“httk” EPA’s Tool for High Throughput Toxicokinetics

Computational Toxicology Community of Practice Webinar

April 27, 2017

John Wambaugh
National Center for Computational Toxicology
Office of Research and Development
U.S. Environmental Protection Agency
wambaugh.john@epa.gov

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

Figure includes image from Thinkstock

ORCID: 0000-0002-4024-534X
Introduction

- Toxicokinetics (TK) provides a bridge between toxicity and exposure assessment by predicting tissue concentrations due to exposure
 - However traditional TK methods are resource intensive
- Relatively high throughput TK (HTTK) methods have been used by the pharmaceutical industry to determine range of efficacious doses and to prospectively evaluate success of planned clinical trials (Jamei, et al., 2009; Wang, 2010)
 - A key application of HTTK has been “reverse dosimetry” (also called Reverse TK or RTK)
 - RTK can approximately convert *in vitro* HTS results to daily doses needed to produce similar levels in a human for comparison to exposure data (starting off with Rotroff, *et al.*, 2010)
- A new EPA/ORD open source R package (“httk”) is freely available on CRAN allows RTK and other statistical analyses of 543 chemicals (more coming)
Scale of the Problem

- Park et al. (2012): At least 3221 chemicals in humans, many appear to be exogenous

<table>
<thead>
<tr>
<th>Endocrine Disruptor Screening Program (EDSP) Chemical List</th>
<th>Number of Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Active Ingredients</td>
<td>838</td>
</tr>
<tr>
<td>Antimicrobial Active Ingredients</td>
<td>324</td>
</tr>
<tr>
<td>Biological Pesticide Active Ingredients</td>
<td>287</td>
</tr>
<tr>
<td>Non Food Use Inert Ingredients</td>
<td>2,211</td>
</tr>
<tr>
<td>Food Use Inert Ingredients</td>
<td>1,536</td>
</tr>
<tr>
<td>Fragrances used as Inert Ingredients</td>
<td>1,529</td>
</tr>
<tr>
<td>Safe Drinking Water Act Chemicals</td>
<td>3,616</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10,341</td>
</tr>
</tbody>
</table>

So far 67 chemicals have completed testing and an additional 107 are being tested
High-Throughput Bioactivity

- **Tox21**: Examining >10,000 chemicals using ~50 assays intended to identify interactions with biological pathways (Schmidt, 2009)

- **ToxCast**: For a subset (>1000) of Tox21 chemicals ran >500 additional assays (Judson et al., 2010)

- Most assays conducted in dose-response format (identify 50% activity concentration – AC50 – and efficacy if data described by a Hill function, Filer et al., 2016)

- All data is public: http://actor.epa.gov/
in vitro – in vivo Concordance

- Estimated or measured average concentrations associated with the LOAEL in animal studies
- NOAEL in animal studies
- Humans with chronic exposure reference values (solid circles)
- Volunteers using products containing the chemical
- Biomonitored occupational populations
- General populations

Aylward and Hays (2011)
Journal of Applied Toxicology 31 741-751
In Vitro Bioactivity, HTTK, and In Vivo Toxic Doses

Comparison of HTTK predicted oral equivalent doses (box and whisker plots in mg/kg/day) with doses for no effect and low effect groups in animal studies

- Lowest Observed Effect Level
- No Observed Effect Level (NEL)
- NEL/100

Estimated chronic exposure levels from food residues are indicated by vertical red lines. All values are in mg/kg/day.

