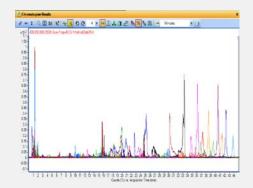
http://orcid.org/0000-0003-1423-330X

Structure Identification Using the US EPA's CompTox Chemistry Dashboard

Andrew D. McEachran ORISE Postdoctoral Research Participant

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

Office of Research and Development National Center for Computational Toxicology, RTP, NC

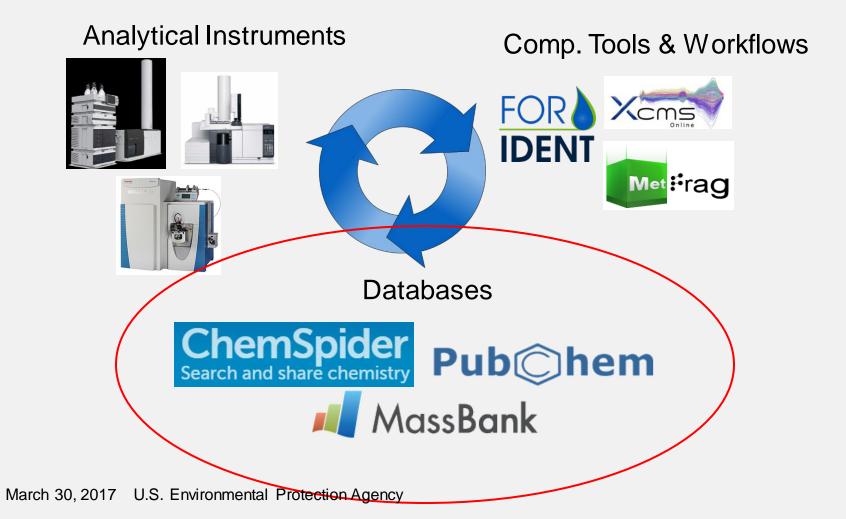


Comparing Analysis Approaches

- Targeted Analysis:
 - We know exactly what we're looking for
 - 10s 100s of chemicals
- Suspect Screening Analysis (SSA):
 - We have chemicals of interest
 - 100s 1,000s of chemicals
- Non-Targeted Analysis (NTA):
 - We have no preconceived lists
 - 1,000s 10,000s of chemicals
 - In dust, soil, food, air, water, products-potential exposure sources for plants, animals, and humans

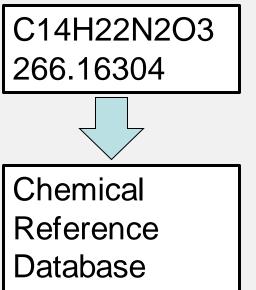
General Goals of SSA/NTA

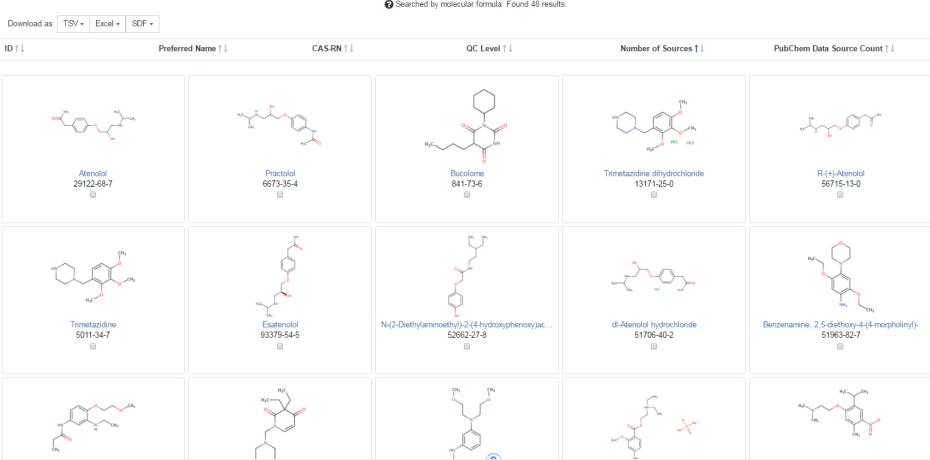
Slide from Sobus, Williams


NTA Challenges

- Up to 5000 molecular features in a given sample
- Current workflows routinely identify <20%
- How can we improve identification???
 - -Simple workflows
 - -Reliable formula prediction
 - -Accurate ranking of likelihood (Databases)
 - -Weighted/evidence approaches (Databases, algorithms, software programs, etc.)

