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Abstract 

The standard WASP8 stream transport model calculates water flow through a branching 

stream network that may include both free-flowing and ponded segments.  This 

supplemental user manual documents the hydraulic algorithms, including the transport and 

hydrogeometry equations, the model input and output, and a series of model verification 

tests.  

For one-dimensional, branching streams or rivers, flow routing can be calculated for free-

flowing stream reaches, for ponded reaches, and for backwater or tidally-influenced 

reaches. Kinematic wave flow routing is a simple but realistic option to drive advective 

transport through free-flowing segments.  The kinematic wave equation calculates flow 

wave propagation and resulting variations in flows, volumes, depths, and velocities 

resulting from variable upstream inflow.  This well-known equation is a solution of the 

one-dimensional continuity equation and a simplified form of the momentum equation that 

considers the effects of gravity and friction.  Advective transport through ponded segments 

is controlled by a sharp-crested weir equation.  This equation calculates outflow based on 

water elevation above the weir.  Ponded reaches can include a flowing surface water 

segment (epilimnion) as well as stagnant underlying segments (hypolimnion).   

For dynamic flow through backwater segments, the momentum equations from DYNHYD 

provide a simple solution for calculating outflows and resultant changes in velocity, surface 

elevation, depth and volume. Driven by variable upstream flows and downstream heads, 

the dynamic flow routine solves one-dimensional equations describing the propagation of 

a long wave through a shallow water system while conserving both momentum and 

volume. This approach considers the effects of gravity, friction, and convective inertia, 

assuming that flow is predominantly one-dimensional, that accelerations normal to the 

direction of flow are negligible, that channels can be adequately represented by a constant 

top width with a variable hydraulic depth (i.e., "rectangular"), and that bottom slopes are 

moderate. This option can be used to represent simple two-dimensional (x-y) water bodies 

with a branching link-node network. 

To run the WASP8 stream transport module, the user must supply segment information 

and flow information.  Required segment information includes lengths, widths, and depths 

for average flow conditions, as well as bottom slopes and Manning friction coefficients.  

The hydrogeometric depth exponents may also be specified to control the channel shape.  

Minimum channel depths for zero-flow conditions may be specified, with a default value 

of 0.001 m.  Bottom slopes less than 10-6 signify ponded or backwater segments. For 

ponded segments, the minimum channel depth is interpreted as the outlet weir height.  

Required flow information includes the flow pathways for the main channel and each of 

the tributaries, as well as the inflow time functions for the simulation period. 

Transport variables are provided as output for each of the WASP8 kinetic modules.  

Standard output includes segment outflows, depths, velocities, and widths.  
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1 

  - Introduction 

The Water Quality Analysis Simulation Program, WASP8 (Di Toro et al. 1983, Ambrose 

et al. 1988, Wool et al. 2001, Wool et al. 2006) is a general dynamic mass balance 

framework for modeling contaminant fate and transport in surface waters.  Based on the 

flexible compartment modeling approach, WASP can be applied in one, two, or three 

dimensions with advective and dispersive transport between discrete physical 

compartments, or “segments.”   WASP provides a selection of modules to allow the 

simulation of conventional water quality variables as well as toxicants. 

The WASP kinetic models are based on a set of transport and transformation equations. 

Advective transport is driven by water flow through a specified computational network 

(e.g. Figure 1). Inflows bring boundary concentrations into the network, and internal flows 

advect most constituents along specified flow paths through the network and out the 

downstream boundaries.  

 

 

Figure 1 - Model network with advective transport pathways 

  - Background 

 WASP Transport Fields 

Advective transport in WASP is divided into six distinct types, or "fields." The first 

transport field is advective flow in the water column. Advective flow carries water quality 

constituents "downstream" with the water and accounts for instream dilution.  The second 

transport field specifies the movement of pore water in the sediment bed. Dissolved water 
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quality constituents are carried through the bed by pore water flow. The third, fourth, and 

fifth transport fields specify the transport of particulate pollutants by the settling, 

resuspension, and burial of solids (descriptive approach). WASP8 allows the user to 

specify settling and resuspension rates more directly using segment parameters. WASP8 

also implements a mechanistic approach for sediment transport (see Sediment Transport 

User’s Manual). Water quality constituents sorbed onto solid particles are transported 

between the water column and the sediment bed. The sixth transport field represents 

evaporation or precipitation from or to surface water segments. 

 WASP Surface Water Flow 

Advective water column flows directly control the transport of dissolved and particulate 

pollutants in many water bodies. In addition, changes in velocity and depth resulting from 

variable flows can affect such kinetic processes as reaeration, volatilization, and photolysis. 

In WASP, water column flow is input via transport field 1. Circulation patterns may be 

described using 1 of the available 6 flow/transport options (Table 1) 

Table 1 WASP8 Flow Transport Options 

Flow Option Description 

Flow Routing Uses specified flow for segment; volume, depth, and 

velocity are not adjusted with flow. 

Stream Routing Uses specified flow for segment; volume, depth, and 

velocity are adjusted for variable flow based on 

hydrogeometry 

Kinematic Wave Use kinematic wave routing for segment based on slope 

and bottom roughness 

Ponded Weir Uses weir height to control flow through assumed flat 

surface 

Hydrodynamic Linkage Detailed transport is provided by external hydrodynamic 

model 

Dynamic Wave Uses water surface elevation and surface slope to 

calculate flow 

2.2.1 WASP Surface Water Descriptive Flow Options 

Two descriptive flow options are available in WASP – Flow Routing and Stream Routing. 

The outflow from a descriptive flow segment is equal to the sum of the inflows to that 

segment. For Flow Routing, there are no adjustments in volume, depth, and velocity if 

inflows vary. For Stream Routing, the volume, depth, and velocity varies with flow based 

on specified hydrogeometry coefficients. 
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2.2.2 WASP Kinematic Wave Stream Flow Option 

The kinematic wave stream flow option was implemented to provide a more realistic 

simulation of flow dynamics in branching, one-dimensional networks. Kinematic flow is 

controlled by bottom slope and bottom roughness. The kinematic wave formulation can be 

used for most stream and small river systems. WASP simulates downstream flow through 

the network in response to time-variable inflows and withdrawals.  

As in the descriptive flow options, the user must supply both a continuity function and a 

time function for each inflow (or withdrawal). Flow paths may diverge (branch) and then 

re-join. For surface water segments, the user must specify bottom slopes and roughness 

factors, as well as widths and depths for average flow conditions and a depth hydraulic 

exponent for non-rectangular channels. The model uses the inflow and flow path functions, 

along with specified channel geometry and hydraulic coefficients to calculate time-variable 

water movement (flows and velocities) and channel hydrogeometry (top widths, cross-

sectional average depths, and volumes).   

Beginning with version 7.3, the stream network can include ponded flow segments along 

with kinematic flow segments. Flow through ponded segments is controlled by a 

downstream low-head dam, weir, or natural sill. For these segments, the user must specify 

bottom slope of 0 (or less than 10-6) and the downstream weir height. Ponded segments 

may include stagnant underlying water layers. 

Beginning with version 8.0, the stream network can include dynamic flow (or “backwater”) 

segments along with kinematic flow and ponded flow segments. Dynamic flow is 

controlled by gradients in surface elevation and velocity, as well as bottom roughness. For 

these segments, the user must set bottom slope to 0 and specify bottom elevation in 

reference to a downstream control point. 

   - Development of Equations 

 Hydrogeometry 

 A good description of segment hydrogeometry as a function of flow can be important in 

properly using WASP to simulate streams and rivers.  For the hydrodynamic linkage flow 

option, velocities and depths computed by the hydrodynamic model are used in WASP.  

For the internal flow options (Net Flow, Gross Flow, Kinematic Wave), a set of 

user-specified hydraulic discharge coefficients defines the relationship between velocity, 

depth, and stream flow in surface water segments. This method follows the implementation 

in QUAL2E (Brown and Barnwell, 1987).  For the descriptive flow options (Net Flow, 

Gross Flow), segment velocities and depths do not influence the transport scheme; they are 

only used in calculations of reaeration and volatilization rates. For the Kinematic Wave 

flow option, segment velocities, widths, and depths are integral to the transport 

calculations. 

Discharge coefficients giving depth and velocity from stream flow are based on empirical 

observations of the stream flow relationship with velocity and depth (Leopold and Maddox, 

1953).  The equations relate velocity, channel width, and depth to stream flow through 

power functions: 
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Equation 1 

Q vmult = v
v exp

  

Equation 2 

Q dmult = R
dxp 

  

Equation 3 

Qbmult = B
b exp

  

where v is velocity [m/sec], R is hydraulic radius, or cross-sectional average depth [m], B 

is top width [m], vmult, dmult, and bmult are empirical coefficients, and vexp, dxp, and 

bexp are empirical exponents. Cross-sectional area, A is the product of top width and 

average depth, and from continuity, flow is given by: 

 

Equation 4 

Q bmult)  dmult  (vmult =

)Q (bmult  )Q (dmult  )Q (vmult = B  R  v = A  v = Q

b + dxp + v

bdxpv

expexp

expexp




 

From inspection, the following hydraulic relationships hold: 

Equation 5 

1= bmultdmultvmult   

Equation 6 

1=b+dxp+v expexp  

The Net Flow and Gross Flow options in WASP require specification of the hydraulic 

relationships for velocity and depth; the width coefficients are calculated internally from 

Equation 5 and Equation 6. The Kinematic Wave Flow option requires specification of the 

hydraulic depth exponent dxp, along with depth Dm and width Bm under average flow 

conditions. Manning’s equation (rearranged) is used to calculate velocity vm under average 

flow conditions, and then average flow Qm from depth, width, and velocity: 

Equation 7 

n

SD
v

fm

m

2/13/2


  

Equation 8 

mmmm BDvQ   

A consistent set of hydraulic exponents are set (see Appendix, Section 6.1): 

Equation 9 

  dxpv 
3

2exp  
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Equation 10 

exp1exp vdxpb   

Finally, a consistent set of hydraulic multipliers are then derived from mean flow width, 

the hydraulic geometry equations, and Manning’s equation: 

Equation 11 

expb

mm QBbmult


  

Equation 12 

/1vmult  

Equation 13 

bmultdmult /  

Equation 14 

5/3

2/1

3/2













 


fS

bmultn
  

 

 

Figure 2 - Channel hydraulic cross-sections       

Channel cross-sections for representative hydraulic geometry coefficients in Table 2are 

illustrated in Figure 2.  Under mean flow, these channels are 10 m wide and 0.5 m deep. 

Leopold et al. (1964) have noted that stream channels in humid regions tend towards a 

rectangular cross-section because cohesive soils promote steep side slopes whereas 

noncohesive soils encourage shallow sloped, almost undefined banks. 
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Channel Velocity Depth Width 

1. Rectangular 0.40 0.60 0.00 

2. U-Shape 0.32 0.48 0.20 

3. V-Shape 0.26 0.39 0.35 

4. Shallow 0.20 0.30 0.50 

Table 2 - Hydraulic Exponents for Figure 3 
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Table 3 - Comparison of Empirical Hydraulic Exponents 

Channel  Velocity Depth Width 

Rectangular 0.40 0.60 0.00 

Average of 158 U.S. Gaging Stations 0.43 0.45 0.12 

Average of 10 Gaging Stations on Rhine River 0.43 0.41 0.13 

Ephemeral Streams in Semiarid U.S. 0.34 0.36 0.29 

Table 3 compares hydraulic exponents for a rectangular channel with data reported by 

Leopold et al. (1964).  Note that the average velocity exponent is relatively constant for all 

channel cross sections. The major variation occurs as a decrease in the depth exponent and 

concomitant increase in the width exponent as channel cross-sections change from the 

steep side slopes characteristic of cohesive soils to the shallow slopes of arid regions with 

noncohesive soils. 

For site-specific river or stream simulations, hydraulic coefficients and exponents must be 

estimated.  Brown and Barnwell (1987) recommended estimating the exponents (b and d) 

and then calibrating the coefficients (a and c) to observed velocity and depth.  The 

exponents may be chosen based on observations of channel shape noted in a reconnaissance 

survey.  If cross sections are largely rectangular with vertical banks, the first set of 

exponents shown should be useful.  If channels have steep banks typical of areas with 

cohesive soils, then the second set of exponents is appropriate.  If the stream is in an arid 

region with typically noncohesive soils and shallow sloping banks, then the last set of 

exponents is recommended. 

The key property of the channel that should be noted in a reconnaissance survey is the 

condition of the bank slopes or the extent to which width would increase with increasing 

stream flow.  Clearly the bank slopes and material in contact with the stream flow at the 

flow rate(s) of interest are the main characteristics to note in a reconnaissance.  This gives 

general guidance but it should be noted that values are derived for bankful flows.   Even in 

streams with vertical banks, the low flows may be in contact with a sand bed having 

shallow sloped, almost nonexistent banks that are more representative of ephemeral 

streams in semi-arid areas. 

 Governing Flow Equations 

The WASP stream flow model consists of a set of one-dimensional equations solving water 

flow and water volume in a branching stream or shallow river network. This network can 

include free-flowing stream reaches (kinematic wave flow), ponded reaches (weir 

overflow), and backwater or tidally influenced reaches (dynamic flow). The equation of 

motion, based on the conservation of momentum, predicts water velocities and flows.  The 

equation of continuity, based on the conservation of volume, predicts water heights (heads) 

and volumes. 