Judson et al. (2011)
High throughput risk prioritization relies on three components:

1. high throughput hazard characterization
2. high throughput exposure forecasts
3. high throughput toxicokinetics (i.e., dosimetry)

While advances have been made in toxicity and exposure screening, TK methods applicable to 100s of chemicals are needed.
Studies like Wetmore et al. (2012), address the need for TK data using *in vitro* methods.
In Vitro - In Vivo Extrapolation (IVIVE)

Definition:
IVIVE is the utilization of in vitro experimental data to predict phenomena in vivo

- IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics):
 - Fate of molecules/chemicals in body
 - Considers absorption, distribution, metabolism, excretion (ADME)
 - Uses empirical PK and physiologically-based (PBPK) modeling

- IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics):
 - Effect of molecules/chemicals at biological target in vivo
 - Assay design/selection important
 - Perturbation as adverse/therapeutic effect, reversible/ irreversible

- Both contribute to predict in vivo effects
In vitro plasma protein binding and metabolic clearance assays allow approximate hepatic and renal clearances to be calculated.

At steady state this allows conversion from concentration to administered dose.

100% bioavailability assumed.

\[
C_{ss} = \frac{\text{oral dose rate}}{(\text{GFR} \times F_{ub}) + \left(\frac{Q_i \times F_{ub} \times Cl_{int}}{Q_i + F_{ub} \times Cl_{int}} \right)}
\]

Oral dose in (mg/kg/day)

Sum of hepatic and renal clearance (mg/kg/day)

Jamei et al. (2009)
– IVIVE in a High-Throughput Environment –
Modeling In Vivo Pharmacokinetics
Using In Vitro Assays

Human Hepatocytes (10 donor pool)

Hepatic Clearance

In Vitro - In Vivo Extrapolation

Steady State Blood Concentrations

Human Plasma (6 donor pool)

Plasma Protein Binding

Slide from Barbara Wetmore
Steady-State Concentration (µM)

Daily Dose (mg/kg/day)

\[C_{ss} = \frac{\text{oral dose rate}}{(\text{GFR} \times F_{ub}) + \left(\frac{Q_i \times F_{ub} \times Cl_{int}}{Q_i + F_{ub} \times Cl_{int}} \right)} \]

- Can calculate predicted steady-state concentration \(C_{ss} \) for a 1 mg/kg/day dose and multiply to get concentrations for other doses

Wetmore et al. (2012)
Steady-State Concentration (µM) vs Daily Dose (mg/kg/day)

- Can calculate predicted steady-state concentration (C_{ss}) for a 1 mg/kg/day dose and multiply to get concentrations for other doses

Wetmore et al. (2012)
HTTK Allows Steady-State In Vitro-In Vivo Extrapolation (IVIVE)

- Swap the axes (this is the “reverse” part of reverse dosimetry)
- Can divide bioactive concentration by C_{ss} for a 1 mg/kg/day dose to get oral equivalent dose

Prediction

Slope = mg/kg/day per C_{ss}

1mg/kg/day

Slope = $\text{mg/kg/day per C}_{ss}$

Wetmore et al. (2012)
Integrating Human Dosimetry and Exposure with ToxCast *In Vitro* Assays

~500 EPA ToxCast Chemicals

- Human Liver Metabolism
- Human Plasma Protein Binding

Population-Based IVIVE Model

Upper 95th Percentile Css Among 10,000 Healthy Individuals of Both Sexes from 20 to 50 Yrs Old

~800 *In Vitro* ToxCast Assays

ToxCast AC₅₀ Value

~

Plasma Concentration

Oral Exposure

Reverse Dosimetry

Oral Dose Required to Achieve Steady State Plasma Concentrations Equivalent to *In Vitro* Bioactivity

Least Sensitive Assay

Most Sensitive Assay

Rotroff *et al.*, *Tox Sci.*, 2010
Wetmore *et al.*, *Tox Sci.*, 2012
Wetmore *et al.*, *Tox Sci.*, 2015

Slide from Barbara Wetmore
It appears harder to prioritize on bioactive *in vitro* concentration without *in vivo* context

Wetmore et al. (2012)
Translation from *in vitro* to steady-state oral equivalent doses allow greater discrimination between effective chemical potencies

Wetmore *et al.* (2012)
Activity-Exposure Ratio

\[
AER = \frac{\text{Oral Equiv. Dose}}{\text{Estimated exposure}}
\]

\(AER \leq 1\) : Exposure potentially high enough to cause bioactivity

\(AER >> 1\) : Exposure less likely to be high enough to cause bioactivity
Incorporating Dosimetry-Adjusted ToxCast Bioactivity Data with HT ExpoCast Predictions

Wetmore et al., Tox. Sci, 2015
Variability in this Steady-State TK Model

In vitro clearance (μL/min/10^6 hepatocytes) is scaled to a whole organ clearance using the density of hepatocytes per gram of liver and the volume of the liver (which varies between individuals).