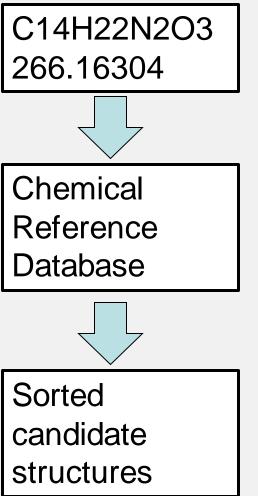
4


The General Approach


Data Source Ranking of "known unknowns"

- Mass and/or formula unknown to a researcher, contained within a reference database
- Most likely candidate chemicals have the most references/sources

Search Results



O Searched by molecular formula: Found 48 results.

Data Source Ranking of "known unknowns"

- Mass and/or formula unknown to a researcher, contained within a reference database
- Most likely candidate chemicals have the most references/sources

Initial Data Source Ranking in ChemSpider

C American Society for Mass Spectrometry, 2011

J. Am. Soc. Mass Spectrom. (2012) 23:179–185 DOI: 10.1007/s13361-011-0265-y

Adopted by NTA researchers around the world

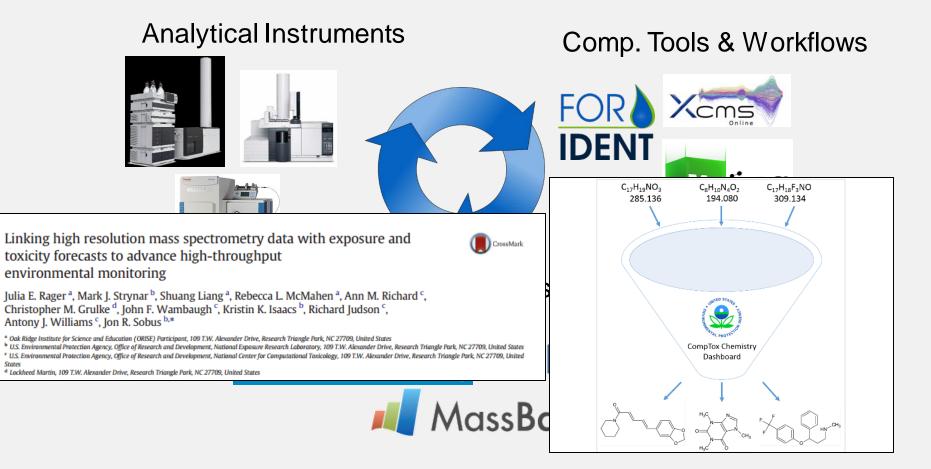
Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

RESEARCH ARTICLE

Table 1. Searching ChemSpider by Elemental Composition then Sorting by Number of Associated References

Class of compounds	Number compounds in class	Position of compound sorted in descending order by number of reference						
		#1	#2	#3	#4	#5	>#5	
Drugs	45	43	1	1				
Pesticides	8	7	1					
Toxins	2	2						
Polymer antioxidants	15	15						
Polymer UV stabilizers	10	8	1	1				
Polymer clarifying agent (Irgaclear DM)	1						1(14)	
Polyurethane additives	4	2	1			1		
Natural products	3	2		1				
Herbicide (clofibric acid)	1	1						
Artificial sweetener (sucralose)	1	1						
Total compounds ChemSpider	90	81	4	3		1	1	
Total compounds CAS Registry [1]	90	84	4	1		1		

The General Approach

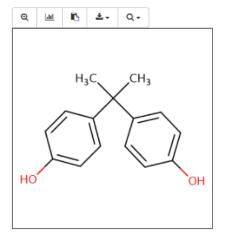


9 March 30, 2017 U.S. Environmental Protection Agency

10

The General Approach

EPA United States Environmental Protection Agency	Home Advanced Search	
Chemistry Dashboard		Aa 💌 Aa 🗛 🔺
https://con	nptox.epa.gov	
Search		Q
	Single component search Ignore isotopes	
	Single component search Ignore isotopes See what people are saying, read the dashboard comments! Need more? Use advanced search. About Contact Privacy Destroy Accessibility Help	


March 30, 2017 U.S. Environmental Protection Agency

Bisphenol A

80-05-7 | DTXSID7020182

Searched by Expert Validated Synonym: Found 1 result for 'bpa'.

Nikipedia	
Bisphenol A (BPA) is an organic synthetic compound with the chemical formula (CH3)2C(C6H4OH)2 belonging to the group of tiphenylmethane derivatives and bisphenols, with two hydroxyphenyl groups. It is a colorless solid that is soluble in organic solvents, but poor soluble in water. It has been in commercial use since 1957. BPA is employed to make certain plastics and epoxy resins. BPA-based plastic is lear and tough Read more	
ntrinsic Properties	
Structural Identifiers	
Related Compounds (Beta)	
Presence in Lists	
Record Information	

Bisphenol A 80-05-7 | DTXSID7020182

Searched by Expert Validated Synonym: Found 1 result for 'bpa'.