The one-dimensional continuity equation is given by: 
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Equation 15 

0









t

A

x

Q
 

where Q is volumetric flow, [m3/sec] and A is cross-sectional area [m2]. For rectangular 

channels, where width is constant, Equation 15 becomes: 

Equation 16 

0









t

H
B

x

Q
 

where B is channel width [m] and H is water surface elevation [m]. As presently 

implemented in WASP, kinematic flow reaches have shapes described by the 

hydrogeometric relationships described in Section 3.1, while ponded reaches and dynamic 

flow reaches have rectangular channel shapes. 

 The equations of motion implemented in the three reach types are described in the 

following sections. 

3.2.1 Kinematic Wave Flow 

For one-dimensional, free-flowing stream reaches, kinematic wave flow routing is a simple 

but realistic option to drive advective transport.  The kinematic wave equation calculates 

flow wave propagation and resulting variations in flows, velocities, widths, and depths 

throughout a stream network.  This well-known equation is a solution of the one-

dimensional continuity equation and a simplified form of the momentum equation that 

considers the effects of gravity and friction:  

Equation 17 

  00  SSg f  

where g is acceleration of gravity [m/sec2], S0 is the bottom slope, and Sf  is the friction 

slope.  Manning’s equation expresses the friction force as a function of water velocity and 

hydraulic radius: 

Equation 18 

R
vn

fS
3/4

22
  

 where n is the Manning friction factor, v is water velocity [m/sec], and R is hydraulic 

radius [m], which is equivalent to the cross-sectional average depth, D.  From the simplified 

momentum equation, S0 can be equated to Sf.  Hydraulic radius can be expressed as cross-

sectional area divided by width, B [m].  Substituting these into the Manning’s equation and 

rearranging terms gives flow as a function of bottom slope, cross-sectional area, and width: 

Equation 19 

2/1

03/2

3/51
S

B

A

n
Q   
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Substituting this expression into the continuity equation and differentiating A with respect 

to time gives the kinematic wave differential equation: 

Equation 20 

01 







 

t

Q
Q

x

Q   

where, for rectangular channels: 

Equation 21 

5/3

2/1

3/2

,5/3















fS

Bn
  

For channels where width varies with flow, α and β are functions of hydraulic coefficients: 

Equation 22 

5/3

2/1

3/2

,4.06.0












 


fS

bmultn
dxp   

where the hydraulic coefficients dxp and bmult are defined in Section 3.1.  

3.2.2 Ponded Weir Flow 

For flow through ponded segments controlled by a downstream low-head dam or natural 

sill (Figure 3), the sharp-crested weir overflow equation is a simple solution for calculating 

outflows and resultant changes in depth and volume. Weir height Hw [m] and width Bw [m] 

are specified by the user, and hydraulic head Hh is the difference between ponded depth H 

and Hw. 

 

 

Figure 3 - Definition sketch for ponded flow 

 

For a sharp-crested weir where Hh/Hw < 0.4, velocity and flow are related to head by 

(Finnemore and Franzini 2002):  
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Equation 23 

2/3

2/1

83.1

83.1

hwhoo

ho

HBAvQ

Hv




 

wHHwhen  0  

where vo is the velocity of flow over the weir [m/sec], and Ah is the cross-sectional area of 

flow over the weir [m2], given by the product of Hh and Bh.  

3.2.3 Dynamic Flow 

For dynamic flow through backwater segments, the momentum equations from DYNHYD 

provide a simple solution for calculating outflows and resultant changes in velocity, surface 

elevation, depth and volume. Bottom elevation Hb [m], width B [m], initial depth D [m], 

and initial velocity v [m/sec] are specified by the user. Surface elevation Y is the sum of D 

and Hb. Driven by variable upstream flows and downstream heads, simulations typically 

proceed at 1- to 5-minute intervals.   

The dynamic flow routine solves one-dimensional equations describing the propagation of 

a long wave through a shallow water system while conserving both momentum and 

volume.  The equation of motion calculates water velocities and flows.  The equation of 

continuity calculates surface elevations, along with associated depths and volumes.  This 

approach assumes that flow is predominantly one-dimensional, that accelerations normal 

to the direction of flow are negligible, that channels can be adequately represented by a 

constant top width with a variable hydraulic depth (i.e., "rectangular"), that the wave length 

is significantly greater than the depth, and that bottom slopes are moderate.  Reaches with 

steep bottom slopes are best solved with the kinematic wave equations. 

Equation 16 gives the equation of continuity implemented for dynamic flow reaches. The 

equation of motion calculates local acceleration, the velocity rate of change with respect to 

time [m/sec2]: 

Equation 24 

fg aa
xd

vd
v

td

vd
  

where v is water velocity [m/sec], ag is gravitational acceleration along the axis of the 

channel [m/sec2], and af is frictional acceleration [m/sec2]. The first term, convective inertia 

or Bernoulli acceleration, represents the rate of momentum change by mass transfer, 

[m/sec2].  The second term, gravitational acceleration, is driven by the slope of the water 

surface: 

Equation 25 

x

Y
gag



  

where Y is surface elevation [m], and g is the acceleration of gravity [9.81 m/sec2]. The 

third term, frictional acceleration, can be expressed using the Manning equation for steady 

uniform flow: 
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Equation 26 

3/4

22

R

vn
ga f   

where n is the Manning friction factor, v is water velocity [m/sec], and R is hydraulic radius 

[m], which is equivalent to the cross-sectional average depth, D. 

 Local wind acceleration is not included in this implemented of the dynamic flow 

equations. 

 Implementation of Equations 

WASP8 solves the kinematic flow, ponded flow, and dynamic flow equations for 

appropriate surface water segments in a stream network using finite-difference 

formulations for flow and for continuity. 

For each segment, a maximum numerical time step DTmax is calculated from the segment 

length and characteristic velocity, as described in the sections below. The overall time step 

is the product of the minimum DTmax in the network and a user-specified fraction, DTF 

(default = 0.9) that is set to ensure stability: 

Equation 27 

 maxmin DTDTFDT   

This time step DT is divided into two half time steps. For kinematic wave reaches and 

ponded weir reaches, flows are calculated sequentially for each half time step and then 

averaged for subsequent use by the water quality module.  Final velocities, depths, 

volumes, and surface elevations at the end of the full time step are passed along to the water 

quality module.   

For dynamic flow reaches, the two half time steps are used in a predictor-corrector scheme 

as described in Section 3.3.3 below. Flows, velocities, volumes, depths, and surface 

elevations are updated following each of the numerical steps. Final flows, velocities, 

volumes, depths, and surface elevations at the end of the full time step are passed along to 

the water quality module.  

3.3.1 Kinematic Wave Flow 

To solve for flow in kinematic wave reaches, Equation 20 is expressed in finite difference 

form: 

Equation 28 

 0
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where QU is the upstream inflow, QD0 is the outflow from the preceding time step, QDt is 

the outflow for this time step, and DT is the time step [days].  Equation 28 is solved using 

a Newton-Raphson approach: 
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Equation 29 
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Equation 30 
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Given an initial estimate of QDt, an updated estimate, QDt2, is calculated by: 

Equation 31 
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Equation 29, Equation 30, and Equation 31 are solved in an iterative loop where QDt it set 

equal to QDt2 until err is less than 10-5.  Given the new set of flows for the water column 

network QDt,ij, volumes for all water segments “i” are updated using the continuity 

equation: 

Equation 32 

iiit

j

ijDti DVVVDTQDV   ,0,, ,  

Segment widths are updated with the new flows using Equation 3. Associated cross-

sectional areas and depths are then calculated: 

Equation 33 
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Equation 34 
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To prevent slow numerical drift in calculated volumes during lengthy simulations, small 

adjustments are made to flows based on differences between hydraulic radius calculated 

from Equation 2 and cross-sectional average depth calculated through continuity.  

Applying Equation 19: 

Equation 35 

 3/53/52/1
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Equation 36 

ierriDtiDt QQQ ,,,   

For each kinematic flow segment, a maximum stable numerical time step DTmax [days] is 

calculated from the segment length L [m] and celerity c [m/s]: 
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Equation 37 

/vc   

Equation 38 

 
c

LDT 
86400

5.0
max  

 where 0.5 is a safety factor. 

3.3.2 Ponded Weir Flow 

For ponded reaches “i”, weir overflow (Equation 23) must be solved along with continuity 

such that: 

Equation 39 

2/3
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Equation 40 
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where QUt,i and QDt,i are the upstream inflow and outflow for this time step [m3/sec], Hht,i 

is the head for this time step [m], Hh0,i is the head from the previous time step [m], and DT 

is the time step [days].  These equations are solved using a Newton-Raphson approach 

where: 

Equation 41 

083.1)( 2/3  htDtDt HBQQf  

Equation 42 
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Given an initial estimate of QDt,i, a consistent value for Hht,is calculated using Equation 40. 

An updated estimate QDt2, is then calculated by: 

Equation 43 

Do

DtDt

Dt

Dt
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Equation 41, Equation 42, Equation 43, and Equation 40 are solved in an iterative loop 

where QDt and Hht are set equal to QDt2 and Hht2 until err is less than 10-5.   
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WASP8 solves this weir overflow equation for each ponded segment in a stream network. 

In each of the numerical steps, calculated values of dQ/dt and Qo are used to update 

volumes, depths, and Hh, which are used in the next numerical step to calculate Qo.  

For each weir overflow segment, a maximum stable numerical time step DTmax [days] is 

calculated from the segment length and overflow velocity vo: 

Equation 44 









ov

LDT
5.186400

5.0
max

 

where 0.5 and 1.5 are safety factors. 

3.3.3 Dynamic Flow 

Equation 16 and Equation 24 form the basis of the hydrodynamic model DYNHYD5, 

which is implemented within this version of WASP.  These equations are integrated 

numerically on a flexible, computationally efficient "link-node" network (Feigner and 

Harris, 1970), which solves the equations of motion and continuity at alternating grid 

points. At each time step, the equation of motion is solved at the links (or “channels”), 

giving velocities for mass transport calculations, and the equation of continuity is solved 

at the nodes (or “junctions”), giving heads for pollutant concentration calculations. 

Link-node networks can treat fairly complex branching flow patterns and irregular 

shorelines with acceptable accuracy for many studies.  They cannot handle stratified water 

bodies, small streams, or rivers with a large bottom slope.  Link-node networks can be set 

up for wide, shallow water bodies if primary flow directions are well defined.   

In WASP, nodes correspond to segments, and links correspond to segment interfaces.  For 

every dynamic flow segment in a WASP network, a distinct channel number “ich” is 

defined for each of its downstream segments. Channel ich is defined by upstream segment 

j and downstream segment i. Positive flow in channel ich is outflow from segment j and 

inflow to segment i. Negative flow in channel ich is outflow from segment i to segment j. 

In finite difference form, Equation 24 is given by: 

Equation 45 
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where vt,ich is the velocity for this time step [m/sec], vich is the velocity from the preceding 

time step [m/sec], Δxich is channel ich length [m], Δvich /Δxich is the velocity gradient in 

channel ich with respect to distance [sec-1], ΔHich /Δxich is the water surface gradient in 

channel ich with respect to distance [m/m], and DT is the time step [days]. All values on 

the right hand side of equation 20 are referenced to the previous time step. 

The water surface gradient can be computed from the junction heads at either end of the 

channel:   
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Equation 46 
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where Hj and Lj are the water surface elevation and length of the upstream segment[m], 

and Hi and Li are the water surface elevation and length of the downstream segment[m]. 

The velocity gradient cannot be computed directly from upstream and downstream channel 

velocities because of possible branching in the network.  If branching does occur, there 

would be several upstream and downstream channels, and any computed velocity gradient 

would be ambiguous.  An expression for the velocity gradient within a channel can be 

derived by applying the continuity equation to the channel and substituting v×A for Q:  

Equation 47 
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Rearranging terms gives the channel velocity gradient:  

Equation 48 
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Writing this in finite difference form and substituting B×R for A and B×ΔH for A gives 

the velocity gradient term:  

Equation 49 
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The term ΔHich/Δt is computed as the average water surface elevation change between the 

segments at each end of channel ich during time step t.  Substituting Equation 49 into 

Equation 45 and rearranging gives the explicit finite difference equation of motion applied 

to each channel:  

Equation 50 
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,  

Writing the equation of continuity in finite difference form and rearranging terms gives: 

Equation 51 

jj
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,  

Equation 50 and Equation 51 are solved using a 2-step predictor-corrector routine. Based 

on initial velocities, surface elevations, and depths from the previous time step, new 
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velocities and flows are solved for the half time step, along with new surface elevations 

and depths. Using these predicted half-time step values, velocity and flow derivatives are 

recalculated for the half time step. These corrected derivatives are then used with the initial 

velocities, depths, and surface elevations to calculate velocities and flows for the full time 

step. Finally, surface elevations, depths, and volumes are calculated for the full time step. 

For each dynamic flow segment, a maximum stable numerical time step DTmax [days] is 

calculated from the segment length L [m] and celerity c [m/s]: 

Equation 52 

Dgc   

Equation 53 

 
c

LDT 
86400

5.0
max  

 where 0.5 is a safety factor. 