- Glomerular filtration rate (GFR) and blood flow to the liver (Q_l) both vary from individual to individual.
- Further assume that measured HTTK parameters have 30% coefficient of variation.

Jamei et al. (2009)

$$C_{ss} = \frac{\text{oral dose rate}}{(\text{GFR} \times F_{ub}) + \left(\frac{Q_l \times F_{ub} \times Cl_{int}}{Q_l + F_{ub} \times Cl_{int}}\right)}$$

(Passive) Renal Clearance

Hepatic Clearance (Metabolism)
Monte Carlo (MC) Approach to Variability

\[C_{ss} = \frac{\text{oral dose rate}}{(GFR \times F_{ub}) + \left(Q_l \times F_{ub} \times \frac{Cl_{int}}{Q_l + F_{ub} \times Cl_{int}} \right)} \]

- \(C_{ss} \)
- \(Q_l \) – Liver Flow
- \(GFR \) – Glomerular Filtration Rate
- \(Cl_{int} \) – Intrinsic clearance
- \(F_{ub} \) – Unbound fraction
- \(Q_l \) – Oral dose

Wetmore et al. (2012)
Steady-State In Vitro-In Vivo Extrapolation (IVIVE)

- The higher the predicted C_{ss}, the lower the oral equivalent dose, so the upper 95% predicted C_{ss} from the MC has a lower oral equivalent dose.
HTTK Limitations

- **Plasma binding assay** (F_{up})
 - Assay often fails due to analytical chemistry sensitivity (Wetmore et al., 2012)
 - Plasma protein concentration variability (Johnson et al. 2006, Israel et al. 2001)
 - Albumin or AAG binding? (Routledge 1986)

- **Hepatic Clearance** (CL_{int})
 - Ten donor pool in suspension for 2-4 h misses variability and low turnover compounds
 - Isozyme abundances and activity: varies with age, ethnicity (at least) (Yasuda et al. 2008, Howgate et al. 2006, Johnson et al. 2006)
 - Parent chemical depletion only

- **Isozyme-specific data & modeling** (Wetmore et al. 2014)
 - Isozyme-specific metabolism assays not HT
 - *In silico* predictions of isozyme-specific metabolism? Not easy!
 - Existing data is mostly for pharmaceuticals

- **Oral absorption**
 - 100% assumed, but may be very different
 - *In silico* models not necessarily appropriate for environmental chemicals
In vivo Predictive Ability and Domain of Applicability

- In drug development, HTTK methods estimate therapeutic doses for clinical studies – predicted concentrations are typically on the order of values measured in clinical trials (Wang, 2010)

- For environmental compounds, there will be no clinical trials

- Uncertainty must be well characterized ideally with rigorous statistical methodology
 - We will use direct comparison to *in vivo* data in order to get an empirical estimate of our uncertainty
 - Any approximations, omissions, or mistakes should work to increase the estimated uncertainty when evaluated systematically across chemicals
R Package “httk”

httk: High-Throughput Toxicokinetics

Functions and data tables for simulation and statistical analysis of chemical toxicokinetics ("TK") using data obtained from relatively high throughput, in vitro studies. Both physiologically-based ("PBTK") and empirical (e.g., one compartment) "TK" models can be parameterized for several hundred chemicals and multiple species. These models are solved efficiently, often using compiled (C-based) code. A Monte Carlo sampler is included for simulating biological variability and measurement limitations. Functions are also provided for exporting "PBTK" models to "SBML" and "JARNAC" for use with other simulation software. These functions and data provide a set of tools for in vitro-in vivo extrapolation ("IVIVE") of high throughput screening data (e.g., ToxCast) to real-world exposures via reverse dosimetry (also known as "RTK").

