albedo: The ratio of reflected to incident sunlight



# Research goals

- Quantify the climate effects of hypothetical cool wall adoption in the Los Angeles basin
  - o Increases in reflected sunlight out of the city
  - Air temperature reductions in urban canyon

 Compare the climate effects of cool walls to cool roofs



### We use a WRF Single Layer Urban Canopy Model for our climate simulations

- Weather Research & Forecasting (WRF) model (Version 3.7)
- National Land Cover Database land use classification
- Single layer urban canopy model used for urban grid cells



Single Layer Urban Canopy Model (SLUCM)



# Domain/configuration for WRF simulations





## Deriving realistic urban morphology per urban land use type

**Ground width, roof width, and building height** are derived from Los Angeles Region Imagery Acquisition Consortium (**LARIAC**) program

- Building data (footprint and height for each building in Los Angeles County)
- Street centerlines





# Simulated scenarios

| Scenario       | Wall albedo | Roof albedo |
|----------------|-------------|-------------|
| CONTROL        | 0.10        | 0.10        |
| COOL_WALL_LOW  | 0.50        | 0.10        |
| COOL_WALL_HIGH | 0.90        | 0.10        |
| COOL_ROOF_LOW  | 0.10        | 0.50        |
| COOL_ROOF_HIGH | 0.10        | 0.90        |

- Simulated July 2012
- Ground albedo = 0.10 in all cases
- We simulated three ensemble members per case



Grid cell albedo increases from cool walls are largest in the early morning (and late afternoon) where urban fraction is highest



#### 12 pm Local standard time

35

### Grid cell albedo increases from cool walls are larger than from cool roofs in the early morning and late afternoon



Local standard time (LST)



The daytime cumulative increase in reflected solar radiation induced by cool walls is 43% of that induced by cool roofs

- Solar irradiance (W m<sup>-2</sup>) on walls is about 40% that on roofs in July in LA County
- Net wall area (excluding windows) is about 60% greater than roof area in Los Angeles
- Solar radiation that is reflected by walls is partially (50-59%) absorbed by opposing walls and pavements, while that reflected by roofs escapes the canopy.

Daytime cumulative increase relative to CONTROL

COOL\_WALL\_HIGH: 783 kJ m<sup>-2</sup> COOL\_ROOF\_HIGH: 1840 kJ m<sup>-2</sup>



# Cool walls reduce canyon air temperatures throughout the LA basin

Implemented a new parameterization to diagnose "canyon" air temperature (Theeuwes et al., 2014)



38

# Cool walls lead to less cooling than cool roofs for most daytime hours

#### Canyon air temperatures



Major contributors to the shape of diurnal cycle:

- Increase in reflected solar radiation
- Planetary boundary layer height (peak at 1 pm)
- Accumulation of solar heat gain



# Daily average temperature reduction per 0.10 facet albedo increase

| Scenario       | Daily average canyon air<br>temperature reduction (K) per<br>0.10 albedo increase |
|----------------|-----------------------------------------------------------------------------------|
| COOL_WALL_LOW  | 0.048                                                                             |
| COOL_WALL_HIGH | 0.054                                                                             |
| COOL_ROOF_LOW  | 0.057                                                                             |
| COOL_ROOF_HIGH | 0.059                                                                             |



# Conclusions – climate in LA county

- The daytime cumulative increase in upwelling sunlight (W m<sup>-2</sup>) induced by cool walls is 43% of that induced by cool roofs
- Canyon air temperature reductions from cool walls are largest in the early morning and late afternoon
- Daily mean canyon air temperature reductions are similar for cool walls (0.05 K per 0.1 wall albedo increase) and roofs (0.06 K per 0.1 albedo increase)



# Acknowledgements



- Research group at USC
- Pouya Vahmani (LBNL)
- Gert-Jan Steeneveld (Wageningen University)
- Joachim Fallmann (Institute of Meteorology and Climate Research, Germany)
- Ravan Ahmadov & Stu McKeen (National Oceanic and Atmospheric Administration)
- Dan Li (Boston University)
- Pablo Rasodo & Haley Gilbert (LBNL)
- South Coast Air Quality Management District and California Air Resources Board

#### Funding:







### **Connect with the Heat Island Program**









U.S. Environmental Protection Agency 202-343-9291

**Webcast Feedback Form** 

**Heat Island Program Website** 

**EPA Heat Island Newsletter Sign-Up** 