  - Stream Transport Model Inputs 

To implement stream flow routing, the user must specify information in the Data set screen, 

the Segments screen, and the Flows screen, accessed from the gears, the cube, and the 

faucet on the main WASP toolbar (Figure 4). Each of these is briefly described in the 

sections below.   

 

Figure 4 - WASP Main Screen Toolbar, data input buttons 

 Data set screen 

In the Data set screen (Figure 5), the user must select the Model Type. In the Time Range 

section, the user must specify the simulation Start Date, Start Time, End Date and End 
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Time. In the hydrodynamics section, the user must select the flow option. Finally, the Time 

Step information should be specified.  Default values are supplied for Fraction of max time 

step (0.9), Max time step (1.0 day), and Min time step (0.0001 day). These values should 

work well for most cases, but if numerical instability is encountered, lowering the Fraction 

of max time step (to 0.5 or even 0.1) could help.  In some cases, the user may want to 

specify a maximum times step of less than a day.  If diurnal output is desired, then a 

maximum time step of 0.1 or 0.05 days should give the necessary precision.   

When creating a new input dataset the input parameterization data entry form is the first 

one that needs to be completed.   This form provides basic information that is needed by 

the program to parameterize the other data entry forms that follow.  This screen informs 

the program what type of WASP file you are going to be creating. 

4.1.1 Restart Options 

The methods used by WASP to read and create restart files have changed substantially in 

this version.  In previous versions the user would have selected Create Restart File, for 

WASP to write the final conditions of the simulation to an output file.  This is true for the 

current version as well.  If the user wants to restart a simulation with the final conditions 

of previous simulation this radio must be set.  At the end of the WASP simulation a restart 

file with the same name as the WIF except with the extension *.RST will be saved.   With 

the current release of WASP if the user wants to use a restart file they simple click on the 

Load Restart File button, this will allow the user to browse to whatever restart file they 

want to use.  Once the file is selected and the user clicks on the Okay button, the restart file 

is opened up and segment volumes and state variable initial conditions are reset to the 

values in the user selected *.RST file. 

 

 

Figure 5 Dataset Parameterization 
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4.1.2 Date and Times 

The previous versions of WASP did not require that the model time functions be 

represented in Gregorian date format.  WASP requires all time functions be represented in 

Gregorian fashion (mm/dd/year hh:mm:ss).   

Start Date and Start Time - The start time dialog is used to define the date and time for 

the start of the simulation or time period being considered in the model input files.  This 

date and time correspond to time zero within the model. 

End Date and End Time - The end time dialog is used to define the date and time when 

the simulation will end.  

Skip Ahead to Date and Time - This new addition to the WASP interface allows the user 

to skip to any portion of the simulation and/or the selected loaded hydrodynamic linkage 

file.  When the user selects a hydrodynamic linkage file the start time and end time of the 

file is read and the interface automatically sets the beginning and end time to these values.  

It is best that the user build all of the time series (environmental, boundary and dispersion) 

to cover this full range of time.  Once the WIF is built the user can set a date and time to 

skip the simulation from the start time set in the hydrodynamic file.  This is handy for using 

the whole hydrodynamic linkage file for calibration and verification, and then using a small 

portion of the hydrodynamic linkage file for scenario analysis.  It could be the critical time 

period that will be used for the waste load allocation or TMDL.  The start time of the 

simulation should still be set the beginning time in the hydrodynamic linkage file.  The 

user can change the end time of the simulation by changing the last date/time pair in the 

Time Step screen. 

4.1.3 Hydrodynamics 

Hydrodynamic Linkage -- Realistic simulations of unsteady transport in rivers, reservoirs, 

and estuaries can be accomplished by linking WASP8 to a compatible hydrodynamic 

simulation.  This linkage is accomplished through an external “hyd” file chosen by the user 

at simulation time.  The hydrodynamic file contains segment volumes at the beginning of 

each time step, and average segment interfacial flows during each time step.  WASP8 uses 

the interfacial flows to calculate mass transport, and the volumes to calculate constituent 

concentrations.  Segment depths and velocities may also be contained in the hydrodynamic 

file for use in calculating reaeration and volatilization rates. Before using hydrodynamic 

linkage files with WASP, a compatible hydrodynamic model must be set up for the water 

body and run successfully, creating a hydrodynamic linkage file with the extension of 

*.hyd.  This is an important step in the development of the WASP input file because the 

hydrodynamic linkage file contains all necessary network and flow information.  When 

Hydrodynamic Linkage is selected in the Data Set Parameters screen, the user cannot 

provide any additional surface flow information. When you are ready to begin the 

development of a WASP input deck, simply open the hydrodynamic linkage file from 

within the data preprocessor. The hydrodynamic linkage dialog box allows the user to 

browse and select a hydrodynamic linkage file. The data preprocessor will open the 

hydrodynamic interface file and extract the number of segments, the starting and ending 

time.  Once a hydrodynamic linkage file is selected in the data preprocessor, the user will 
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have to add the model systems to use. User can check the numerical stability of the 

hydrodynamic linkage by inspecting the Mass Check system on the runtime grid and in 

model output.  If the simulation is run for a sufficient duration, mass check concentrations 

should approach 1.0 mg/L throughout the network.  If you are getting a number other than 

1 mg/L, you may have to use a different time step in the hydrodynamic model.  This is 

especially true if the concentrations are oscillating between large and small numbers, a 

clear indication of numerical instability.  WASP has the ability to get hydrodynamic 

information from a host of hydrodynamic models.  If a hydrodynamic model does not 

support the WASP linkage it is relative straightforward to create a hydrodynamic linkage 

file (see Appendix 3 for file format).  The hydrodynamic models that currently support the 

WASP8 file format are: EFDC (three dimensions), DYNHYD (one dimension branching), 

RIVMOD (one dimension no branching, CE-QUAL-RIV1 (one dimension branching), 

SWMM/Transport (one dimension branching, SWMM/Extran (one dimension branching) 

4.1.4 Solution Technique 

The user now has the ability to select the model solution technique to be used by the water 

quality module during the simulation.  Currently there are 3 solution techniques that can 

be selected: 1) Euler – which is the traditional solution technique that has been in WASP 

since its inception, 2) COSMIC Flux Limiting – this solution technique is typically used 

when WASP is linked to multi-dimensional hydrodynamic models like EFDC, 3) Runge-

Kutta 4 step solution technique used for diurnal simulations. 

4.1.5 Time Step Definition 

Starting with WASP Version 7.3 the user no longer has control over the computational 

time step.  Time step optimization routines have been refined to the point where the model 

can determine what the most appropriate time step should be used next.  This assures the 

most efficient run time as well as minimizing numerical dispersion caused by too small of 

a time step.  While the user can not set the time step directly, they do have some control 

over what would be an acceptable time step. 

Fraction of Maximum Time Step - This dialog box specifies what fraction of the model 

calculated time step will be used for the next time step.  Its primary purpose is aid the user 

in keeping the model stable.  The default is 0.9 (or 90%) of the optimal time step. 

Maximum Time Step - This specifies the maximum time step that will be used.  If the 

time step optimizer calculates a time step larger than this value, this value will be used.  

This could be important in constraining the time step for diurnal or daily calculations. 

Minimum Time Step - This specifies the minimum time step that will be used.  The default 

minimum time step is defined in the model as 0.0001 days.  Use this dialog to raise the 

minimum time step. 

 Segments screen 

In the Segments screen, the user must enter a row for each segment in the model network 

(e.g., by pressing “Insert,” by pressing the down arrow from the bottom row or by copying 
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from spreadsheet).  Provide segment type, orientation and transport option to use for 

segment. 

4.2.1 Segment Name 

User must provide a unique segment name for each segment.  These segment names are 

used to identify the segment in post processor.  If the user wants to paste segment 

descriptions/names that include spaces, the segment description must be placed in quotes 

(i.e. “I 20 Bridge”). 

4.2.2 Segment Type 

Segment type is entered using a pick list. Four segment types are available: “Surface,” 

“Subsurface,” “Surface Benthic,” and “Subsurface Benthic.” The default segment type is 

“Surface,” which represents upper water column segments in contact with the atmosphere. 

“Subsurface” represents underlying water column segments.  “Surface Benthic” represents 

the upper benthic sediment segments in contact with the water column. “Subsurface 

Benthic” represents underlying benthic segments. 

4.2.3 Bottom Segment 

Bottom segment is the segment immediately underneath the current segment. The bottom 

segment is entered by typing in the segment number or by using a pick list.  If no segments 

are underneath the current segment, then the bottom segment is designated “none.” 

4.2.4 Transport Mode 

There are currently six surface flow options available for WASP.  The user has the ability 

select different transport modes for individual or groups of segments.  The only restriction 

when using a hydrodynamic linkage file, is if linked to a hydrodynamic model all segments 

has be first two options pertain to how WASP will calculate the exchange of mass between 

adjoining segments with flow in both directions across a segment interface.  The three flow 

options available for surface water flow are: 

1. Stream Routing -- WASP will calculate net transport across a segment 

interface that has opposing flow.  WASP will net the flows and move the mass 

from the segment that has the higher flow leaving.  If the opposed flows are 

equal no mass is moved.   

2. Flow Routing -- Pertains to mass and water being moved without regard to net 

flow.  

3. Kinematic Wave -- For one-dimensional, branching streams or rivers, 

kinematic wave flow routing is a simple but realistic option to drive advective 

transport.  The kinematic wave equation calculates flow wave propagation and 

resulting variations in flows, volumes, depths, and velocities throughout a 

stream network. 

4. Dynamic Flow – For one-dimensional flow controlled by surface water slope.  

Capable of calculating backwater flow. 
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5. Ponded Weir –  For one-dimensional flow where water surface is flat and 

controlled by height of weir. 

6. Hydrodynamic Linkage – For multi-dimensional flow where all transport 

information is provided via a hydrodynamic model.  This option utilizes the 

Hydrodynamic Application Program Interface (API), described in Appendix 

3: Hydrodynamic Linkage File API. 

 

Figure 6 Segment Definition Screen 

 Channel Geometry 

Depending upon the Transport Option selected for a given segment, the data entry screen 

will highlight the columns where data is not needed.  The user should provide information 

for the columns that are not shaded.  Segment volumes [m3] should be specified when using 

the Flow and Stream routing.  Channel geometry information is assumed to be at average 

flow conditions.  Much of this geometry information can be obtained from the National 

Hydrography Dataset (NHDPlus).  If a segment volume is not entered (or is 0), then WASP 

will calculate that volume from specified segment length, width, and depth.  

For the 1-D Network Kinematic Wave option, input volumes are only used for benthic 

segments. WASP calculates initial water column segment volumes from length, width, and 

depth under initial flow conditions. 

When using the hydrodynamic linkage flow option, initial water column volumes are read 

from the external hydrodynamic file. Only benthic segment volumes must be entered. 
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Figure 7 - WASP Segment Definition Screen 

4.3.1 Volume 

Segment volume (cubic meters) required for the Stream and Flow Routing option.  Will be 

recalculated for all other options. 

4.3.2 Length 

Segment length [m] is the bottom length along the center of the flow line from the upstream 

end to the downstream end of the segment.   

4.3.3 Width 

Segment width [m] is the top width averaged along the length of the segment.  If no input 

volume is specified, then width is used along with length and depth (multiplier) to calculate 

an initial volume.  

For the 1-D Network Kinematic Wave option, width should be specified for average flow 

conditions.  Average widths are used along with average depths, depth exponents, slopes, 

and roughness coefficients to back-calculate a consistent set of hydraulic coefficients. 

4.3.4 Bottom Elevation 

Bottom elevations values represent the vertical distance from the segment bottom (cross-

sectional average) to the bottom of the downstream control segment, which is either a weir 

or a boundary. 
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4.3.5 Slope 

Segment slope [m/m] is the elevation drop divided by length averaged over the segment 

length. This is usually calculated as the upstream elevation minus the downstream elevation 

divided by segment length.  Slope is used only in the 1-D Network Kinematic Wave option.  

4.3.6 Minimum Depth 

Minimum depth [m] is the average segment depth under zero-flow conditions, used only 

in the 1-D Network Kinematic Wave option. If this cell is left blank, a default minimum 

depth of 0.001 m is assigned internally. Total depth is hydraulic depth plus minimum depth. 

4.3.7 Segment Roughness 

Segment roughness is the Manning’s roughness coefficient n. Roughness is used in the 1-

D Network Kinematic Wave option for kinematic wave flow and dynamic flow segments. 

Roughness coefficients should usually be between 0.01 and 0.15. If a coefficient of 0 is 

input for a free-flowing segment, WASP will reset the coefficient to 0.05 and issue a 

message to the screen. 

4.3.8 Initial Depth 

Represents the initial depth (m) of the segment at average flow. 

4.3.9 Initial Surface Elevation 

Represents the initial surface elevation of the segment for the dynamic wave option.  Initial 

depth and surface slope is calculated from Bottom Elevation and initial Surface Elevation. 

4.3.10 Depth (multiplier and exponent) 

The depth hydraulic multipliers [m / (m3/sec)] and exponents should be specified when 

using the Net Flow, Gross Flow, or Kinematic Wave options. Depth multipliers are 

required for all segments. For benthic segments, the depth multipliers are interpreted as 

segment depths [m].  