Version: 1.5
Depends: R (≥ 2.10)
Imports: deSolve, msnm, data.table, survey, mytnorm, truncnorm, EnvStats, MASS, RColorBrewer, TeachingDemos, classInt, ks, reshape2
Suggests: ggplot2, knitr, markdown, Rsp, GGally, gplots, scales
Published: 2017-03-03
Author: John Wambaugh, Robert Pearce, Caroline Ring, Jimena Davis, Nisha Sipes, R. Woodrow Setzer
Maintainer: John Wambaugh <wambaugh.john at epa.gov>
License: GPL-3
NeedsCompilation: yes
Materials: NEWS
CRAN checks: httk results

Reference manual:

- "httk.pdf"
- Age distributions
- Global sensitivity analysis
- Global sensitivity analysis plotting
- Height and weight spline fits and residuals
- Hematocrit spline fits and residuals
- Plotting Cgs95
- Serum creatinine spline fits and residuals
- Generating subpopulations
- Evaluating HTTK models for subpopulations
- Generating Figure 2
- Generating Figure 3
- Plotting Howgate/Johnson data
- AER plotting
- Virtual study populations
- httk: R Package for High-Throughput Toxicokinetics

Vignettes:

- "httk" R Package for reverse dosimetry and PBTK
- 543 chemicals to date
- 100’s of additional chemicals being studied
- Pearce et al. documentation manuscript accepted at Journal of Statistical Software
- Vignettes (Caroline Ring) provide examples of how to use many functions

https://cran.r-project.org/web/packages/httk/
Can access this from the R GUI:
“Packages” then “Install Packages”
Why Build Another PBTK Tool?

<table>
<thead>
<tr>
<th></th>
<th>SimCYP</th>
<th>ADMET Predictor / GastroPlus</th>
<th>MEGen</th>
<th>httk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maker</td>
<td>SimCYP Consortium / Certara</td>
<td>Simulations Plus</td>
<td>UK Health and Safety Laboratory (Loizou)</td>
<td>US EPA</td>
</tr>
<tr>
<td>Availability</td>
<td>License, but inexpensive for research</td>
<td>License, but inexpensive for research</td>
<td>Free: http://xnet.hsl.gov.uk/meugen</td>
<td>Free: CRAN Repository</td>
</tr>
<tr>
<td>Population Variability Monte Carlo</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Batch Mode</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Physiological Data</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chemical-Specific Data Library</td>
<td>Clinical Drugs</td>
<td>No</td>
<td>No</td>
<td>Pharma and ToxCast Compounds: 443 PBTK, +100 steady-state only</td>
</tr>
<tr>
<td>Export Function</td>
<td>No</td>
<td>No</td>
<td>Matlab and AcslX</td>
<td>SBML and Jarnac</td>
</tr>
<tr>
<td>R Integration</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Easy Reverse Dosimetry</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Future Proof XML</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

We want to do a statistical analysis (using R) for as many chemicals as possible
Goals for HTTK

- In order to address greater numbers of chemicals we collect \textit{in vitro}, high throughput toxicokinetic (HTTK) data.

- The goal of HTTK is to provide a human dose context for in vitro concentrations from HTS:
 - This allows direct comparisons with exposure.