Chemical Properties	Env. Fate/Transport	Synonyms	External Links	Toxicity Values	s (Beta) E	xposure	Bioassays	Similar Molecules (B	ieta) Literature	Comments
Summary	Download	as: TSV	Excel SDF							
LogP: Octanol-Water	Property		Ave	erage		Media	n		Range	Unit
Water Solubility			Experimental	Predicted	Experiment	al	Predicted	Experimental	Predicted	
Density 0.	LogP: Octa	anol-Water	3.32 (1)	3.24 (4)	3.32 to 3.32		3.24	3.32	2.40 to 3.73	-
Density	Water Solu	ubility	5.26e-04 (1)	1.58e-03 (4)	5.26e-04 to 5	.26e-04	1.58e-03	5.26e-04	5.70e-04 to 3.68e-03	mol/L
Melting Point	Density			1.14 (1)	-		1.14	-	-	g/cm^3
Boiling Point	Melting Po	int	155 (7)	144 (3)	153 to 158		144	153 to 158	132 to 157	°C
Bolling Point	Boiling Poi	nt	200 (1)	349 (3)	200 to 200		349	200	334 to 364	°C
Surface Tension	Surface Te	ension	-	46.0 (1)	-		46.0	-	-	dyn/cm
Vapor Pressure	Vapor Pres	ssure	-	2.52e-07 (3)	-		2.52e-07	-	7.01e-08 to 5.34e-07	mmHg
vapor Pressure	LogKoa: C	octanol-Air	-	8.38 (1)	-		8.38	-	-	-
LogKoa: Octanol-Air	Henry's La	w	-	6.96e-07 (1)	-		6.96e-07	-	-	atm-m3/mo
Hannia Law	Index of R	efraction	-	1.60 (1)	-		1.60	-	-	-
Henry's Law	Molar Refr	ractivity	-	68.2 (1)	-		68.2	-	-	cm^3
Index of Refraction	pKa Acidic	Apparent	-	10.3 (1)	-		10.3	-	-	-
	Molar Volu	ime	-	200 (1)	-		200	-		cm^3

Bisphenol A

80-05-7 | DTXSID7020182

Chemical Properties	Env. F	ate/Transport	Synonyms	External Links	Toxicity Val	ues (Beta)	Exposure	Bioassays	Similar Molecules (Beta)	Literature	Comme	nts
Chemical Weight Fra	Chemical Weight Fracti Download as: TSV Excel											
Product Use Categor	ries	279th highes	t exposure 🕄									
Chemical Functional	Us					🚯 Expo	sure Predic	tions (mg/kg	bw/day)			
			Ages 6-11	Ages 12-19	Ages 20-65	Ages 65+	BMI > 30	BMI < 30	Repro. Age Females 🚯	Females	Males	Total
Monitoring Data		Median	6.30e-05	2.68e-05	2.05e-05	1.61e-05	1.69e-05	2.67e-05	1.11e-05	1.11e-05	3.89e-05	2.11e-05
Exposure Predictio	ons	95th Percentil	e 5.82e-03	2.00e-03	1.61e-03	2.18e-03	1.45e-03	2.26e-03	1.57e-03	9.09e-04	3.34e-03	2.00e-03

CompTox Chemistry Dashboard

	QSAR Versi	ion/Date: 2015-11-06		
	Download as: TSV Excel			
	Harmonized Functional Use	Probability		
Chemical Weight Fraction (Beta)	skin_protectant	0.66		
Product Use Categories (Beta)	hair_conditioner	0.58		
Froduct Obe Oategories (Deta)	antimicrobial	0.57		
Chemical Functional Use (Beta)	masking_agent	0.55		
	skin_conditioner	0.53		
Monitoring Data	antioxidant	0.51		
Evensure Productions	colorant	0.50		
Exposure Predictions	uv_absorber	0.44		
	soluble_dye	0.43		
	hair_dye	0.42		
	crosslinker	0.42		
	photoinitiator	0.41		
	humectant	0.41		
	additive_for_rubber	0.41		

Predicted Probability of Associated Functional Use (1)

Chemical Properties	Env. Fate/Transport	Supanyima	External Links	Toxicity Values (Beta)	Exposure	Bioassays	Similar Molecules (Beta)	Literature	Comments		
Chemical Properties	Linv. Fate/ transport	Synonyms		TOXICITY VALUES (DETA)	Exposure	bioassays	Similar Molecules (Beta)	Literature	Comments		
					Sim	nilar Mole	cules				
				Se	arched with	a similarity	threshold of 0.75				
Download as: TSV	Excel				Properties	•	Chemicals				
			~0				ma		~~~~~	÷.	- C
Similarity Value			1		1		1		0.981818	0.	877193
LogP: Octanol-Water	Experiment	al	0.160		-		-		-	-	
	Predicted		-0.0454		-0.156		-0.156		-0.219	0.	853
Nater Solubility	Experiment	al	0.0499		-		-		-	-	
	Predicted		1.00		0.0858		0.0858		0.127	0.	563
Melting Point	Experiment	al	151		148		148		-	-	
	Predicted		158		158		158		170	11	7
Boiling Point	Experiment	al	-		508		508		-	-	
	Predicted		354		354		354		311	30	17
/apor Pressure	Experiment	al	-		-		-		-	-	
	Predicted		1.65e-9		2.46e-9		2.46e-9		2.46e-9	7.	48e-7