For the Net Flow and Gross Flow options, the depth multipliers and exponents are used 

along with initial segment flows to calculate initial segment depths.  If a depth multiplier 

is left at 0, it is reset internally to 1.0 and a message is issued to the screen. If a depth 

exponent is left at 0, then the depth multiplier is equal to the initial segment depth [m]. 

During simulations using these descriptive flow options, changing flows do not directly 

change segment depths, even if the hydraulic exponent is nonzero. Depths are recalculated 

along with volumes based on flow continuity.  If a segment outflow continuity multiplier 

is equal to the inflow continuity multiplier, then changing flows will not alter that 

segment’s volume or depth. 

For free-flowing segments in the 1-D Network Kinematic Wave option, the depth 

multiplier is taken to be the cross-sectional average segment depth under average flow 

conditions [m].  The depth exponent is a value generally between 0.3 and 0.6. If a segment 

depth exponent is left at 0, a rectangular cross-section is assumed and the exponent is reset 

internally to 0.6.  The average depths and depth exponents are used along with segment 
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widths, slopes, and roughness factors to calculate consistent hydraulic coefficients, which 

are then used to calculate segment depths under initial flow conditions.  During 

simulations, changing flows directly change hydraulic depths based on the hydraulic 

coefficients.  Total segment depth is equal to the hydraulic depth plus the user-input zero-

flow minimum depth.   

4.3.11 Velocity (multiplier and exponent) 

The velocity hydraulic multipliers [(m/sec) / (m3/sec)] and exponents should be specified 

only when using the Net Flow or Gross Flow options. For the Kinematic Wave option, the 

velocity multipliers and exponents are internally calculated from the input depth multipliers 

and exponents, and the input width. Any input velocity multiplier or coefficient will be 

ignored when using this option. 

 Flows screen 

The Flows screen is used to define advective transport, including surface water and pore 

water flow, as well as solids settling and resuspension, precipitation and evaporation. The 

Flows screen is also used to define downstream boundary elevations and two-dimensional 

channel networks for the Dynamic Flow option. 

The flow input screen is a complex screen that contains four tables (Figure 8). The upper 

left quadrant is used to select the transport field, such as “Surface Water” flow. For each 

transport field selected, the upper right quadrant is used to define a set of transport 

functions, including upstream and tributary inflows. For each transport function, the 

bottom two quadrants are used to define the flow path and the flow time function. 

 

  

Figure 8 - Flows screen 
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For surface water and pore water transport, the upstream inflow, each tributary inflow, pore 

water inflow, and any flow withdrawals must be described by continuity path functions 

and inflow time functions.  An example is shown in Figure 9. 

 

 

Figure 9 - Example WASP flow input 

4.4.1 Flow Field 

The transport field must be selected.  Six transport fields are available: 

1. Surface Water – This transport field is used to describe surface water flows. These 

flows transport both the particulate and dissolved fractions of a constituent.  If the user 

has selected the hydrodynamic linkage option they will not be able to enter information 

here. 

2. Pore Water – This transport field is used to describe pore water flows. These flows 

transport only the dissolved fraction of a constituent. 

3. Solids 1 – This transport field is used to describe solids type 1 settling and resuspension. 

These flows transport only the particulate fraction of a constituent that is mapped to 

solid type 1 in the Systems screen. 
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4. Solids 2 – This transport field is used to describe solids type 2 settling and resuspension. 

These flows transport only the particulate fraction of a constituent that is mapped to 

solid type 2 in the Systems screen. 

5. Solids 3 – This transport field is used to describe solids type 3 settling and resuspension. 

These flows transport only the particulate fraction of a constituent that is mapped to 

solid type 3 in the Systems screen. 

6. Evaporation/Precipitation – This transport field subtracts/adds water from the model 

network.  No constituent mass is added, removed, or transported. 

Scale Factor – The scale factor for a transport field multiplies all flows associated with 

that field by the input value. This is generally used to scale flows in sensitivity tests.  The 

default value is 1.0. 

Conversion Factor – The conversion factor for a transport field multiplies all flows 

associated with that field by the input value. This is generally used to adjust input flow 

units to the internal units of m3/sec. If flows are specified in ft3/sec, the conversion factor 

should be 0.02832. The default value is 1.0. 

4.4.2 Flow Function 

The user can define several flow functions for the selected transport field.  Each flow 

function must have its own flow path function (lower left table) and flow time function 

(lower right table). Normally, a Flow Function defines a discrete inflow, such as upstream 

flow, tributary flow, or pore water flow. Special flow functions are also used in conjunction 

with the Dynamic Flow option to define downstream boundary elevations or two-

dimensional (x-y) channel networks. 

To insert a flow function, first highlight the Surface Water flow field in the upper left table, 

then move the cursor to the upper right quadrant and click on the insert button.  The 

resulting flow function cell, labeled “Flow Function,” can be edited to provide a descriptive 

name.  

To insert additional flow functions, either click on “insert” or highlight the last flow 

function and press the down arrow.  To delete a flow function, select the function by 

highlighting the row and click on the delete button.  Deleting a flow function will delete 

the corresponding flow path function (lower left table) and flow time function (lower right 

table).  

Function Name – When a flow function is inserted, it is given the default name “Flow 

Function.” The Function cell can be edited to provide a descriptive name, such as 

“upstream inflow,” “tributary inflow,” “downstream elevation,” or “channel network.” 

Interpolation Option – The default interpolation option for the flow time function 

associated with a flow function is “Linear.” This can be changed to “Step” to provide for a 

step function. To change options, click in the Interpolation cell, press the down arrow, and 

select the interpolation option for this flow function.  
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Bound Option – The default boundary type for the time function is Flow (cms).  The user 

can also specify water surface elevation used in the dynamic wave transport option.  User 

can also specify an internal flow boundary where water is moved between the defined 

segments without using a transport option.  

Once a flow function is selected and named, the user must define the associated flow path 

function and flow time function.  Be sure that the correct flow field and flow function are 

highlighted before entering these next screens. 

4.4.3 Flow Path Function 

The flow path function traces this flow from its point of entry into the model network to its 

point of exit either from the model network or to an alternate pathway associated with 

another flow function. The flow path consists of a set of rows, corresponding to segment 

interfaces. Each row will have a set of segment pairs and a fraction of flow multiplier. 

Segment Pairs - The segment pairs consist of a “From” segment and a “To” segment, and 

define the direction of flow across this segment interface. Either the “From” or the “To” 

segment can be defined as “Boundary.”  Normally the first row will define the inflow from 

“Boundary” to the upstream segment and the last row will define the outflow from the 

downstream segment to “Boundary.” If this flow path is a tributary, then the last row will 

define the outflow from the downstream tributary segment to a segment in another tributary 

or the main stem of the river. 

Positive values of flow transport water and constituent mass in the defined direction from 

the first segment to the second segment. Negative flows transport water and constituent 

mass from the second segment to the first segment. For example, if “From” is segment 1 

and “To” is segment 2, then negative values of flow in the time function will cause transport 

from 2 to 1.  Note: While the kinematic wave option checks to make sure that all flow paths 

are ultimately connected to outflows, neither the preprocessor nor the model can assure 

that the segments are connected properly. Connectivity is the responsibility of the user. 

Fraction of Flow - The fraction of flow column defines what fraction of the total flow in 

this pathway moves between these segment pairs. For surface water flow, the fraction of 

flow is normally 1.0. This allows the user to split flows from one segment into two or more 

downstream directions. This can be used to define diverging and converging flows, but 

must be used carefully. The sum of all fractions entering each segment must normally equal 

the sum of all fractions leaving.  If the sum is greater than 1.0, then that segment’s volume 

will continually increase. If the sum is less than 1.0, then that segment’s volume will 

continually decrease; if the volume reaches 0, the simulation will end badly. 

Note for downstream boundary elevation – If a downstream boundary elevation function 

is being defined for a dynamic flow network, then the flow path should consist of a single 

segment pair from “Boundary” to the downstream segment number.  The fraction of flow 

should be set to 0. 

Note for channel network – If a two-dimensional channel network is being defined for 

the Dynamic Flow option, then a channel network must be defined by one or more special 

Flow Functions. In a channel network flow function, each segment pair defines a unique 

flow channel. The fraction of flow multipliers must be set to 0. Channel lengths and cross-
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sectional areas for each segment pair are read from the Exchanges screen (Section 4.5). 

Channel hydraulic radius is calculated internally as the average of the upstream and the 

downstream segment depths. Channel width is calculated internally as the cross-sectional 

area divided by hydraulic radius. The channel network must not include any boundaries. 

Channels connect two segments within the model network. WASP distinguishes channel 

networks from traditional flow paths by the absence of boundaries and flow path 

multipliers of 0. The flow time function associated with a channel network is not used, and 

flow values can be left at 0. 

4.4.4 Flow Time Function 

The flow time function is a table consisting of dates, times, and inflow values [m3/sec]. 

Each row in the table represents a single point in time. During a simulation, inflows are 

interpolated between these points based on the flow function interpolation option selected 

(see Section 4.4.2).  At least two rows must be entered in the flow time function to allow 

for interpolation. 

Date – As with other WASP time functions, the date must be entered as mm/dd/year (e.g., 

01/01/2004). The first date in the time function should correspond with the Start Date 

specified in the Data Set Screen (Section 4.1.2). The last date in the time function normally 

will correspond with the End Date.  

Time – The time must be entered as hh:mm (e.g., 14:30).  

Value – The inflow for this date and time is specified in units of [m3/sec]. Different units 

can be used if a conversion factor is provided with the Flow Field (Section 4.4.1). Note 

that if a downstream boundary elevation function is being defined, then the value entered 

will be surface elevation [m]. 

The time function table allows the user to enter time variable flow information.  For 

constant flows, two rows should be specified with the simulation start and end dates, and 

the constant flow value. The user can enter the information by hand, paste in from a 

spreadsheet, or query in from database/spreadsheets.  

 Exchanges screen 

The Exchanges screen is used to define dispersive transport, including surface water and 

pore water mixing. The Exchanges screen is also used to define channel lengths and initial 

cross-sectional areas for channel networks. 

The Exchanges input screen is a complex screen that contains four tables (Figure 10). The 

upper left quadrant is used to select the transport field, such as “Surface Water” flow. For 

each transport field selected, the upper right quadrant is used to define a set of transport 

functions, including lateral and longitudinal dispersion functions that provide data for any 

channel networks defined in the Flow functions (Section 4.4.3). For each exchange 
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function, the bottom two quadrants are used to define the exchange path and the exchange 

time function.  

 

Figure 10 - Exchanges Screen 

4.5.1 Exchange Field 

The exchange field must be selected.  Two transport fields are available: 

1. Surface Water – This transport field is used to describe surface water mixing. These 

turbulent flows transport both the particulate and dissolved fractions of a constituent.  

Pore Water – This transport field is used to describe pore water mixing. These flows 

transport only the dissolved fraction of a constituent. 

Scale Factor – The scale factor for a transport field multiplies all exchanges associated 

with that field by the input value. This is generally used to scale exchanges in sensitivity 

tests.  The default value is 1.0. 

Conversion Factor – The conversion factor for a transport field multiplies all exchanges 

associated with that field by the input value. This is generally used to adjust input 

dispersion coefficient units to the internal units of m2/sec. If dispersion coefficients are 

specified in cm3/sec, the conversion factor should be 0.0001. The default value is 1.0. 

4.5.2 Exchange Function 

The user can define several exchange functions for the selected transport field.  Each 

exchange function must have its own exchange path function (lower left table) and 

dispersion time function (lower right table). Normally, an Exchange Function defines a 

type of exchange, such as lateral or longitudinal dispersion or surface water-pore water 

exchange. Exchange functions are also used in conjunction with the Dynamic Flow option 
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to define channel lengths and initial cross-sectional areas for two-dimensional (x-y) 

channel networks. 

To insert an exchange function, first highlight the Surface Water field in the upper left 

table, then move the cursor to the upper right quadrant and click on the insert button.  The 

resulting flow function cell, labeled “Exchange Function,” can be edited to provide a 

descriptive name.  

To insert additional exchange functions, either click on “insert” or highlight the last flow 

function and press the down arrow.  To delete an exchange function, select the function by 

highlighting the row and click on the delete button.  Deleting an exchange function will 

delete the corresponding exchange path function (lower left table) and disperson time 

function (lower right table).  

Function Name – When an exchange function is inserted, it is given the default name 

“Exchange Function.” The Function cell can be edited to provide a descriptive name, such 

as “lateral dispersion,” “longitudinal dispersion,” “pore water exchange,” or “channel 

network.” 

Interpolation Option – The default interpolation option for the exchange time function 

associated with an exchange function is “Linear.” This can be changed to “Step” to provide 

for a step function. To change options, click in the Interpolation cell, press the down arrow, 

and select the interpolation option for this exchange function.  

Once an exchange function is selected and named, the user must define the associated 

exchange path function and exchange time function.  Be sure that the correct exchange 

field and exchange function are highlighted before entering these next screens. 

4.5.3 Exchange Path Function 

The exchange path function specifies a set of dispersive exchange flows. The function 

consists of a set of rows, corresponding to segment interfaces (or “channels” in a channel 

network). Each row will have a set of segment pairs, a cross-sectional area, and a 

characteristic mixing length. 