- An R statistical package allows us to evaluate \textit{in vitro} predictions two ways:
 - We compare \textit{in vitro} predictions and \textit{in vivo} measurements.
 - We perform simulation studies to examine key assumptions.
What you can do with R Package “httk”

- Allows, one compartment, two-compartment, three-compartment, and PBTK modeling
- Allows conversion of *in vitro* concentration to *in vivo* doses
- Allows prediction of internal tissue concentrations from dose regimen (oral and intravenous)
- A peer-reviewed paper in the Journal of Staitstical software provides a how-to guide (Pearce et al., 2016)
- You can use the built in chemical library or add more chemical information (examples provided in JSS paper)
- You can load specific (older) versions of the package
- You can use specific demographics in the population simulator (v1.5 and later – Ring et al.)
 - Gender, age, weight, ethnicity, renal function
- You can control the built in random number generator to reproduce the same random sequence
library(httk)

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for human for Acetochlor (published value):
calc_mc_css(chem.cas="34256-82-1",method="dr")

Should produce error:
calc_mc_css(chem.name="34256-82-1",method="dr")

#Capitalization shouldn’t matter:
calc_mc_css(chem.name="acetochlor",method="dr")
calc_mc_css(chem.name="Acetochlor",method="dr")

What’s going on?
help(calc_mc_css)

What chemicals can I do?
get_cheminfo()
State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.95 quantile, for Acetochlor (published value):
get_wetmore_oral_equiv(0.1,chem.cas="34256-82-1")

State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.95 quantile, for Acetochlor (calculated value):
calc_mc_oral_equiv(0.1,chem.cas="34256-82-1",method="dr")

State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.05, 0.5, and 0.95 quantile, for Acetochlor (published values):
get_wetmore_oral_equiv(0.1,chem.cas="34256-82-1",which.quantile=c(0.05,0.5,0.95))

State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.05, 0.5, and 0.95 quantiles, for Acetochlor (calculated value):
calc_mc_oral_equiv(0.1,chem.cas="34256-82-1",which.quantile=c(0.05,0.5,0.95),method="dr")

State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for rat, 0.95 quantile, for Acetochlor (calculated value):
calc_mc_oral_equiv(0.1,chem.cas="34256-82-1",species="Rat",method="dr")
Chemicals with HTTK Data

- Anticipated Rat
- Anticipated Human
- Existing Rat data
- Existing Human data

Legend:
- Rotroff et al. 2010
- Wetmore et al. 2012
- Tonnelier et al. 2012
- Wetmore et al. 2013
- Wetmore et al. 2015
- ToxCast/ExpoCast
- Pharmaceutical Literature
Interspecies Extrapolation Examples

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for human for Acetochlor (calculated value):
calc_mc_css(chem.cas="34256-82-1",method="dr")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for rat for Acetochlor (should produce errors since there is no published value, 0.5 quantile only):
get_wetmore_css(chem.cas="34256-82-1",species="Rat")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for rat for Acetochlor (calculated value):
calc_mc_css(chem.cas="34256-82-1",species="Rat",method="dr")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.5 quantile for rat for Acetochlor (published value):
get_wetmore_css(chem.cas="34256-82-1",species="Rat",which.quantile=0.5)

#Steady-state concentration (uM) for 1 mg/kg/day for 0.5 quantile for rat for Acetochlor (calculated value):
calc_mc_css(chem.cas="34256-82-1",species="Rat",which.quantile=0.5,method="dr")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for mouse for Acetochlor (should produce error since there is no published value, human and rat only):
get_wetmore_css(chem.cas="34256-82-1",species="Mouse")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for mouse for Acetochlor (calculated value):
calc_mc_css(chem.cas="34256-82-1",species="Mouse",method="dr")
help(add_chemtable)

Add a table of chemical information for use in making httk predictions.

Description
This function adds chemical-specific information to the table chem.physical_and_invitro.data. This table is queried by the model parameterization functions when attempting to parameterize a model, so adding sufficient data to this table allows additional chemicals to be modeled.

