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wEPA Introduction

* Networks

Nodes — proteins, genes,
small molecules, etc.

Boolean @ Edges - actions of proteins,
genes, small molecules, etc.
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Krewski, Daniel, et al. "Toxicity testing in the 21st century: a vision and a strategy." Journal of Toxicology and Environmental Health, Part B 13.2-4 (2010): 51-138.

 “Tipping point” — system threshold between adaptation and adversity.
e Boolean networks (BN) are logical models of integrated cellular response pathways

 Here we reconstruct simple BN using high-content imaging data to analyze cellular tipping points

Shah, Imran, et al. "Using ToxCast™ Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure." Environmental health perspectives (2016)
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wEPA 1. Dataset - High Content Imaging (HCI)

Dataset:

HCI data! were used to study the effect of 967
ToxCast chemicals on HepG2 cell states by
monitoring:

e 10 endpoints across

 multiple time points:
ToxCastl: 1, 24, and 72h,
ToxCast Il: 24 and 72h

e 10 concentrations (0.4 to 200uM).

Shah, Imran, et al. "Using ToxCast™ Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure." Environmental health perspectives (2016)



1. Dataset - High Content Imaging (HCl)

* Image analysis and cell level features are conducted by Cyprotex Inc.

DMSO 141000.000000 »M 24h Hoechst33342 Nuclei

40 &0
Hoechst33342 1,

Rawlmage —— ,  Intensity Object —— » Nuclear intensity
(Hoechst) Analysis |dentification distribution

Shah, Imran, et al. "Using ToxCast™ Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure." Environmental health perspectives (2016)



1. Dataset - High Content Imaging (HCl)

e The following cellular endpoints were quantified:

phosphorylated p53 / p53 activation (p53),
phosphorylated c-Jun/c-Jun activation (SK),
phospho-Histone H2A.x (OS),
phospho-Histone H3 / mitotic arrest (MA),
phosphorylated a-tubulin / microtubules (Mt),
mitochondrial membrane potential (MMP),
mitochondrial mass (MM),

cell cycle arrest (CCA),

nuclear size (NS), and

10 cell number (CN).

©oONOURWN R

Shah, Imran, et al. "Using ToxCast™ Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure." Environmental health perspectives (2016)



\v“,EPA 2. Data standardization, and Noise Threshold (z,).

X — X X — log, transformed fold change
Data standardization: zZ = X" — the median value
Oy o, — the standard deviation
Noise Threshold z:
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Motivation

Z score

3. Data Discretization.

. Increase of p53 causes decrease in OS, CCA or CN

/ == SK == OS -— Mt -— MM == MMP - MA == CCA == NS =&~ CN
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wEPA 3. Data Discretization.

Endpoint Trend Assessment: Calculate an average perturbation value

-— SK -— OS -— Mt -— MM -— MMP -— MA -&- CCA -— NS -— CN
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v EPA 3. Data Discretization.

Endpoint Trend Assessment: Calculate an average perturbation value

] - SK -~ 0S - Mt - MM - MMP - MA -~ CCA - NS -~ CN
4
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o EPA 4. Learning Boolean Functions and Construction of Boolean
N\ Networks (BNs).
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o EPA 4. Learning Boolean Functions and Construction of Boolean
N\ Networks (BNs).

Endpoint perturbation

CN-
NS -
CCA-
MA
MMP
MM -
Mt -
SK
OS -
pP53-




n 4. Learning Boolean Functions and Construction of Boolean
wEPA

Networks (BNs).
State at 1h
CN- B
NS- E-
CCA- B
MA - B
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Discretized Trajectory of HepG2
after application of Butachlor at 200uM

State at 1h

CN-
NS -
CCA-
MA
MMP
MM -
Mt -
SK
OS -
pP53-

1 o4 72

time [h]

4. Learning Boolean Functions and Construction of Boolean
Networks (BNs).
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o EPA 4. Learning Boolean Functions and Construction of Boolean
N\ Networks (BNs).

Discretized Trajectory of HepG2
after application of Butachlor at 200uM

State at 1h
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Discretized Trajectory of HepG2
after application of Butachlor at 200uM

State at 1h

CN-
NS -
CCA-
MA
MMP
MM -
Mt -
SK
OS -
pP53-

1 o4 72

time [h]

4. Learning Boolean Functions and Construction of Boolean

Networks (BNs).

