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Problem Statement
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Too many chemicals to test with standard 
animal-based methods

–Cost, time, animal welfare 

Need for better mechanistic data
- Determine human relevance
- What is the Adverse Outcome Pathway (AOP)?
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Potential Exposure:
ExpoCast

mg/kg BW/day

Potential Hazard: 
In Vitro + HTTK

Low
Priority

Medium
Priority

High
Priority

Risk-based Prioritization
Hazard + Exposure

Semi-quantitative
In Vitro to In Vivo
Approach
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Computational Toxicology

• Identify biological pathways of toxicity (AOPs)

• Develop high-throughput in vitro assays

–Test “Human Exposure Universe” chemicals in the assays 

• Develop models that link in vitro to in vivo hazard

–Use pharmacokinetic models to predict activating doses 

• Develop exposure models

• Add uncertainty estimates

• Create high-throughput risk assessments
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Zebrafish and Developmental Toxicology

• Goal: Use zebrafish as an in vivo model of vertebrate 
developmental toxicity

• Build in vitro to in vivo models using ~700 human assays
• ~1000 Chemicals 

–pharmaceuticals, pesticides, industrial chemicals, personal care 
product chemicals and food ingredients

5

Padilla et al., 2015, 2016, in preparation
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Zebrafish Imaging and scoring

6

Deal et al. J Applied Tox.  2016
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Example chemicals
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LovastatinDES Permethrin

100% = death
<100% = malformations
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Most chemicals display a “burst” of potentially non-
selective bioactivity near cell-stress / cytotoxity conc.

8

10001001010.1
AC50 (µM)

Nu
m

be
r 

of
 H

its

Burst 
Region

Cytotoxicity
Range
3 MAD

Tested Concentration Range

21    18    15   12    9     6     3     0    -3     -6    -9
Z

Nu
m

be
r 

of
 H

its

Burst 
Region

Cytotoxicity
Range
3 MAD

Concentration Space Z- Space

Bioactivity 
inferred

Judson et al. Tox.Sci. (2016)



Office of Research and Development
National Center for Computational Toxicology

Schematic explanation of the burst

9

Oxidative Stress
DNA Reactivity
Protein Reactivity
Mitochondrial stress

ER stress
Cell membrane disruption
Specific apoptosis
…

Specific Non-specific
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Heatmap of stress and cytotoxicity 
assays in 1000 chemicals
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Judson et al. ToxSci (2016)Chemicals
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Observation about logP
Human in vitro cell stress behaves ~ zebrafish toxicity
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Stress, logP explains ~80% of ZF activity
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• 83 negatives in region A
• Blue triangles
• “false positives”?

• 50 “failed” single screen test?

ZF positive in conc-response

ZF negative in conc-response

ZF negative in single conc

Judson et al. In preparation
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“Excess Toxicity” points to 
specific target activity
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Chemicals with excess toxicity tend to 
fall in a few target MOA classes

• ACHE
• Ion channel blockers
• HMGCR
• Mitochondrial disruptors
• PPO inhibitors (disrupts plant cell membranes)
• Chemicals reacting with protein SH groups
• Thyroid hormone receptor blockers

• Some of these classes are over-represented in overall 
hit predictivity and in excess potency for hits

14



Office of Research and Development
National Center for Computational Toxicology

Look for specific targets by controlling 
for stress-related assay confounding

• Are potent actives against specific targets more likely than 
chance to be ZF-active?

15

Filter on Z-score (AC50 
relative to cytotoxicity)

Filter on AUC (potency x efficacy)
Measure of reproducibility across multiple assays

Red: ZF active
White: ZF inactive
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class Gene 

group

annotation assays TP FP FN TN Sens Spec BA OR PPV p-value

endocrine AR Androgen receptor 11 17 3 443 523 0.04 0.99 0.52 6.7 0.85 0.0005

endocrine CYP19A1 Aromatase 2 24 2 436 524 0.05 1.00 0.52 14.4 0.92 9E-07

endocrine ESR Estrogen receptor 17 29 6 431 520 0.06 0.99 0.53 5.8 0.83 2E-05

endocrine NR3C1 Glucocorticoid receptor 4 14 4 446 522 0.03 0.99 0.51 4.1 0.78 0.0084

endocrine PGR Progesterone receptor 2 15 3 445 523 0.03 0.99 0.51 5.9 0.83 0.0016