Chemical Properties E	nv. Fate/Transport	Synonyms	External Links	Toxicity Values (Beta)	Exposure	Bioas	says	Similar Molecules (Beta)	Literatu	re Comments	
General	To	xicology		Publications			Ana	lytical		Prediction	
EPA Substance Registry	Service (3)	ACToR		Toxline			ca e	RSC Analytical Abstracts	Ι.	oo Chemicalize	
NIST Chemistry Webboo	ok 💘	DrugPortal		Brvironmental H	lealth Perspect		c≉ F	FOR-IDENT		Proton NMR Pre	ediction
or Household Products Dat	abase	CCRIS		NIEHS			c* 1	MONA: MassBank North Ameri	ica	♂ Carbon-13 NMF	Prediction
PubChem	۲	ChemView		National Toxicol	ogy Program		C I	NEMI: National Environmental	М	2D NMR HSQC	HMBC Prediction
💢 Chemspider	Ø	CTD		G Google Books			C" I	Tox21 Analytical Data		ChemRTP Pred	ictor
hmp HMDB	d.	eChemPortal		G Google Scholar							
w Wikipedia	۲	EDSP Dashboa	ard	G Google Patents							
Q MSDS Lookup	1141	Gene-Tox		PubMed							
Q ToxPlanet	1141	HSDB		Q BioCaddie Data	Med						
Q ChemHat: Hazards and	Alternat 🏽 🖲	ToxCast Dashb	oard 2	Q Federal Registe	r						
I ChEMBL		LactMed		Q Regulations.gov							
Consumer Product Inform	mation	International To	oxicity Estimates	RSC Publication	S						
🕼 ECHA Brief Profile	c	ACTOR PDF Re	eport	🕼 Springer Materia	ls						
C ECHA Infocard				IRIS Assessmen	ts						
Q Sigma-Aldrich Chemicals	6			Q CORE Literature	e Search						
🕑 Wikidata				Q Bielefeld Acader	mic Search Eng	i					
Q Wolfram Alpha											
Q WebWISER											
C ECHA Dossier											

Identifying known unknowns in the Dashboard?

Data Source Ranking in the Dashboard

SEPA United States Environmental Protection Home Advanced Search		Search Chemistry Dashboard Q
Chemistry Dashboard		Aa × Aa Aa ×
ß	Chemistry Dashboard Advanced Search	
	Mass Search Mass amu ± Error amu ppm Search Single component Ignore isotopes Generate Molecular Formula(e)	formula 2. Search across the entire
	Options ▼ Molecular Formula Search Molecular Formula Single component Batch Search Contect Privacy period Clore @	
About	Contact Privacy Contact DisSTox	Accessibility Help Downloads

٠

On same 162 chemicals,

Dashboard outperforms

ChemSpider

Anal Bioanal Chem DOI 10.1007/s00216-016-0139-z

RAPID COMMUNICATION

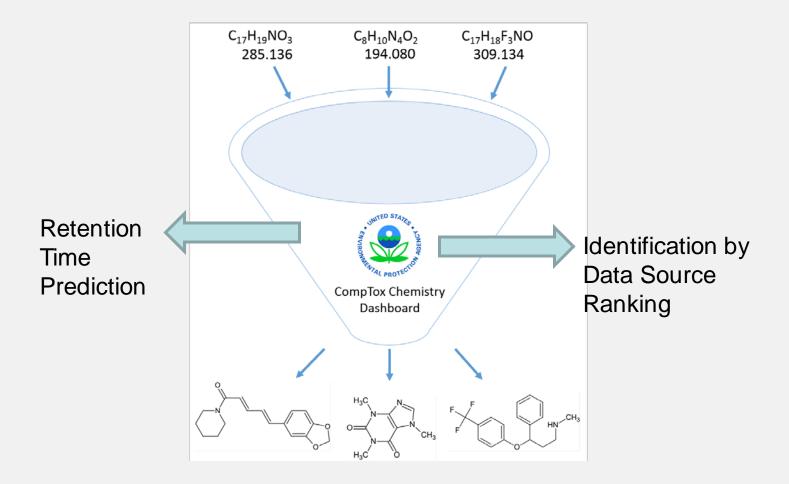
Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard

Andrew D. McEachran¹ · Jon R. Sobus² · Antony J. Williams³

Mass-based searching Formula-based searching Dashboard ChemSpider Dashboard ChemSpider 2.2^{a} Average rank position 1.3 1.2 1.4 Percent in #1 position 85% 70% 88% 80%