Segment Pairs – Each discrete exchange pathway is defined by a set of two segments 

between which exchange flows occur. Either “Segment One” or “Segment Two” can be 

defined as “Boundary.”  Neither the preprocessor nor the model can assure that the 

segments are connected properly. Connectivity is the responsibility of the user. 

Cross-Sectional Area, m2 - Cross-sectional areas are specified for each dispersion 

coefficient, reflecting the area through which mixing occurs. These can be surface areas 

for vertical exchange, such as in lakes or in the benthos. Areas are not modified during the 

simulation to reflect flow changes. 

Mixing Length, m – Mixing lengths or distance are specified for each dispersion 

coefficient, reflecting the characteristic length over which mixing occurs. These are 

typically the lengths between the center points of adjoining segments. A single segment 

may have three or more mixing lengths for segments adjoining longitudinally, laterally, 

and vertically. For surficial benthic segments connecting water column segments, the 

depth of the benthic layer is a more realistic mixing length than half the water depth.  
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Note for channel network – If a two-dimensional channel network is being defined for 

the Dynamic Flow option, then cross-sectional areas and mixing lengths entered here will 

be assigned to corresponding channels defined in the Flow Path screen (Section 4.5.3).  

4.5.4 Exchange Time Function 

The exchange time function is a table consisting of dates, times, and dispersion coefficient 

values [m2/sec]. Each row in the table represents a single point in time. During a simulation, 

dispersion coefficients are interpolated between these points based on the dispersion 

function interpolation option selected (see Section 4.5.2).  At least two rows must be 

entered in the flow time function to allow for interpolation. 

Date – As with other WASP time functions, the date must be entered as mm/dd/year (e.g., 

01/01/2004). The first date in the time function should correspond with the Start Date 

specified in the Data Set Screen (Section 4.1.2). The last date in the time function normally 

will correspond with the End Date.  

Time – The time must be entered as hh:mm (e.g., 14:30).  

Value – The inflow for this date and time is specified in units of [m2/sec]. Different units 

can be used if a conversion factor is provided with the Exchange Field (Section 4.5.1). 

Dispersive mixing coefficients may represent pore water diffusion in benthic segments, 

vertical diffusion in lakes, and lateral and longitudinal dispersion in large water bodies. 

Values can range from 10-10 m2/sec for molecular diffusion to 5×102 m2/sec for 

longitudinal mixing in some estuaries.  

The time function table allows the user to enter time variable exchange information.  For 

constant exchanges, two rows should be specified with the simulation start and end dates, 

and the constant dispersion coefficient value. The user can enter the information by hand, 

paste in from a spreadsheet, or query in from database/spreadsheets.  
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  -  Appendix 1: Derivation of Equations 

 Hydraulic Exponents for Kinematic Wave Flow 

Manning’s formula (Equation 19) provides the basis for deriving relationships among the 

hydraulic exponents.  Rearranging terms gives cross-sectional area as a function of flow:  

Equation 54 
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Cross-sectional average depth (hydraulic radius) is given by:  

Equation 55 
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Velocity is given by:  

Equation 56 
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Substituting Equation 3 for width as a function of flow gives:  

Equation 57 
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Equation 58 
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Equation 57 and Equation 58 give the depth and velocity hydraulic exponents as a function 

of the width exponent:  

Equation 59 

   exp14.0expexp16.0 bvbdxp   

Comparing the flow exponents confirms that the velocity exponent is 2/3 of the depth 

exponent, confirming Equation 9. 

  - Appendix 2: Model Verification Tests 

Model verification tests were designed to assure that the equations are implemented 

correctly in the model code.  Results are stored in separate folders at:  

 \WASP7\QA\Stream Transport\ 4-Stream Kinematic Wave Flows\ 
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Verification tests are outlined below. Results are detailed in a companion document. 

 Kinematic Wave Tests 

7.1.1 Stream Transport Test 1 

This series tests the kinematic wave flow routines in WASP using the Simple Toxicant 

module with intermediate slope and steady inflow with an example problem taken from 

Chapra, Example 14.6, pp. 253, 254. Results are compared with analytical solutions 

implemented in a spreadsheet, and by simple hand calculations.    

 Test 1a – Upstream Inflow Only 

 Test 1b – Upstream and Pore Water Inflow 

 Test 1c – Upstream and Precipitation Inflow 

 Test 1d – Upstream Inflow and Evaporation Outflow 

7.1.2 Stream Transport Test 2 

This series tests the kinematic wave flow routines in WASP using the Heat module with 

shallow slope and step changes in inflow. Results for each flow step are compared with 

analytical calculations calculated in a spreadsheet.  

 Test 2a – Rectangular Cross-Section 

 Test 2b – U Cross-Section 

 Test 2c – V Cross-Section 

7.1.3 Stream Transport Test 3 

This series tests the kinematic wave flow routines in WASP using the Eutrophication 

module with shallow slope, U-shape cross-section, step changes in upstream inflow, and 

inflow or withdrawal at Segment 3.  

 Test 3a – Constant Tributary Inflow 

 Test 3b - Constant Flow Withdrawal 

7.1.4 Stream Transport Test 4 

This series tests the kinematic wave flow routines in WASP using the Mercury module 

with a branching stream system. A medium stream with moderate slope is connected to a 

small tributary with shallow slope.  

 Test 4a – Step Inflows 

 Test 4b - Long-Term, Variable Inflows 

Test 4a specifies step changes in upstream and tributary inflows. Results for each flow step 

are compared graphically and to analytical solutions from a spreadsheet. Test 4b uses 

variable upstream and tributary inflows repeating in a 2-year pattern over a long simulation 

period. Results are examined graphically for stationary (repeating) output. 
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7.1.5 Stream Transport Test 5 

This tests the kinematic wave flow routines in WASP using the Heat module with a 

diverging-converging stream system. A small river with steep slope diverges into two 

branches receiving 40% and 60% of the upstream flow.  These branches converge 

downstream. This test uses step changes in the upstream inflow. Results for each flow step 

are compared graphically and to analytical solutions from a spreadsheet. 

  Weir Overflow Verification Tests 

Model verification tests were designed to assure that the equations are implemented 

correctly in the model code.  Results are stored in separate folders at:  

 \WASP7\QA\Stream Transport\4-Ponded Weir Flows\ 

Tests are outlined below. 

7.2.1 Weir Overflow Test 1 – Steady Flow 

This tests the ponded weir overflow routine in WASP using the Mercury module with 

steady inflow and sequentially increasing weir heights. Results are compared with 

analytical calculations. 

7.2.2 Weir Overflow Test 2 – Variable Flow 

This tests the ponded weir overflow routine in WASP using the Mercury module with 

sequentially increasing inflow and sequentially increasing weir heights. Results are 

compared with analytical calculations.  

7.2.3 Weir Overflow Test 3 – Long Term Dynamics 

This tests weir overflow routines in WASP for long-term performance with variable 

inflows repeating in a 2-year pattern. Results are examined for long-term drift in depths, 

volumes, and velocities.  

  Dynamic Flow Verification Tests 

Model verification tests were designed to assure that the equations are implemented 

correctly in the model code.  Results are stored in separate folders at:  

 \WASP7\QA\Stream Transport\4-Dynamic Flows\ 

Tests are outlined below. 

7.3.1 Dynamic Flow Test 1 - Steady Backwater 

This tests the dynamic flow routine in WASP with mild slope, steady inflow, and 

downstream pond with weir. Weir height is set to provide downstream ponded depth equal 

to the kinematic flow depth. Results are compared with output from an equivalent 

kinematic wave simulation. 
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7.3.2 Dynamic Flow Test 2 – Steady Flow, Elevation 

This tests the dynamic flow routine in WASP with mild slope, steady inflow, and constant 

downstream boundary elevation. Results are compared with output from an equivalent 

DYNHYD simulation linked with WASP.  

7.3.3 Dynamic Flow Test 3 – Variable Stream Flow 

This tests the dynamic flow routine in WASP using the Mercury module with sequentially 

increasing flow. Results are compared with output from a DYNHYD simulation linked 

with WASP. 

7.3.4 Dynamic Flow Test 4 – EFDC Stream 

This tests the dynamic flow routine in WASP with mild slope, steady inflow, and constant 

downstream boundary elevation. Results are compared with output from an equivalent 

EFDC simulation linked with WASP.  

7.3.5 Dynamic Flow Test 5 – Tidal Stream 

This tests the dynamic flow routine in WASP with flat slope, no inflow, and sinusoidal 

tidal downstream boundary elevation. Results are compared with output from equivalent 

DYNHYD and EFDC simulations linked with WASP. 

7.3.6 Dynamic Flow Test 6 – 2-D Tidal Stream 

This tests the dynamic flow routine in WASP on a 2-dimensional network with flat slope, 

no inflow, and sinusoidal tidal downstream boundary elevation. Results are compared with 

output from an equivalent EFDC simulation linked with WASP.  

 Appendix 3: Hydrodynamic Linkage File API 

his application program interface function was developed to efficiently allow multi-

dimensional hydrodynamic and sediment transport models to pass simulation information 

to WASP.  The WASP developers believe it is best to separate the hydrodynamic and water 

quality models and facilitate the soft linkage of the algorithms through this hydrodynamic 

linkage file.  This allows hydrodynamic model developers an easy method for linking their 

models with the WASP kinetics.  The linkage allows hydrodynamic models provide 

transport information to all of the WASP modules.  

The purpose of this document is to give an overview of the API and describe the various 

functions that are available.  The details of the format and storage of the hydrodynamic 

linkage file is totally controlled by the API 

 General Concept 

Figure 11 provides a schematic of how a hydrodynamic model would interact with the API 

to create a hydrodynamic linkage file and how WASP interacts with the same API to read 

the information.  There are two methods that could be employed by the hydrodynamic 

model developer: 
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In-Line Code – embed the calls to the API that creates the hydrodynamic model.  This 

allows the model to create the hydrodynamic linkage file as the hydrodynamic model 

simulates through time. 

Post process and output file.  Basically, the hydrodynamic model writes a file using its own 

structure.  Then a utility program like HYDROLINK.EXE that is distributed with WASP 

will read this file and create the hydrodynamic linkage file. 

 
Figure 11 HYDROLINK Overview 

 Application Program Interface (API) Overview 

The API allows other model developers to link their hydrodynamic models with WASP 

without worrying about format or changes made within the WASP framework.  The API 

when implemented correctly will allow the creation of a correctly formatted linkage file 

that WASP can read. 

There are several steps that need to be completed to initialize and ultimately write a correct 

file.  Figure 12 illustrates the various stages in building the file.  The initialization block 

controls the creation of the file, specifying the time range, number of segment, number of 

flow paths, and assorted switches which control the options of the file.  All options will be 

discussed below.  The main portion of the API is the writing of time variable segment 

information (volumes, depths, velocities, salinity, and temperature) from the 

hydrodynamic model for use by WASP.  After segment information is written, flows and 

dispersion are written for each of the flow paths simulated in the hydrodynamic model. 

 

Hydrodynamic 
Model 
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Hydrodynamic  
Linkage File 

WASP 
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Figure 12 API Components 

 Initialization 

This initialization block must be completed prior to saving information in the time loop.  

Many of the initialization calls will control how the information will be stored, in particular 

which language type will be used to create or read the information.  C++ array indices 

range from 0 to number of values, while FORTRAN indices range from 1 to number of 

values, it is critical that these be set correctly because the API uses pointers to save and 

send array data.  It is recommended that you use the order as described below. 

8.3.1 Call Hlopen (Hlfile, Ihl_mode, Ihl_handle,Ierror) 

This routine is used to initialize a hydrodynamic linkage file or open one for reading 

depending on how ihl_mode is set (see option in use).  If this call is successful (Ierror =0), 

the files is either created (open for writing) or open for reading an important variable is set 

that is needed in virtually every other call to the API.  Hlopen will return a file handle 

(Ihl_handle), this integer will be to be stored. 

Where: 

 Hlfile – this is a character string that contains the path and filename of the hydrodynamic 

linkage file.  

 Ihl_mode – is an integer (I4 or Short integer) that specifies writing (create) or reading.  0 

= Read, 1 = write. 

 Ihl_handle – this value is assigned once the call to Hlopen is successful.  This is an integer 

value that is used to reference the file that was open or created in the call to Hl_open.  

Note that you can have more than one file open in the API. 
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 Ierror – virtually all of the calls to the API will return an error code.  If there is no error this 

integer will return a 0, a number greater than 0 means there was an error.  The user can 

get a description of the error by calling Hlgetlasterror (described below). 

8.3.2 Call Hlsetlanguage (Ihl_handle, Ilanguage, Ierror) 

This routine sets the language type that will be writing to the hydrodynamic linkage file.   

Currently the switches are between C and FOTRAN.  For C array indices start at 0 and 

two/three dimensional arrays vary from left to right.  For FORTRAN arrays start at 1, and 

arrays vary right to left.  The default is C. 

 

Where: 

 Ihl_handle – the file handle assigned by Hlopen (integer) 

 Ilanguage – integer value that sets the language of the writing or reading program (0 = 

C++, 1 = FORTRAN) 

 Ierror --   If there is no error this integer will return a 0, a number greater than 0 means 

there was an error.  

8.3.3 Call Hlgetlasterror (ErrorString) 

This method is used to return a string describing the last error encounter by the API.  After 

ever call to an API function the user should check the status of error returned by the calling 

function.  If the error status is greater than 0 there was an error.  To get an error message 

Call Hlgetlasterror. 