ER stress SREBF1 1 36 10 424 516 0.08 0.98 0.53 4.4 0.78 1E-05

ER stress XBP1 1 10 1 450 525 0.02 1.00 0.51 11.7 0.91 0.0039

GPCR LTD4 1 11 1 449 525 0.02 1.00 0.51 12.9 0.92 0.002

growth factor EGR1 1 19 1 441 525 0.04 1.00 0.52 22.6 0.95 8E-06

hypoxia HIF1A 1 24 3 436 523 0.05 0.99 0.52 9.6 0.89 5E-06

inflammation CEBPB 1 30 6 430 520 0.07 0.99 0.53 6.0 0.83 5E-06

inflammation CREB3 1 23 1 437 525 0.05 1.00 0.52 27.6 0.96 5E-07

inflammation PTGER2 1 29 7 431 519 0.06 0.99 0.52 5.0 0.81 3E-05

inflammation TNF 1 30 13 430 513 0.07 0.98 0.52 2.8 0.70 0.0026

ion channel KCNH2 1 13 2 447 524 0.03 1.00 0.51 7.6 0.87 0.0026

oncogene JUN 1 18 6 442 520 0.04 0.99 0.51 3.5 0.75 0.0062

oxidative stress NFE2L2 NRF2, ROS Sensor 2 34 5 426 521 0.07 0.99 0.53 8.3 0.87 1E-07

transcription factor POU2F1 1 17 4 443 522 0.04 0.99 0.51 5.0 0.81 0.0016

transcription factor SMAD1 1 21 5 439 521 0.05 0.99 0.52 5.0 0.81 0.0005

transcription factor SOX1 1 16 5 444 521 0.03 0.99 0.51 3.8 0.76 0.0072

transcription factor SP1 1 18 2 442 524 0.04 1.00 0.52 10.7 0.90 6E-05

transporter DAT 1 18 6 442 520 0.04 0.99 0.51 3.5 0.75 0.0062

xenobiotic metabolism CYP1A cytochrome P450 4 18 3 442 523 0.04 0.99 0.52 7.1 0.86 0.0003

xenobiotic metabolism CYP2A cytochrome P450 3 25 5 435 521 0.05 0.99 0.52 6.0 0.83 5E-05

xenobiotic metabolism CYP2B cytochrome P450 2 25 2 435 524 0.05 1.00 0.53 15.1 0.93 4E-07

xenobiotic metabolism CYP2C cytochrome P450 8 24 0 436 526 0.05 1.00 0.53 1E+06 1.00 8E-09

xenobiotic metabolism CYP2D cytochrome P450 3 15 3 445 523 0.03 0.99 0.51 5.9 0.83 0.0016

xenobiotic metabolism CYP2J cytochrome P450 1 21 1 439 525 0.05 1.00 0.52 25.1 0.95 2E-06

xenobiotic metabolism CYP3A cytochrome P450 4 19 1 441 525 0.04 1.00 0.52 22.6 0.95 8E-06

xenobiotic metabolism NR1I2 PXR 3 30 9 430 517 0.07 0.98 0.52 4.0 0.77 0.0001

Largely stress activity:
more potent than cytotoxicity

Largely due to conazoles

Endocrine pathways
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The ideal in vitro to in vivo model
Zebrafish, rat, mouse, human, …
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• Failure so far – concentration equivalents require better understanding of 
relative kinetics, bioavailability

• Also concentration uncertainty on both axes is ~1 log unit (95% CI)
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Modeling with Uncertainty

• Our first goal is prediction
–What is the highest safe dose of a chemical?
–What types of harm would a chemical cause above that dose?

• Predictions are based on models
–Computational, statistical, “mental”, in vitro, in vivo

• All models are based on data
• Data is always subject to noise, variability
• Therefore, all predictions are subject to uncertainty

• Our second goal is estimating prediction uncertainty

18

Watt, Kapraun et al. In preparation
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Immature Rat: BPA

In vivo guideline study uncertainty
26% of chemicals tested multiple times in the 
uterotrophic assay gave discrepant results

Kleinstreuer et al. EHP 2015
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Fraction 
Reproduce 

rat SUB rat CHR 18 2 0.90

rat CHR dog CHR 13 2 0.87

rat CHR rat SUB 18 4 0.82

rat SUB rat SUB 16 4 0.80

rat SUB dog CHR 11 4 0.73

mouse CHR rat CHR 11 4 0.73

mouse CHR rat SUB 13 7 0.65

dog CHR rat SUB 11 6 0.65

dog CHR rat CHR 13 8 0.62

rat CHR mouse CHR 11 11 0.50

mouse CHR dog CHR 6 6 0.50

rat SUB mouse CHR 13 14 0.48

dog CHR mouse CHR 6 8 0.43

mouse CHR mouse CHR 2 3 0.40

Anemia Reproducibility

Judson et al. In Preparation
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In Vitro Assay Data is also subject to uncertainty
See Eric Watt poster
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Uncertainty in data has big impact on 
model performance

As greater consistency is required from literature sources, QSAR 
consensus model performance improves

• Source: CERAPP project, Mansouri et al. EHP 2015
• Community development of estrogen receptor models tested 

against thousands of experimental data points
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Given all the uncertainty, is modeling 
futile?