Find Boolean
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»
»
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Find Boolean Networks
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S EPA 5. Needleman—Wunsch optimal global alighment, and
7 Error Estimation

Error in BN prediction was estimated as the sum of the Hamming distances™
between observed and predicted discretized trajectories.

endpoints Butachlor 25uM

0 1h 24h 72h

p53 0 0 1 1

SK 0 0 0 O

0s 0 0 0 O

Mt 0 0 0 1

£ MM o 0 1 1
E MMP 0 0 0 O
2 MA 0 0 0 o0
CCA 0 0 0 o0

NS 0 0 0 1

CN 0 0 0 O

dec| 0 0 544 610

1/l0 0o 0 0 o0 0 0 0 O Oo| o0 (120 10 8 6
s[2]1 1 1 0 o0 1 1 1 1 019263 3 3 3
E[3[o o o o 1 0 0 0 1 O0|3|8 8 8 8
2l4al1 1 1 0o o 0 1 0 1 0]9%6|5 5 5 5
<Z,°' 5|1 o o o 1 o0 ©0 1 1 o0/|550|6 6. 8 8
(6|1 0 0 1 1 0 1 0 1 o0|618{5 5 7 9
711 0o o o0 1 0 1 0 1 o0|554|6 6 8 8
the Hamming distances: | 0 2 2 1

* The Hamming distance between two states is the number of positions at which the states are different 20



6. Coverage

I.  Error Estimation is performed:

1. For each trajectory— During this step we split BNs with the lowest error (“the baseline error”)

from BNs with higher error.

2. Across all trajectories — During this analysis we estimated the number of trajectories predicted

by each BN with an accuracy < to the baseline error (“coverage”).

trajectories

BN1

BN2

BN3

1 — BN covers traj.
0 — BN does not cover traj.

BN1 Coverage = 4 traj.
BN2 Coverage = 2 traj.

BN3 Coverage = 2 traj.

Il. The smallest set of BNs that covers all trajectories was inferred by selecting

BNs with the largest coverage.
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\Q,EPA 1. Discretized Trajectories and Total Perturbation

Example: Butachlor - one of the most commonly used herbicides in
agriculture.
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Clustering
(each row represents the trajectory of the HepG2

Cells following treatment with a specific concentration of a chemical)

Trajectory Clustering
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2. Clustering of discretized trajectories, Error
Estimation, and Coverage
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EPA 2. Clustering of discretized trajectories, Error
Estimation, and Coverage

Clustering
(each row represents the trajectory of the HepG2

Cells following treatment with a specific concentration of a chemical)

Trajectory Clustering Error Estimation
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Clustering
(each row represents the trajectory of the HepG2

Cells following treatment with a specific concentration of a chemical)
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2. Clustering of discretized trajectories, Error
Estimation, and Coverage
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1. We have found that 573 BNs are needed to cover all
trajectories.
2. BN with the greatest coverage explained 1,489 trajectories.
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3. Learned BNsin case of Butachlor
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\Q,EPA 3. Learned BNsin case of Butachlor
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200uM 100uM 50-25uM 0.39-12.5uM

£ e &

=l | e
SN i

—éﬁ —Q- not and oOr
a LI fﬁg Y YOU

<
QT'@




Outline

. Introduction

Il. Methods:
1. Dataset
2. Data standardization, and Noise Threshold (z;).
3. Data Discretization.
4. Learning Boolean Functions and Construction of Boolean Networks (BNs).
5. Needleman-Wunsch (NW) optimal global alignment, and Error Estimation.
6. Coverage.

lll. Results:

1. Discretized Trajectories and Total Perturbation.
2. Clustering of discretized trajectories, Error Estimation, and Coverage (first 10 BNs).
3. Learned BNs in case of Butachlor.



V. Summary

. Response of HepG2 cells to concentration dependent chemical treatment shows three
temporal trends: 1) no-effect, 2) adaptation, and 3) lack of recovery.

. We have found that 573 BNs are needed to cover all trajectories.

. BN with the greatest coverage explained 1,489 trajectories. These trajectories were produced
by low treatment concentrations and we believe they represent cellular recovery processes.

. Trajectories produced by high concentration treatments, that resulted in cell death, were
predicted by a different set of BNs.

. Our findings illustrate the utility of BNs that differentiate cellular programs involved in
adaptation versus injury.



Thank you
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