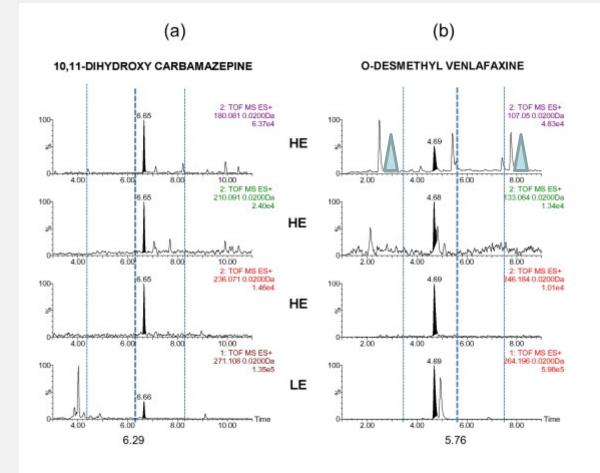
^a Average rank in ChemSpider shown here does not include an outlier where the rank was 201, when added the average rank position is 3.5

Ranks by position


		Average rank	Numbe	Number in each position rank-ordered						
		(±SD)	#1	#2	#3	#4	#5+			
Mass-based	Dashboard	1.2 ± 0.7	77 ^a	5	3	3	$\overline{}$			
	ChemSpider	2.2 ± 6.1^{b}	68	8	7	1	5			
Formula-based	Dashboard	1.1 ± 0.4	78 ^a	8	2)			
	ChemSpider	1.3 ± 1.0	77	8	2	1	2			

^a One chemical (tephrosin) not present in the Dashboard

^b Average rank in ChemSpider shown here does not include an outlier where the rank was 201, when added the average rank position is 4.4


McEachran, A.D., Sobus, J.R. & Williams, A.J. Anal Bioanal Chem (2016). doi:10.1007/s00216-016-0139-z

RT Prediction for NTA

- "Confirm" potential candidate chemicals based on RT
- Set time windows to screen out unlikely compounds during database matching

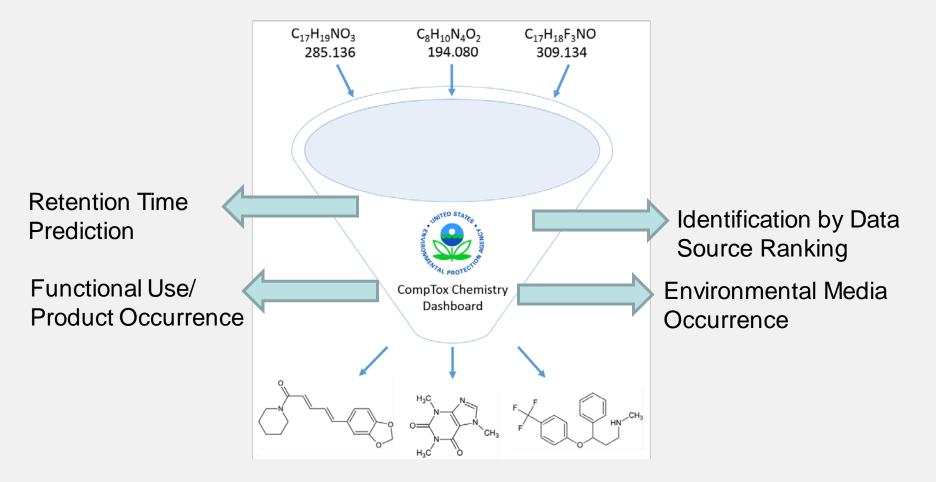
Bade et al (2015)

Comparison of 3 RT Prediction Models

- Evaluate inhouse RT prediction models against logP-only and ChromGenius
- Determine if RT prediction is valuable in identification

	logP	ChromGenius	OPERA-RT
Training Set (n=78)	• /		
\mathbb{R}^2	0.66	0.81	0.86
RMSE (min)	5.58	4.18	3.56
Absolute Mean Error (min)	4.71	3.25	2.88
Test Set $(n=19)$			
\mathbb{R}^2	0.69	0.92	0.83
RMSE (min)	5.14	2.66	3.86
Absolute Mean Error (min)	4.41	2.36	3.28
Combined $(n=97)$			
\mathbb{R}^2	0.66	0.83	0.86
RMSE (min)	5.50	3.93	3.60
Absolute Mean Error (min)	4.65	3.03	2.93