   

Where: 

 Errstring – this is a character string that will receive the error message 

8.3.4 call Hladdescription (Ihl_handle, 0 ,Description(I) , Ierror) 

This function allows the user to add descriptions to the hydrodynamic linkage file that can 

be displayed at run time in WASP.  There is no limit to the number of description lines that 

you can add. 

Where: 

 Ihl_handle– the file handle assigned by Hlopen (integer) 

 Iline – this is the indices of the description being saved. 

 Description(I) – description (string) 

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

8.3.5 Call Hlsetcreator (Ihl_handle, Modtype, Ierror) 

This function is used to inform WASP what the of hydrodynamic model was used to create 

the linkage file.  Currently WASP recognizes four linkage types: 1) Environmental Fluids 
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Dynamic Code (EFDC), 2) 1-Dimensional Dynamic Flow Model (DYNHYD), 3) EPD-

RIV1 Model, 4) WASP to WASP linkage 

Where: 

 Ihl_handle -- the file handle assigned by Hlopen (integer 

 Modtype – this is an integer designated for the type of hydrodynamic model that created 

the linkage file. 

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

8.3.6 call hlsetseedmoment(Ihl_handle, istartmonth, istartday, 
istartyear, istarthour, istartminute, istartsecond, ierror) 

This function is used to set the initial time and date for th hydrodynamic information in the linkage 

file.  WASP will automatically set the start and end date of the water quality model simulation.  

The API will increment time from the seed time as information is added to the hydrodynamic 

linkage file. 

 

Where: 

 Ihl_handle -- the file handle assigned by Hlopen (integer 

 istartmonth – this is an integer month designation.  

 Istartday – this is an integer day designation.  

 Istartyear – this is an integer year designation 

 Istarthour – this is an integer hour designation  

 Istartminute – this is an integer minute designation  

 Istartsecond – this is an integer second designation 

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

8.3.7 call hlsetnumlayers(Ihl_handle,num_layer,ierror) 

This function is used to determine the number of layers that will be passed in the hydrodynamic 

linkage file.  If the hydrodynamic model is a sigma stretch grid (constant number of layers), when 

WASP is initially linked to the hydrodynamic file it will automatically determine segment 

orientation for the light path and determine which segments have an air interface.  If the 

hydrodynamic model does not have a constant number of layers an auxiliary file will need to be 

created (SEE SECTION).  

 

Where: 

 Ihl_handle -- the file handle assigned by Hlopen (integer) 

 Num_layer – this is an integer that specifies the number of layers contained in the 

hydrodynamic model. 

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 
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8.3.8 call hlsetnumsegments(Ihl_handle, noseg, ierror) 

This function defines the number of cells/segments that will be transferred from the 

hydrodynamic model.  This number is constant throughout development of the hydrodynamic 

linkage.  This number defines the number of segment that segment constituents will be saved.  

WASP uses this number to set the number of segments when initially linked to the hydrodynamic 

linkage file. 

 

Where: 

 Ihl_handle -- the file handle assigned by Hlopen (integer) 

 Noseg – this is an integer that specifies the number of segments that information will be 

saved. 

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

8.3.9 call hlsetsegname(ihl_handle,i,segname,ierror) 

This function allows a segment name be assigned to each cell.  This segment name will be 

imported into WASP during the initial linkage process.  Typically segment names could be the cell 

designation in the hydrodynamic model, such as I=1, J=1, K=4. 

 

Where: 

 Ihl_handle -- the file handle assigned by Hlopen (integer) 

 Iseg – is the segment number from 1 to noseg that name is being defined. 

 Segname – this is a string no larger than 30 characters that can specify a name associated 

with each cell. 

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

8.3.10 call hlsetnumflowpaths(Ihl_handle, numflow, ierror) 

This function sets the number of flow paths that will be defined in the hydrodynamic linkage file.  

See figure xx for what defines a flow path.  Once the time loop starts, this is the number of flows 

that will need to be written. 

 

Where: 

 Ihl_handle – the file handle assigned by Hlopen (integer) 

 Numflow – the number of flow paths that will be passed to WASP 

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 
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8.3.11 call hlsetnumsegconsts(Ihl_handle, inumsegconsts, 
ierror) 

This function is used to set the number of segment constituents that will be written to the 

hydrodynamic linkage file.  The current version of the HYDROLINK API assumes a particular order.  

To get to a particular constituent you must define the earlier ones.  Segment constituents are: 

volume, depth, velocity, temperature and salinity. 

 

Where: 

 Ihl_handle – the file handle assigned by Hlopen (integer) 

 Inumsegconsts – defines the number of segment constituents that will be written to 

hydrodynamic linkage file (integer) 

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

8.3.12 Hlsetnumfpconsts (Ihl_handle, NumFlowPathConst, 
ierror) 

This function is used to specify the number of flow path constituents.  The number of flow path 

constituents that are passed by the hydrodynamic model is typically a function of the 

dimensionality of the model.  For models like EFDC the number of flow path constituents is three: 

1) Flow 2) Dispersion/residual flow, 3) Direction of Flow.  For simple 1 dimensional models like 

DYNHYD the number of flow path constituents is one, Flow. 

 

Where: 

 Ihandle – the handle assigned by Hlopen (integer) 

 NumFlowPathConst – Number of Flow path constituent  

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

8.3.13 Hlsetfpconsttype (Ihl_handle, IconType, Index, ierror) 

This function is from 1 to the Number of Flow Path Constituents, setting the characteristic of 

individual flow path constituent. 

Where: 

For Index = 1, NumFlowPathConst 

 Ihandle – the handle assigned by Hlopen (integer) 

 IconType – Integer value to define flow constituent 

 1 – Flow 

 2 – dispersion 

 3 – Flow Direction 

 Index – 1 to NumFlowPathConst 

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 
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End Do  

8.3.14 call hlsetvartimestep(Ihl_handle,IdtOpt,ierror) 

This function is used to specify the timestep option.  If the hydrodynamic model has the ability to 

take dynamic timestep, additional information will need to be written to the hydrodynamic 

linkage file so that WASP can take the same timestep.   

 

Where: 

 Ihl_handle – the handle assigned by Hlopen (integer) 

 IdtOpt – sets the timestep option (integer) 

 0 – Constant Timestep, the hydrodynamic model timestep will be constant 

 1 – Time variable timestep, note additional information needs to be written to the 

hydrodynamic linkage 

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

8.3.15 call hlsettimestep(Ihl_handle,hdt,ierror) 

This function is used to set the timestep that WASP will use.  This value is typically set to the 

timestep that is used by the hydrodynamic model.  If the time variable timestep option is not 

used, this value only has to be specified once.  If the time variable timestep is selected, it needs 

to be specified each time a data frame of data is written. 

 

Where: 

 Ihl_handle  -- the handle assigned by Hlopen (integer) 

 Hdt --- timestep to set in seconds (integer) 

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

8.3.16  call hlsethydtimestep(Ihl_handle,hdt,ierror) 

This function specifies the timestep that is used for the hydrodynamic model simulation.  This 

value only needs to be set once. 

 

Where: 

 Ihl_handle  -- the handle assigned by Hlopen (integer) 

 Hdt --- timestep to set in seconds (integer) 

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 
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8.3.17 call hlsetupdateint(Ihl_handle,rinterval,ierror) 

This function specifies the time interval in which data is written to the hydrodynamic linkage file.  

WASP does not require information at every hydrodynamic model timestep.   The time interval in 

which information is written is: 

timestep * numdht 

It is t this interval that WASP will read a new set of data from the hydrodynamic linkage file. 

 

Where: 

 Ihl_handle  -- the handle assigned by Hlopen (integer) 

 rinterval—this specifies the time interval between reading new information from the 

hydrodynamic linkage file in seconds (integer) 

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

8.3.18 call hlsethydtowaspratio(Ihl_handle,numdht,ierror) 

This function specifies the number of hydrodynamic model timesteps that will be taken before 

information is saved to the hydrodynamic linkage file.  This value is used to calculate the 

simulation time interval between writes/reads to/from of the hydrodynamic linkage file. 

 

Where: 

 Ihl_handle  -- the handle assigned by Hlopen (integer) 

 numdht --- specifies the number of timesteps the hydrodynamic model takes between 

writing information to the hydrodynamic linkage file (integer) 

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

8.3.19 call hlsetflowpath(Ihl_handle,k,jq(k),iq(k),iflowdir(k),ierror) 

This function sets the physical flow paths so that information can be mapped into WASP.  This is 

a critical step in setting up a linkage file for WASP.  The order of the flow path information that is 

entered here dictates the order that the actual flow information has to written later. 

Where: 

DO K=1, NumFlow 

 Ihl_handle – is the handle thst is assigned by Hlopen (integer) 

 K – is the index number of the flow path being defined (integer) 

 JQ – is the upstream cell (has to be a number 1 to number os segments) 

 IQ – is thedownstream cell (has to be a number 1 to number of segments) 

 Iflowdir(k) –is the direction of the flow path 

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

End DO 
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 Segment Information 
Segment information is sent to the API for 3 segment components that are needed by WASP.  All 

of the data that will be sent to WASP must be loaded in the array prior to the API call. The same 

call is used for all segment information.  The variable ISegInfo determines which data is currently 

being sent. 

8.4.1 call hlsetseginfo(Ihl_handle,IsegInfo,SegVolume,ierror) 

 

where: 

 Ihl_handle – is the handle that is assigned by Hlopen (integer) 

 ISegInfo = 1 Segment Volume (m3 ) 

 ISegInfo = 2 Segment Depth (m) 

 IsegInfo = 3 Segment Velocity (m/sec) 

 SegVolume = is a real array dimension 1 to number of segments, containing the 

corresponding volume. 

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

 Flow Information 
The user has the ability to send two types of flows to the API that could be used by WASP.  The 

first type is advective flow and dispersive flow.  All of the data that will be sent to WASP must be 

loaded in the array prior to the API call. The same call is used for all flow information.  The second 

variable in the call controls whether it is advective flow (1) or dispersive flow (2). 

8.5.1 call hlsetflowinfo(Ihl_handle,1,Flow,ierror) 

8.5.2 call hlsetflowinfo(Ihl_handle,2,brintt,ierror) 

 

Where: 

 Ihl_handle – is the handle that is assigned by Hlopen (integer) 

 1 or 2 – designates advective or dispersive flow 

 Flow/Brintt = is a real array dimensioned 1 to number of flows, corresponding to flow 

paths defined above. 

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

 End Moment 

Once a complete data frame (segment and flow information) has been saved for the current 

timestep, the API needs to be informed to advance to the next data frame.  The call below gives 

this instruction.  When called the data frame is flushed out of memory and compressed in the 

hydrodynamic linkage file. 
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call hlmomentcomplete(Ihl_Handle,ierror) 

 

Where: 

 Ihl_handle – is the handle that is assigned by Hlopen (integer) 

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

 Close File 

Before exiting the program that is using this API, an instruction has to be given for the API to close 

the file.  Failing to make this call will make the hydrodynamic linkage file unusable. 

call hlclose(Ihl_handle,ierror) 

 

Where: 

 Ihl_handle – is the handle that is assigned by Hlopen (integer) 

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means 

there was an error. 

 Compilation Guidance 

When compile code to link with the HYDROLINK API the user will have to be aware that you are 

linking to external functions.  Depending upon the compiler/linker you may be required to take 

additional steps.  The HYDROLINK API has been successfully called from the following 

development environments: 

 Absoft Fortran 

 Intel Fortran * 

 GNU Fortran 

 Microsoft Visual C++ 

 Microsoft Visual Basic 

The Intel compiler as others may require interface files for functions contained in the API. 