Usage
add_chemtable(new.table, data.list, current.table=NULL, reference=NULL,species=NULL, overwrite=F)

Arguments

new.table Object of class data.frame containing one row per chemical, with each chemical minimally by described by a CAS number.

data.list This list identifies which properties are to be read from the table. Each item in the list should point to a column in the table new.table. Valid names in the list are: 'Compound', 'CAS', 'DSSTox.GSID' 'SMILES.desalt', 'Reference', 'Species', 'MW', 'logP', 'pKa_Donor', 'pKa_Accept', 'logMA', 'Clint', 'Clint.pValue', 'Funbound.plasma', 'Fgutabs', 'Rblood2plasma'. Note that Rblood2plasma (Ratio blood to plasma) is currently not used.
A General Physiologically-based Toxicokinetic (PBTK) Model

- "httk" also includes a generic PBTK model
- Some tissues (e.g. arterial blood) are simple compartments, while others (e.g. kidney) are compound compartments consisting of separate blood and tissue sections with constant partitioning (i.e., tissue specific partition coefficients)
- Exposures are absorbed from reservoirs (gut lumen)
- Some specific tissues (lung, kidney, gut, and liver) are modeled explicitly, others (e.g. fat, brain, bones) are lumped into the “Rest of Body” compartment.
- Blood flows move the chemical throughout the body. The total blood flow to all tissues equals the cardiac output.
- The only ways chemicals “leaves” the body are through metabolism (change into a metabolite) in the liver or excretion by glomerular filtration into the proximal tubules of the kidney (which filter into the lumen of the kidney).
library(httk)

A Function to get PK summary statistics from the PBPK model:
help(calc_stats)

28 day human study (20 mg/kg/day) for Abamectin:
calc_stats(days=28,chem.name="bisphenol a", dose=20)

 Human plasma concentrations returned in µM units.
 AUC is area under plasma concentration curve in µM * days units with Rblood2plasma = 0.79.

 AUC
 [1] 44.82138

 peak
 [1] 23.16455

 mean
 [1] 1.600764

Units default to µM but can use mg/L:
calc_stats(days=28,chem.name="bisphenol a", dose=20,output.units="mg/L")

Same study in a mouse:
calc_stats(days=28,chem.name="bisphenol a", dose=20,species="mouse")
Comparison Between httk and SimCYP

- In the Rotroff et al. (2010) and Wetmore et al. (2012, 2013, 2014, 2015) papers SimCYP was used to predict distributions of C_{ss} from *in vitro* data.

- We show that “httk” can reproduce the results from those publications for most chemicals using our implementation of Monte Carlo.

- Any one chemical’s median and quantiles are connected by a dotted line.

- The RED assay for measuring protein binding fails in some cases because the amount of free chemical is below the limit of detection.
 - A default value of 0.5% free was used.
 - Now we use random draws from a uniform distribution from 0 to 1%.

Wambaugh et al. (2015)
Evaluating *In Vitro* PBTK Predictions with *In Vivo* Data

- PBTK predictions for the AUC (time integrated plasma concentration or Area Under the Curve)
- *In vivo* measurements from the literature for various treatments (dose and route) of rat.
- Predictions are generally conservative – *i.e.*, predicted AUC higher than measured
- Oral dose AUC ~6.4x higher than intravenous dose AUC

Wambaugh et al. (2015)
Analyzing New *In Vivo* Data (Rat)

- Oral and *iv* studies for 26 ToxCast compounds
 - Collaboration with NHEERL (Mike Hughes and Jane Ellen Simmons)
 - Additional work by Research Triangle Institute (Tim Fennell)

- Can estimate
 - Fraction absorbed
 - Absorption Rate
 - Elimination Rate
 - Volume of Distribution
Analyzing New *In Vivo* Data (Rat)

- Oral and *iv* studies for 26 ToxCast compounds
 - Collaboration with NHEERL (Mike Hughes and Jane Ellen Simmons)
 - Additional work by Research Triangle Institute (Tim Fennell)

- Can estimate
 - Fraction absorbed
 - Absorption Rate
 - Elimination Rate
 - Volume of Distribution

Cyprotex is now measuring bioavailability (Caco2) for all HTTK chemicals
Population simulator for HTTK

Correlated Monte Carlo sampling of physiological model parameters

- Body weight
- Tissue masses
- Tissue blood flows
- GFR (kidney)
- Hepatocellularity

Source of data: CDC NHANES

Large, ongoing CDC survey of US population: demographic, body measures, medical exam, biomonitoring (health and exposure), ...