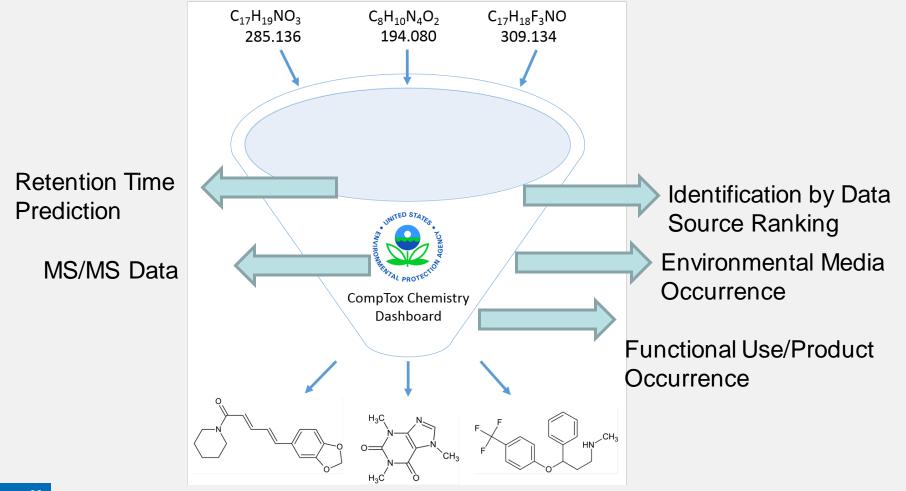
- 1. logP-RT Model
- 2. ACD/ChromGenius
- 3. QSAR-based RT Model



Comparison of 3 RT Prediction Models

1 Ind DT Model

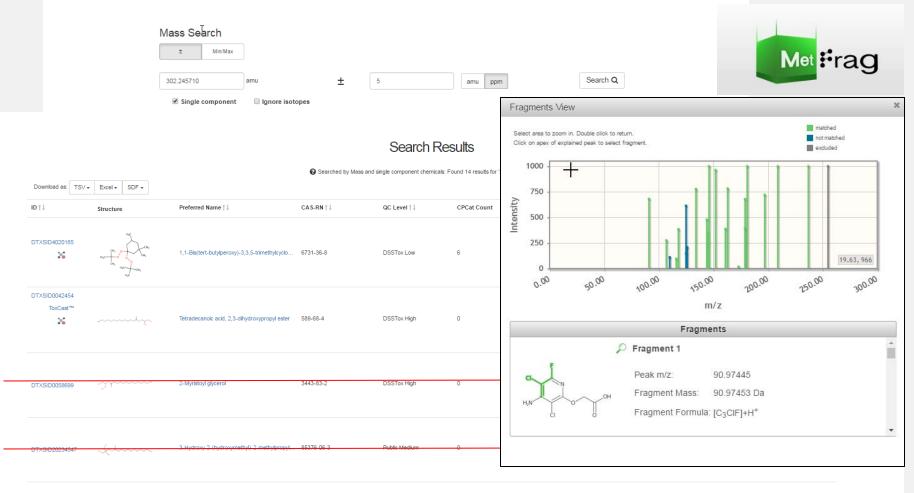
		Number of predicted	RTs found within window		-RT Model hromGenius
 Evaluate in- 	RT window (± % of total run, ± min)	logP Model	ChromGenius	OPERA-RT	·based RT
house RT prediction models	Training Set $(n=78)$ $\pm 5\%$ (2.25 min)	19	36	36	
against logP-only	$\pm 10\%$ (4.50 min) $\pm 15\%$ (6.75 min) $\pm 20\%$ (0.00 min)	39 59 70	56 70 76	63 74 76	1 Alexandre
and ChromGenius	$\pm 20\%$ (9.00 min) Test Set (n=19) $\pm 5\%$ (2.25 min)	70 3	76 9	76 7	ACD/Labs
• Determine if RT	$\pm 3\%$ (2.25 min) $\pm 10\%$ (4.50 min) $\pm 15\%$ (6.75 min)	10 17	17 19	15 18	
prediction is valuable in	$\pm 20\%$ (0.75 min) $\pm 20\%$ (9.00 min)	18	19	19	
identification					
100	20.081 0.0200Da 6.3764 100	10	07.05.0.0200Da 4.83e4		
2	HE 🖉	4.69		Next st	eps


Chemistry Dashboard Advanced Search Mass Search 5 Min/Max ± 5 Search Q 285.136493 ppm amu amu Single component Ignore isotopes Probability of Search Results occurrence in O Searched by Mass and single component chemicals: Found 106 results for '285.136493 ± 5 ppm' B dust = 0.79Download as: TSV + Excel + SDF + ID↑↓ Preferred Name †↓ CAS-RN↑↓ QC Level †↓ CPCat Count Number of So... PubChem Dat... Monoisotopic Mass †↓ Mass Difference ↑↓ Structure DTXSID302110 Piperine 94-62-2 DSSTox Low 1 35 136 285.136493 0.0000 DTXSID9023336 20 DTXSID8023133 26 DTXSID8046327 ToxCast¹ 467-15-2 DSSTox Low 18 20 0.0000 Norcodeine 1 285.136493 X

March 30, 2017 U.S. Environmental Protection Agency

27

DTXSID60197561



²⁸ March 30, 2017 U.S. Environmental Protection Agency

Chemistry Dashboard

Advanced Search

MS-Ready structures

 De-salted, de-solvated, no stereochemistry, separation of mixtures and multi-component structures