Interface Files 

 Interface Files 

If your compiler requires interface files for the external calls, they are listed below. 

      interface 

         subroutine hlsetdebug(hl_debug) 

            !ms$attributes c,dllimport,alias:'__hlsetdebug'::hlsetdebug 

            Integer hl_debug 

            !ms$attributes reference :: hl_debug 

         end subroutine 

      end interface 



 

 
46 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlgetlasterror(message) 

            !ms$attributes c,dllimport,alias:'__hlgetlasterror'::hlgetlasterror 

            character*(*) message 

            !ms$attributes reference :: message 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlopen(FName, hl_mode, hl_handle, ierror) 

            !ms$attributes c,dllimport,alias:'__hlopen'::hlopen 

            character*(*) Fname 

            Integer hl_mode, hl_handle, ierror 

            !ms$attributes reference :: FName, hl_mode, hl_handle, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetlanguage(hl_handle, hl_language, ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetlanguage'::hlsetlanguage 

            Integer hl_handle, hl_language, ierror 

            !ms$attributes reference :: hl_handle, hl_language, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetcreator(hl_handle, hl_creator, ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetcreator'::hlsetcreator 

            Integer hl_handle, hl_creator, ierror 

            !ms$attributes reference :: hl_handle, hl_creator, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hladddescription(hl_handle, id, string, ierror) 

            !ms$attributes c,dllimport,alias:'__hladddescription'::hladddescription 
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            Integer hl_handle, id, ierror 

            character *(*) string 

            !ms$attributes reference :: hl_handle, id, string, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetseedmoment(hl_handle, month, day, year, hour, minute,second,ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetseedmoment'::hlsetseedmoment 

            Integer hl_handle, month, day, year, hour, minute,second,ierror 

            !ms$attributes reference :: hl_handle, month, day, year, hour 

            !ms$attributes reference :: minute,second,ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetnumsegments(hl_handle, numsegs, ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetnumsegments'::hlsetnumsegments 

            Integer hl_handle, numsegs, ierror 

            !ms$attributes reference :: hl_handle, numsegs,ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetsegname(hl_handle,index, segname, ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetsegname'::hlsetsegname 

            Integer hl_handle, index, ierror 

            Character *(*) segname 

            !ms$attributes reference :: hl_handle, index, segname,ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetnumflowpaths(hl_handle,numfp, ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetnumflowpaths'::hlsetnumflowpaths 

            Integer hl_handle, numfp, ierror 

            !ms$attributes reference :: hl_handle, numfp, ierror 

         end subroutine 
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      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetnumsegconsts(hl_handle,numsc, ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetnumsegconsts'::hlsetnumsegconsts 

            Integer hl_handle, numsc, ierror 

            !ms$attributes reference :: hl_handle, numsc, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetnumfpconsts(hl_handle,numfpc, ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetnumfpconsts'::hlsetnumfpconsts 

            Integer hl_handle, numfpc, ierror 

            !ms$attributes reference :: hl_handle, numfpc, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetsegconsttype(hl_handle,sc_index, sc_type,ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetsegconsttype'::hlsetsegconsttype 

            Integer hl_handle, sc_index, sc_type, ierror 

            !ms$attributes reference :: hl_handle, sc_index, sc_type, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetfpconsttype(hl_handle,fp_index, fp_type,ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetfpconsttype'::hlsetfpconsttype 

            Integer hl_handle, fp_index, fp_type, ierror 

            !ms$attributes reference :: hl_handle, fp_index, fp_type, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetvartimestep(hl_handle,vardt,ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetvartimestep'::hlsetvartimestep 
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            Integer hl_handle, vardt, ierror 

            !ms$attributes reference :: hl_handle,vardt, ierror 

         end subroutine 

     end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsethydtimestep(hl_handle,timestep,ierror) 

            !ms$attributes c,dllimport,alias:'__hlsethydtimestep'::hlsethydtimestep 

            Integer hl_handle, ierror 

            Real timestep 

           !ms$attributes reference :: hl_handle,timestep, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetupdateint(hl_handle,updateinterval,ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetupdateint'::hlsetupdateint 

            Integer hl_handle, ierror 

            Real updateinterval 

           !ms$attributes reference :: hl_handle,updateinterval, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsethydtowaspratio(hl_handle,iratio,ierror) 

            !ms$attributes c,dllimport,alias:'__hlsethydtowaspratio'::hlsethydtowaspratio 

            Integer hl_handle, iratio, ierror 

           !ms$attributes reference :: hl_handle,iratio, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetnumlayers(hl_handle,numlayers,ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetnumlayers'::hlsetnumlayers 

            Integer hl_handle, numlayers, ierror 

            !ms$attributes reference :: hl_handle,numlayers, ierror 

         end subroutine 

      end interface 
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!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetflowpath(hl_handle,flow_index,from_seg, to_seg, direction, ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetflowpath'::hlsetflowpath 

            Integer hl_handle, flow_index,from_seg, to_seg,direction,ierror 

            !ms$attributes reference :: hl_handle,flow_index,from_seg 

            !ms$attributes reference :: to_seg,direction,ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetflowinfo(hl_handle,index,value,ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetflowinfo'::hlsetflowinfo 

            Integer hl_handle, index, ierror 

            Real value 

            !ms$attributes reference :: hl_handle,index, value, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsetseginfo(hl_handle,index,value,ierror) 

            !ms$attributes c,dllimport,alias:'__hlsetseginfo'::hlsetseginfo 

            Integer hl_handle, index, ierror 

            Real value 

           !ms$attributes reference :: hl_handle,index, value, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlsettimestep(hl_handle,value,ierror) 

            !ms$attributes c,dllimport,alias:'__hlsettimestep'::hlsettimestep 

            Integer hl_handle, ierror 

            Real value 

            !ms$attributes reference :: hl_handle,value, ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 
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      interface 

         subroutine hlmomentcomplete(hl_handle,ierror) 

            !ms$attributes c,dllimport,alias:'__hlmomentcomplete'::hlmomentcomplete 

            Integer hl_handle, ierror 

            !ms$attributes reference :: hl_handle,ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      interface 

         subroutine hlclose(hl_handle,ierror) 

            !ms$attributes c,dllimport,alias:'__hlclose'::hlclose 

            Integer hl_handle, ierror 

            Real value 

            !ms$attributes reference :: hl_handle,ierror 

         end subroutine 

      end interface 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

 

 Example Program 

The following is source code to a utility program that is distributed with WASP.  It converts 

ASCII and binary outputs from several hydrodynamic models into the format required by 

WASP.  This would be a good starting point for your development. 

 

       Program HydroLink 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      Integer, Allocatable, Dimension (:):: IQ, JQ, IFLOWDIR 

      Real, Allocatable, Dimension (:):: SegVolume, SegDepth, SegVel, Flow, crnu, brintt 

      integer*4 Ihl_handle 

      character*1 ANS 

      character*30 segname 

      character*256 HLFILE,INFILE,segfile 

      character*256 DESCRIPTION(10) 

      character*256 MODELERNAME 

      character*256 errstring 

      logical binary, ConfigFile,EFDC,DYNHYD, EPDRIV1, HECRAS 
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!-------------------------------------------------------------------------------------------------------------------------------

---- 

!      Opening Message 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!      write(6,6120) 

!6120  format(3(/),62('-'),/, 

!     'The purpose of this program is to convert a previously created',/ & 

!     'hydrodynamic linkage file from EFDC, DYNHYD, EPDRIV1 to the   ',/ & 

!     'new HYDROLINK method.  This is required for the latest version',/ & 

!     'of WASP.  The user must specify the path and filename of all  ',/ & 

!     'files to be created, must specify the file type and from which',/ & 

!     'hydrodynamic model created the old file.  The user must also  ',/ & 

!     'specify the start time (Gregorian Format) of the hydrodynamic ',/ & 

!     'linkage file.                                                 ',/ & 

!      62('-'),2(/)) 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!      hlopen parameters 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      Ihl_language    = 1 

      Ihl_creator     = 1 

      Ihl_handle      = 0 

      Ihl_debug       = 1 

      Ihl_mode        = 1 

      inumsegconsts   = 3 

      inumfpconsts    = 3 

      binary          = .true. 

      ConfigFile      = .false. 

      EFDC            = .false. 

      DYNHYD          = .false. 

      EPDRIV1         = .false. 

      HECRAS          = .false. 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!    Open the Control File 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      open (unit=10,file='hydrolink.ctl',status='old',iostat=istat) 

      if (istat .eq. 0) then 

         write(6,*)'Previous Control File Found' 
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         write(6,*)'Do you want to read from File (Y=Yes, N=No)' 

         read(5,*)ANS 

         If(ANS .eq. 'Y' .or. ANS .eq. 'y')ConfigFile=.true. 

         If(ANS .eq. 'A' .or. ANS .eq. 'a')ConfigFile=.false. 

         if (ConfigFile) then 

            write(6,*)'Reading Information from HYDROLINK.CTL' 

         else 

            close(unit=10) 

         endif 

      endif 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      if (ConfigFile)then 

         read(10,*)ANS 

         If(ANS .eq. 'A' .or. ANS .eq. 'a')binary=.false. 

         If(ANS .eq. 'B' .or. ANS .eq. 'b')binary=.true. 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

         read(10,*)ANS 

         If(ANS .eq. 'E' .or. ANS .eq. 'e')EFDC=.true. 

         If(ANS .eq. 'D' .or. ANS .eq. 'd')DYNHYD=.true. 

         If(ANS .eq. 'R' .or. ANS .eq. 'r')EPDRIV1=.true. 

         If(ANS .eq. 'H' .or. ANS .eq. 'h')HECRAS=.true. 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

         read(10,1000)INFILE 

         if (binary) then 

            open(unit=1,file=INFILE,form='unformatted',status='old',  & 

        iostat=istat) 

            if (istat .gt. 0) then 

               write(6,*)'HYD File not Found: ' 

               stop 

            endif 

         else 

            open(unit=1,file=INFILE,status='old',iostat=istat) 

            if (istat .gt. 0) then 

               write(6,*)'HYD File not Found: ' 

               stop 

            endif 

         endif 

!-------------------------------------------------------------------------------------------------------------------------------

---- 
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         read(10,1000)HLFILE 

         HLFILE=trim((HLFILE)//CHAR(0)) 

         read(10,*)istartmonth 

         read(10,*)istartday 

         read(10,*)istartyear 

         read(10,*)istarthour 

         read(10,*)istartminute 

         read(10,*)istartsecond 

         read(10,1000)segfile 

         READ(10,*)NUM_DESCRIPTIONS 

         do i=1,NUM_DESCRIPTIONS 

            READ(10,1111)DESCRIPTION(I) 

1111        format(A256) 

         end do 

1000     format(A64) 

      else 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

         open (unit=10,file='hydrolink.ctl',status='unknown') 

         write(6,*)'Is Old HYD ASCII or Binary (A=ASCII, B=Binary)' 

         read(5,*)ANS 

         write(10,1060)ANS 

1060     format(A1) 

         If(ANS .eq. 'A' .or. ANS .eq. 'a')binary=.false. 

         If(ANS .eq. 'B' .or. ANS .eq. 'b')binary=.true. 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

         write(6,*)'Enter File Type (E=EFDC, D=DYNHYD, R=EPDRIV1, H=HECRAS)' 

         read(5,*)ANS 

         write(10,1060)ANS 

         If(ANS .eq. 'E' .or. ANS .eq. 'e')EFDC=.true. 

         If(ANS .eq. 'D' .or. ANS .eq. 'd')DYNHYD=.true. 

         If(ANS .eq. 'R' .or. ANS .eq. 'r')EPDRIV1=.true. 

         If(ANS .eq. 'H' .or. ANS .eq. 'h')HECRAS=.true. 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

         write(6,*)'Enter Name of Previous Version HYD File to Convert' 

         read(5,*)INFILE 

         write(10,1000)INFILE 

         if (binary) then 

            open(unit=1,file=INFILE,form='unformatted',status='old', iostat=istat) 

            if (istat .gt. 0) then 
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               write(6,*)'HYD File not Found: ' 

               stop 

            endif 

         else 

            open(unit=1,file=INFILE,status='old',iostat=istat) 

            if (istat .gt. 0) then 

               write(6,*)'HYD File not Found: ' 

               stop 

            endif 

         endif 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

         write(6,*)'Enter Name of HYDROLINK HYD File to Create' 

         read(5,*)HLFILE 

         write(10,1000)HLFILE 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

         Write(6,6600) 

6600     format('Seed Time Information Needed for the Start of  ',/'  Hydrodynamic Linkage File 

mm/dd/yyyy hh:mm:ss') 

         write(6,*)'Enter Start Month (mm)' 

         read(5,*)istartmonth 

         write(6,*)'Enter Start Day (dd)' 

         read(5,*)istartday 

         write(6,*)'Enter Start Year (yyyy)' 

         read(5,*)istartyear 

         write(6,*)'Enter Start Hour (hh)' 

         read(5,*)istarthour 

         write(6,*)'Enter Start Minute (mm)' 

         read(5,*)istartminute 

         write(6,*)'Enter Start Second (ss)' 

         read(5,*)istartsecond 

         write(10,*)istartmonth 

         write(10,*)istartday 

         write(10,*)istartyear 

         write(10,*)istarthour 

         write(10,*)istartminute 

         write(10,*)istartsecond 

         write(6,*)'Enter Name of Segment Name File (Type NONE)' 

         read(5,1000)segfile 

         write(10,1000)segfile 

         write(6,6610) 
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6610     format('How Many Description Lines would you like to add to the file (0=None)') 

         read(5,*)NUM_DESCRIPTIONS 

         write(10,*) NUM_DESCRIPTIONS 

         do i=1, NUM_Descriptions 

            write(6,*)'Enter Description:',I 

            read(5,1111)description(i) 

            write(10,1111)description(i) 

         end do 

         close(unit=10) 

      End If 

      if(EFDC)MODTYPE    =1 

      if(DYNHYD)MODTYPE  =2 

      if(EPDRIV1)MODTYPE =3 

      if(HECRAS)MODTYPE  =2 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      HLFILE=(TRIM(HLFILE)//CHAR(0)) 

      write(6,*)'About to Create Hydrolink File' 

      call hlopen(HLFILE, Ihl_mode, Ihl_handle, ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

      write(6,*)'Hydrolink File Created' 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!     Set the language to FORTRAN 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      call hlsetlanguage(Ihl_handle, 1, ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!     Store a description string 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      write(6,*)'Storing Descriptions' 
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      do i =1,NUM_DESCRIPTIONS 

         call hladddescription(Ihl_handle,0,DESCRIPTION(I),ierror) 

         if(ierror .gt. 0)then 

            call hlgetlasterror(errstring) 

            write(6,6000) ierror, errstring 

            stop 

         end if 

      end do 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!     Store the modeler name 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!      call hladddescription(Ihl_handle,1,MODELERNAME,ierror) 