Designed to be representative of US population according to census data

Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

Ring et al. (under revision)
Population simulator for HTTK

Sample
- NHANES quantities
- Sex
- Race/ethnicity
- Age
- Height
- Weight
- Serum creatinine

Predict
- Physiological quantities
- Tissue masses
- Tissue blood flows
- GFR (kidney function)
- Hepatocellularity

Regression equations from literature (+ residual marginal variability)

Generating demographic subgroups

- **User can specify...**
 - Age limits
 - Sex (# males, # females)
 - Race/ethnicity (5 NHANES categories)
 - BMI/weight categories

- **Default if not specified**
 - 0-79 years
 - NHANES proportions

- **NHANES quantities sampled from appropriate conditional distribution (given specifications)**
 - Physiological parameters predicted accordingly

Ring et al. (under revision)
library(httk)

Oral equivalent (mg/kg/day) for in vitro activity of 1 µM for Acetochlor
calc_mc_oral_eqprov(1,chem.cas="34256-82-1",method="dr")

Oral equivalent (mg/kg/day) for NHANES “Mexican American” Population
calc_mc_oral_eqprov(1,chem.cas="34256-82-1",method="dr", reths = "Mexican American")

Oral equivalent (mg/kg/day) for NHANES “Mexican American” Population aged 18-25 years
calc_mc_oral_eqprov(1,chem.cas="34256-82-1",method="dr",agelim_years=c(18,25),reths = "Mexican American")

Probably too few individuals in NHANES for direct resampling (“dr”) so use virtual individuals (“vi”) resampling method:
calc_mc_oral_eqprov(1,chem.cas="34256-82-1",method="vi",agelim_years=c(18,25),reths = "Mexican American")

Can also specify gender, weight categories, and kidney function
Life-stage and Demographic Specific Predictions

- Wambaugh et al. (2014) predictions of exposure rate (mg/kg/day) for various demographic groups
- Can use HTTK to calculate margin between bioactivity and exposure for specific populations

Change in Activity:Exposure Ratio

Change in Risk

Ring et al. (under revision)
Version history for “httk”

The publicly available R package contains code and data that has been part of peer-reviewed publications (Old versions are archived)

- Version 1.2 accompanied “httk: R Package for High-Throughput Toxicokinetics” Pearce et al., Journal of Statistical Software (in press)
- Version 1.4 addressed comments for acceptance of Pearce et al. (in press)
- Version 1.5 accompanied “Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability,” Ring et al. (under review)
- Subsequent version numbers will be assigned as papers are accepted on:
 - Revising PBPK tissue partitioning predictions (Pearce)
 - Gestational model (Kapraun)
 - Inhalation exposure (Evans and Pearce)
 - New human and rat data from Cyprotex (Wambaugh and Wetmore)
 - More flexible PBPK model (Pearce)

Lead programmer Robert Pearce
Summary

- Toxicokinetics (TK) provides a bridge between HTS and HTE by predicting tissue concentrations due to exposure.
- HTTK methods developed for pharmaceuticals have been adapted to environmental testing.
- A primary application of HTTK is “Reverse Dosimetry” or RTK:
 - Can infer daily doses that produce plasma concentrations equivalent to the bioactive concentrations, but:
- We must consider domain of applicability.
- New R package “httk” freely available on CRAN allows statistical analyses.
Chemical Safety for Sustainability (CSS) Rapid Exposure and Dosimetry (RED) Project

Lead CSS Matrix Interface:
John Kenneke (NERL)

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA

Israili and Dayton “Human Alpha-1-Glycoprotein and Its Interactions with Drugs” Drug metabolism reviews 2001;33:161-235.

Ring, Caroline, et al., “Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability”, in ORD clearance.

Schmidt, Charles W. "TOX 21: new dimensions of toxicity assessment." Environmental Health Perspectives 2012;120:4586-4595