_	•			D	-	_	
	A	В	C	D	E	F	
1	INPUT	DTXSID	CASRN	PREFERRED NAME	MOL FORMULA	MONOISOTOPIC MASS	
2	C6H6O	DTXSID5021124	108-95-2	Phenol	C6H6O	94.041864813	
3	C6H6O	DTXSID4027072	139-02-6	Sodium phenolate	C6H5NaO	116.02380906	
4	C6H6O	DTXSID8073261	1487-18-9	Furan, 2-ethenyl-	C6H6O	94.041864813	
-5	C6H6O	DTXSID10219242	6921-27-3	2-Propynyl ether	C6H6O	94.041864813	
6	C6H6O	DTXSID10183353	291-70-3	Oxepin	C6H6O	94.041864813	
7	C6H6O	DTXSID7064073	5973-17-1	Phenol, ammonium salt	C6H9NO	111.068413914	
8	C6H6O	DTXSID90363757	6569-83-1	7-oxabicyclo[2.2.1]hepta-2,5-diene	C6H6O	94.041864813	
9	C6H6O	DTXSID60179347	24599-57-3	2,4-Cyclohexadienone	C6H6O	94.041864813	
10	C6H6O	DTXSID5070109	64601-04-3	Phenol, compd. with 2-aminoethanol (1:1)	C8H13NO2	155.094628663	
11	C6H6O	DTXSID9075294	2122-46-5	Phenoxy	C6H5O	93.034039781	
12							
10							

Batch Searching of Unknowns

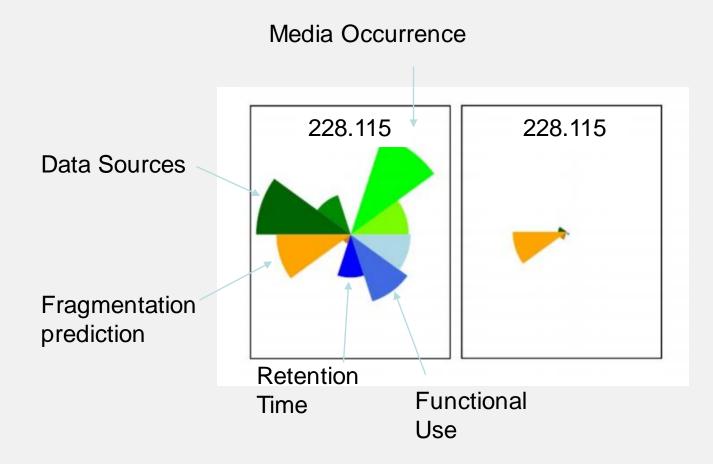
Batch Search

Please enter one identifier per line		×
Chemical Name	Include top 10 v hits in download	Enter Identifiers to Search
Display All Chemicals Download Select Output Format Excel	Chemical Data	
Customize Results		
Chemical Identifiers	Structures	Intrinsic And Predicted Properties
 Chemical Name DTXSID CAS-RN InChIKey IUPAC Name 	Mol FileSMILESInChl String	 Molecular Formula Average Mass Monoisotopic Mass ODEDA and TEST Model Predictions
Metadata		OPERA and TEST Model Predictions
 Curation Level Details Data Sources Assay Hit Count NHANES/Predicted Exposure 		