!      if(ierror .gt. 0)then 

!          call hlgetlasterror(errstring) 

!          write(6,6000) ierror, errstring 

!          stop 

!      end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!     Set the creator 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      write(6,*)'Setting Creator' 

      call hlsetcreator(Ihl_handle, MODTYPE, ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!     Set the seed moment 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      write(6,*)'Setting Seed Moment' 

      IF (.not. HECRAS) THEN 

      call hlsetseedmoment(Ihl_handle, istartmonth, istartday,istartyear, istarthour, istartminute, 

istartsecond, ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 
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          write(6,6000) ierror, errstring 

          stop 

      end if 

      ENDIF 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

! Read the Header from Hydrodynamic Linkage File 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      write(6,*)'Starting to Process Hydrodynamic File' 

      IF(BINARY)THEN 

         IF (EFDC)READ(1)NOSEG,NUMFLOW, NUMDHT,HDT, START,END,NUM_LAYER 

         IF (DYNHYD)READ(1)NOSEG,NUMFLOW, HDT, START,END,NUM_LAYER 

      ELSE 

         IF(EFDC)READ(1,*)NOSEG,NUMFLOW, NUMDHT, HDT, START,END, NUM_LAYER 

         IF(DYNHYD)READ(1,*)NOSEG,NUMFLOW, HDT, START,END,NUM_LAYER 

         IF(HECRAS)Then 

            READ(1,*)NOSEG,NUMFLOW, HDT, IMON, IDAY, IYEAR, IHour, Imin,NUM_LAYER 

            call hlsetseedmoment(Ihl_handle, IMON, IDAY, IYEAR, IHour,Imin, 0, ierror) 

            NUMDHT = 1 

      Endif 

      END IF 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      Allocate (IQ(NUMFLOW)) 

      Allocate (JQ(NUMFLOW)) 

      Allocate (IFLOWDIR(NUMFLOW)) 

      Allocate (SEGVOLUME(NOSEG)) 

      Allocate (SEGDEPTH(NOSEG)) 

      Allocate (SEGVEL(NOSEG)) 

      Allocate (Flow(NUMFLOW)) 

      Allocate (CRNU(NUMFLOW)) 

      Allocate (BRINTT(NUMFLOW)) 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      if (num_layer .lt. 1) then 

         num_layer=1 

         numdht=1 

      endif 

      if (numdht .lt. 1)numdht=1 

!-------------------------------------------------------------------------------------------------------------------------------

---- 
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      call hlsetnumlayers(Ihl_handle,num_layer,ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!     Set the number of segments 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      call hlsetnumsegments(Ihl_handle, noseg, ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!               Get Segment Name Map File if exists 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      open(unit=15,file=segfile,status='old', iostat=istat) 

      write(6,*)'Opening  segment map file; iostat = ',istat            !3/11/08,rba                           ! 

      if (istat.eq.0) then 

         write(6,*)'Segment Map Text file is: ',segfile                 ! 

         do i=1, NOSEG 

            read(15,4000)SEGNAME 

            SEGNAME =(TRIM(SEGNAME)//CHAR(0))                           ! 

            call hlsetsegname(ihl_handle,i,segname,ierror) 

            write(6,*)'Segment ',i,' name: ',segname,' err code ',ierror                  ! 

4000        format(A30) 

         end do 

      Else 

         do i=1, NOSEG 

            call hlsetsegname(ihl_handle,i,'WASP-Seg',ierror) 

         end do 

 

      endif 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!     Set the number of flow paths 
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!-------------------------------------------------------------------------------------------------------------------------------

---- 

      call hlsetnumflowpaths(Ihl_handle, numflow, ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!     Set the number of segment constituents 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      call hlsetnumsegconsts(Ihl_handle, inumsegconsts, ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!     Set the number of flow path constituents 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      if(EFDC)call hlsetnumfpconsts (Ihl_handle, 3, ierror) 

!      if(DYNHYD)call hlsetnumfpconsts (Ihl_handle, 1, ierror) 

      if(DYNHYD)call hlsetnumfpconsts (Ihl_handle, 2, ierror)           !6/10/08,rba 

      if(HECRAS)call hlsetnumfpconsts (Ihl_handle, 2, ierror)           !6/10/08,rba 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

!     Now we will set all the constitituent types 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      call hlsetsegconsttype(Ihl_handle, 1, 0, ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 
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          stop 

      end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      if(EFDC)then 

         call hlsetsegconsttype(Ihl_handle, 2, 1, ierror) 

         if(ierror .gt. 0)then 

            call hlgetlasterror(errstring) 

            write(6,6000) ierror, errstring 

            stop 

         end if 

         call hlsetsegconsttype(Ihl_handle, 3, 2, ierror) 

         if(ierror .gt. 0)then 

           call hlgetlasterror(errstring) 

           write(6,6000) ierror, errstring 

           stop 

         end if 

      endif 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      call hlsetfpconsttype(Ihl_handle, 1, 0, ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

      if (DYNHYD)then                                                   !6/10/08,rba 

         call hlsetfpconsttype(Ihl_handle, 2, 0, ierror)                ! 

         if(ierror .gt. 0)then 

            call hlgetlasterror(errstring) 

            write(6,6000) ierror, errstring 

            stop 

         endif 

      end if 

      if (HECRAS)then                                                   !6/10/08,rba 

         call hlsetfpconsttype(Ihl_handle, 1, 0, ierror)                ! 

         if(ierror .gt. 0)then 

            call hlgetlasterror(errstring) 

            write(6,6000) ierror, errstring 

            stop 

         endif 

      end if 
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      if (EFDC)then 

         call hlsetfpconsttype(Ihl_handle, 1, 1, ierror)                !shouldn't this be 2,1 

         if(ierror .gt. 0)then 

            call hlgetlasterror(errstring) 

            write(6,6000) ierror, errstring 

            stop 

         endif 

         call hlsetfpconsttype(Ihl_handle, 1, 2, ierror)                !shouldn't this be 3,1 

         if(ierror .gt. 0)then 

            call hlgetlasterror(errstring) 

            write(6,6000) ierror, errstring 

            stop 

         end if 

      end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      call hlsetvartimestep(Ihl_handle,0,ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

      timestep=(hdt/86400.) 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      IF (HECRAS)then 

          call hlsettimestep(Ihl_handle,timestep,ierror) 

      Else If (DYNHYD) then 

          call hlsettimestep(Ihl_handle,timestep,ierror) 

      Else 

          call hlsettimestep(Ihl_handle,hdt,ierror) 

      End If 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      call hlsethydtimestep(Ihl_handle,hdt,ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

      rinterval=(hdt*numdht)/86400. 

      IF (DYNHYD) THEN 
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         rinterval=(hdt*numdht) 

      ENDIF 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      call hlsetupdateint(Ihl_handle,rinterval,ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      call hlsethydtowaspratio(Ihl_handle,numdht,ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

      idt=1 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      do i=1,numflow 

         if (binary) then 

            read(1)JQ(I), IQ(I) 

         else 

            IF(EFDC)read(1,1001)JQ(I), IQ(I) 

            IF(DYNHYD)read(1,1001)JQ(I), IQ(I) 

            IF(HECRAS)read(1,*)JQ(I), IQ(I) 

1001        format(2(I5)) 

         endif 

      end do 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

      NOCYCLES= END-START 

      NOCYCLES=NOCYCLES/(HDT*numdht) 

      IF(HECRAS)nocycles=1000000 

      Do itime=1,nocycles 

         do k=1,Noseg 

            if (itime .eq. 1) then 

               if (binary) then 

                  if(EFDC)Read(1,end=999)SegVolume(k),SegDepth(k), SegVel(k) 

                  if(DYNHYD)read(1,end=999)SegVolume(k),rjunk, SegDepth(k),SegVel(k) 



 

 
64 

               else 

                  if(EFDC)read(1,*,end=999)SegVolume(k),SegDepth(k),SegVel(k) 

                  if(DYNHYD)read(1,*,end=999)SegVolume(k),rjunk, SegDepth(k),SegVel(k) 

                  if(HECRAS)read(1,*,end=999)SegVolume(k),SegDepth(k), SegVel(k) 

               endif 

1020           Format(5x,F15.0,5x,F15.0,5x,F15.0) 

            else 

               if (binary) then 

                  if(EFDC)Read(1,end=999)SegVolume(k),SegDepth(k), SegVel(k) 

                  if(DYNHYD)read(1,end=999)SegVolume(k),rjunk,SegDepth(k),SegVel(k) 

               else 

                  if(EFDC)read(1,*,end=999)SegVolume(k),SegDepth(k), SegVel(k) 

                  if(DYNHYD)read(1,*,end=999)SegVolume(k),rjunk, SegDepth(k),SegVel(k) 

                  if(HECRAS)read(1,*,end=999)SegVolume(k),SegDepth(k),SegVel(k) 

                  Write(6,*)'Segment = ',k 

               endif 

1011           format(4(F17.0)) 

            endif 

         end do 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

         do k=1,numflow 

            if (binary) then 

               if(EFDC)read(1)Flow(k),crnu(k),iflowdir(k) 

               IF(DYNHYD)READ(1)Flow(k),brintt(k)                       !6/10/08,rba 

            else 

               if (EFDC)read(1,*)Flow(k),crnu(k),brintt(k),iflowdir(k) 

               IF (DYNHYD)read(1,1012)Flow(k),brintt(k)                 !6/10/08,rba 

               IF (HECRAS)read(1,*)Flow(k) 

            endif 

1012        format(2F20.0)                                              !6/10/08,rba 

1010        format(3(F17.0),I5) 

         end do 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

         if(itime .eq. 1)then 

            do k=1,numflow 

               if(EFDC)call hlsetflowpath(Ihl_handle,k,jq(k),iq(k),iflowdir(k),ierror) 

               if(DYNHYD)call hlsetflowpath(Ihl_handle,k,jq(k),iq(k),1,ierror) 

               if(HECRAS)call hlsetflowpath(Ihl_handle,k,jq(k),iq(k),1,ierror) 

               if(ierror .gt. 0)then 

                  call hlgetlasterror(errstring) 
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                  write(6,6000) ierror, errstring 

                  stop 

               end if 

            end do 

         end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

         call hlsetseginfo(Ihl_handle,1,SegVolume,ierror) 

         if(ierror .gt. 0)then 

            call hlgetlasterror(errstring) 

            write(6,6000) ierror, errstring 

            stop 

         end if 

         call hlsetseginfo(Ihl_handle,2,SegDepth,ierror) 

         if(ierror .gt. 0)then 

            call hlgetlasterror(errstring) 

            write(6,6000) ierror, errstring 

            stop 

         end if 

         call hlsetseginfo(Ihl_handle,3,SegVel,ierror) 

         if(ierror .gt. 0)then 

            call hlgetlasterror(errstring) 

            write(6,6000) ierror, errstring 

            stop 

         end if 

!-------------------------------------------------------------------------------------------------------------------------------

---- 

         call hlsetflowinfo(Ihl_handle,1,Flow,ierror) 

         if(ierror .gt. 0)then 

            call hlgetlasterror(errstring) 

            write(6,6000) ierror, errstring 

            stop 

         end if 

         if(DYNHYD)Then                                                 !6/10/08,rba 

            call hlsetflowinfo(Ihl_handle,2,brintt,ierror) 

            if(ierror .gt. 0)then 

               call hlgetlasterror(errstring) 

               write(6,6000) ierror, errstring 

               stop 

            end if 

         end if 

         if(HECRAS)Then 
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            DO Itemp=1,numflow 

              brintt(Itemp)=0.00 

            End Do                                                   !6/10/08,rba 

            call hlsetflowinfo(Ihl_handle,2,brintt,ierror) 

            if(ierror .gt. 0)then 

               call hlgetlasterror(errstring) 

               write(6,6000) ierror, errstring 

               stop 

            end if 

         end if 

         if(EFDC)Then 

            call hlsetflowinfo(Ihl_handle,2,crnu,ierror) 

            if(ierror .gt. 0)then 

               call hlgetlasterror(errstring) 

               write(6,6000) ierror, errstring 

               stop 

            end if 

            call hlsetflowinfo(Ihl_handle,3,brintt,ierror) 

            if(ierror .gt. 0)then 

               call hlgetlasterror(errstring) 

               write(6,6000) ierror, errstring 

               stop 

            end if 

         end if 

         time=RINTERVAL*itime 

         write(6,*)'Time is: ',itime,time 

         if(ierror .gt. 0)then 

            call hlgetlasterror(errstring) 

            write(6,6000) ierror, errstring 

            stop 

         end if 

         call hlmomentcomplete(Ihl_Handle,ierror) 

         if(ierror .gt. 0)then 

            call hlgetlasterror(errstring) 

            write(6,6000) ierror, errstring 

            stop 

         end if 

      end do 

999   continue 

6000  format('Error ',I10, ' : ', A) 

      call hlgetcompfact(Ihl_handle,compact,ierror) 

      if(ierror .gt. 0)then 
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          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

      compact=compact*100 

      write(6,6040)compact 

6040  format('Compaction Ratio is: ',F8.4) 

      call hlclose(Ihl_handle,ierror) 

      if(ierror .gt. 0)then 

          call hlgetlasterror(errstring) 

          write(6,6000) ierror, errstring 

          stop 

      end if 

      stop 

      end 
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