• Not in risk assessment
–What’s important is the difference between 

hazard and exposure
• Hazard Model:

–In vitro IC50 (µM) with uncertainty
–Use toxico / pharmacokinetic model to convert 

to mg/kg/day (with added uncertainty)
• Exposure model

–Based on NHANES, other biomonitoring data
–Add uncertainty

• Compare ranges for margin of exposure

22
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Toxicokinetics Modeling

Wetmore, Rotroff, Wambaugh et al., 2013, 2014, 2015

Incorporating Dosimetry and Uncertainty into In Vitro Screening 
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Population and Exposure Modeling

(Bio) 
Monitoring

Dataset 1
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…

e.g., CDC 
NHANES 
study

Wambaugh et al., 2014
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High-throughput Risk Assessment for ER
290 chemicals with ER bioactivity

25
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Retrofitting Assays for Metabolic 
Competence – Extracellular Approach

Alginate Immobilization of Metabolic Enzymes (AIME)
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DeGroot et al. 2016 SOT poster #3757
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Retrofitting Assays for Metabolic 
Competence – mRNA Intracellular 
Strategy

Pool in vitro transcribed 
mRNAs chemically 

modified with 
pseudouridine ad 5-

methylcytidine to reduce 
immune stimulation

293T cells 21.5 h post 
transfection with 90 ng of EGFP 

mRNA using TransIT reagent

Linear Response of CYP3A4 Activity in HepG2 Cells with 
Increasing CYP3A4 mRNA
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Developing Approaches for Tiered 
Testing

Comprehensive 
Transcriptomic 

Screening
Multiple Human 

Cell Types

Focused 
ToxCast/Tox21 

Assays

Comprehensive 
Characterization

Verification of 
Affected Processes/ 
Pathways and 
Temporal Evaluation

Organs-on-
a-Chip

Organotypic
and Organoid 

Models

Interpretation of 
Affected Process/ 
Pathways and 
Population Variability

Time Course 
High Content 

Assays

Computational 
and Statistical 

Modeling
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Planning for HT Transcriptomics
New Approaches to Comprehensively Assess Potential Biological Effects

Karmaus and Martin, Unpublished



Office of Research and Development
National Center for Computational Toxicology30

Requirements and Potential 
Platforms for HT Transcriptomics

• Measure or infer transcriptional changes across the whole genome 
(or very close to it) (e.g. not subsets of 1000, 1500, 2500 genes)

• Compatible with 96- and 384-well plate formats (maybe 1536?) and 
laboratory automation

• Work directly with cell lysates (no separate RNA purification)
• Compatible with multiple cell types and culture conditions
• Low levels of technical variance and robust correlation with 

orthogonal measures of gene expression changes
• Low cost ($30 - $45 per sample or less)

• Low coverage whole transcriptome RNA-seq (3 – 5 million mapped 
reads)

• Targeted RNA-seq (e.g., TempO-seq, TruSeq, SureSelect)
• Microarrays (e.g., Genechip HT)
• Bead-based (e.g., L1000)

Requirements

Potential Platforms
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Technical Performance of the Three 
Sequencing Platforms

TruSeq
r2 0.74

TempO-Seq
r2 0.75

Low Coverage
r2 0.83

Data from MAQC II Samples
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HT Transcriptomics Next Steps

• Perform pilot study (Summer) to validate workflow and refine 
experimental design

• Initiate large scale screen (Fall/Winter)
• Cell type: MCF7
• Compounds: 1,000 (ToxCast Phase I/II)
• Time Point: Single
• Concentration Response: 8 (?)

• Perform secondary pilot study looking at cell type selection/ pooling 
strategies (Fall/Winter)

• Integrate HT transcriptomic platform with metabolic retrofit solution to 
allow screening +/- metabolism (FY17)

• Explore partnerships to build community database of common 
chemical set across multiple cell types/lines
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• Curated chemical structure database of >1 million unique substances 

• Capability to retrofit high-throughput in vitro assays for metabolic competence

• Software infrastructure to manage, use and share big data in toxicology

• Methods to quantify uncertainty in all quantities

• Read-across approaches that quantitatively include uncertainty

• Pharmacokinetic models for hundreds of chemicals while understanding which 
chemical classes are well predicted and which ones have greater uncertainty

• High-throughput exposure models for thousands of chemicals with estimates of 
uncertainty

• Non-targeted analytical measurements of chemical constituents in hundreds 
of consumer products

• Framework for streamlined validation of high-throughput in vitro assays

Other Ongoing Efforts
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• Technical limitations/obstacles associated with each technology (e.g., 
metabolism, volatiles, etc.)

• Moving from an apical to a molecular paradigm and defining adversity

• Predicting human safety vs. toxicity

• Combining new approaches to have adequate throughput and sufficiently 
capture higher levels of biological organization

• Systematically integrating multiple data streams from the new approaches in a 
risk-based, weight of evidence assessment

• Quantifying and incorporating uncertainty and variability

• Dealing with the validation
• Defining a fit-for-purpose framework(s) that is time and resource efficient 
• Performance-based technology standards vs. traditional validation
• Role of in vivo rodent studies and understanding their inherent uncertainty

• Legal defensibility of new methods and assessment products

Challenges
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