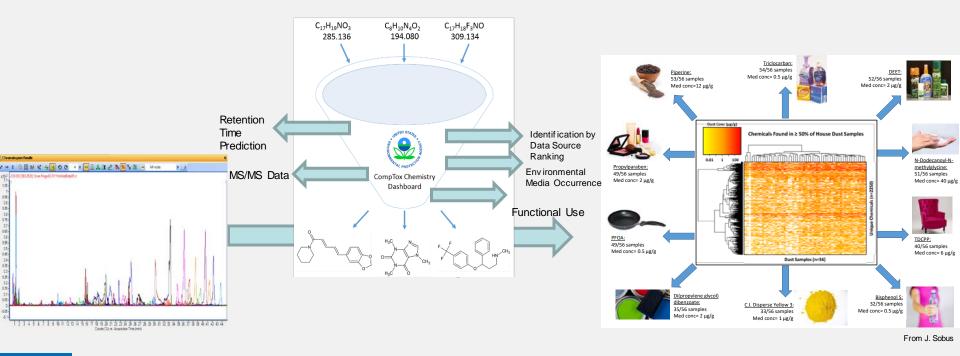
Batch Searching of Unknowns

	Agency A	В	С	D	E	F	G
1	INPUT	DTXSID	CASRN	PREFERRED NAME	MOL FORMULA	MONOISOTOPIC MASS	DATA SOURCES
2	C14H22N2O3	DTXSID2022628	29122-68-7	Atenolol	C14H22N2O3	266.163042576	46
3	C14H22N2O3	DTXSID0021179	6673-35-4	Practolol	C14H22N2O3	266.163042576	32
4	C14H22N2O3	DTXSID4048854	841-73-6	Bucolome	C14H22N2O3	266.163042576	20
5	C14H22N2O3	DTXSID1045407	13171-25-0	Trimetazidine dihydrochloride	C14H24Cl2N2O3	338.116398	19
6	C14H22N2O3	DTXSID0045753	56715-13-0	R-(+)-Atenolol	C14H22N2O3		19
7	C14H22N2O3	DTXSID2048531	5011-34-7	Trimetazidine	C14H22N2O3	266.163042576	14
8	C14H22N2O3	DTXSID10239405	93379-54-5	Esatenolol	C14H22N2O3		12
9	C14H22N2O3	DTXSID50200634	52662-27-8	N-(2-Diethylaminoethyl)-2-(4-hydroxyphenoxy)acetamide			7
		DTXSID4020111				302.1397203	6
11	C14H22N2O3	DTXSID1068693	51963-82-7	Benzenamine, 2,5-diethoxy-4-(4-morpholinyl)-	C14H22N2O3		5
		DTXSID3023215			C18H34N2O6S		35
		DTXSID7047803					22
		DTXSID20849438		-			1
	C10H12N2O	DTXSID1047576					40
	C10H12N2O	DTXSID8075330			C10H12N2O		22
	C10H12N2O	DTXSID8044412			C10H12N2O		18
	C10H12N2O	DTXSID80165186					11
	C10H12N2O	DTXSID2048870		(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine	C10H12N2O		10
	C10H12N2O	DTXSID10196105			C10H12N2O	176.094963014	9
	C10H12N2O	DTXSID90185693			C10H12N2O		7
	C10H12N2O	DTXSID40178777			C10H12N2O		7
	C10H12N2O	DTXSID80157026					6
	C10H12N2O	DTXSID30205607		2 2 21	C10H12N2O		6
25	C14H18N4O3				C14H18N4O3		68
	C14H18N4O3				C14H18N4O3		51
	C14H18N4O3	DTXSID40209671					8
	C14H18N4O3	DTXSID70204210		Benzenemethanol, 4-((2,4-diamino-5-pyrimidinyl)methyl)-2,		290.137890456	5
	C14H18N4O3	DTXSID20152671		6-Methoxy-4-(3-(N,N-dimethylamino)propylamino)-5,8-quina			4
	C14H18N4O3	DTXSID30213742		1H-1,2,4-Benzotriazepine-3-carboxylic acid, 4,5-dihydro-4-			3
		DTXSID30219608		2,4-Pyrimidinediamine, 5-((3,4,5-trimethoxyphenyl)methyl)-			3
	C14H18N4O3	DTXSID20241155		L-Aspartic acid, compound with 5-((3,4,5-trimethoxyphenyl			3
	C14H18N4O3	DTXSID80241156		L-Glutamic acid, compound with 5-((3,4,5-trimethoxypheny			3
	C14H18N4O3	DTXSID20143781		1H-Pyrido(2,3-e)-1,4-diazepine-2,3,5-trione, 4-(2-(diethylam			3
	C12H11N7	DTXSID6021373					52
	C12H11N7	DTXSID00204465					7
	C12H11N7				C12H9N7		4
	C12H11N7	DTXSID00848025			C12H13N7O4S		1
	C12H11N7	DTXSID50575293			C12H11N7		1
_	C8H9NO2	DTXSID2020006	103-90-2		C8H9NO2		75
11	CSHOVIOS	DTYSID6026667	13/ 20 3	Mathul 2 aminahanzaata	CSHONUS	151 063338534	έn

Future Directions


Mass spectral comparison for identification

- -Predicted fragmentation for DSSTox (L. Ferguson- Duke)
- Functional Use Predictions
 - -CPDat
- Environmental Media Occurrence Predictions
- Data incorporation:
 - -Suspect lists from Europe (PFAS, etc.)
 - -PubMed Literature sources
 - -Google Scholar Sources


"ToxPi-like" weighting for identification

Conclusions

- Structure identification improvements in NTA are necessary
- Tools developed within EPA can be implemented via Dashboard
- Simple, open workflows for structure ID can improve exposure assessment

Acknowledgements

EPA NCCT Tony Williams Chris Grulke John Wambaugh Kamel Mansouri* Jeff Edwards Ann Richard Jennifer Smith EPA NERL

Katherine Phillips Kristin Isaacs Kathie Dionisio Jon Sobus Mark Strynar Elin Ulrich Seth Newton Jarod Grossman Sarah Laughlin-Toth* Aurelie Marcotte* <u>NIEHS</u> Brandy Beverly

*ORISE Research Participant

37

Questions?

- <u>mceachran.andrew@epa.gov</u>
- <u>http://orcid.org/0000-0003-1423-330X</u>