

June 8, 2017

WASP8 Stream Transport -

Model Theory and User's

Guide

Supplement to Water Quality Analysis

Simulation Program (WASP) User

Documentation

Robert B. Ambrose, Jr., P.E.

U.S. EPA, Office of Research and Development

National Exposure Research Laboratory

Ecosystems Research Division

Athens, Georgia

Tim A. Wool

U.S. EPA, Region 4

Water Management Division

Atlanta, Georgia

WASP8 Stream Transport -

Model Theory and User's Guide

i

U.S. Environmental Protection Agency

Office of Research and Development

Washington, DC 20460

WASP8 Stream Transport -

Model Theory and User's Guide

ii

NOTICE

The U.S. Environmental Protection Agency (EPA) through its Office of Research and

Development (ORD) funded and managed the research described herein. It has been

subjected to the Agency’s peer and administrative review and has been approved for

publication as an EPA document. Mention of trade names or commercial products does

not constitute endorsement or recommendation for use.

WASP8 Stream Transport -

Model Theory and User's Guide

iii

Abstract

The standard WASP8 stream transport model calculates water flow through a branching

stream network that may include both free-flowing and ponded segments. This

supplemental user manual documents the hydraulic algorithms, including the transport and

hydrogeometry equations, the model input and output, and a series of model verification

tests.

For one-dimensional, branching streams or rivers, flow routing can be calculated for free-

flowing stream reaches, for ponded reaches, and for backwater or tidally-influenced

reaches. Kinematic wave flow routing is a simple but realistic option to drive advective

transport through free-flowing segments. The kinematic wave equation calculates flow

wave propagation and resulting variations in flows, volumes, depths, and velocities

resulting from variable upstream inflow. This well-known equation is a solution of the

one-dimensional continuity equation and a simplified form of the momentum equation that

considers the effects of gravity and friction. Advective transport through ponded segments

is controlled by a sharp-crested weir equation. This equation calculates outflow based on

water elevation above the weir. Ponded reaches can include a flowing surface water

segment (epilimnion) as well as stagnant underlying segments (hypolimnion).

For dynamic flow through backwater segments, the momentum equations from DYNHYD

provide a simple solution for calculating outflows and resultant changes in velocity, surface

elevation, depth and volume. Driven by variable upstream flows and downstream heads,

the dynamic flow routine solves one-dimensional equations describing the propagation of

a long wave through a shallow water system while conserving both momentum and

volume. This approach considers the effects of gravity, friction, and convective inertia,

assuming that flow is predominantly one-dimensional, that accelerations normal to the

direction of flow are negligible, that channels can be adequately represented by a constant

top width with a variable hydraulic depth (i.e., "rectangular"), and that bottom slopes are

moderate. This option can be used to represent simple two-dimensional (x-y) water bodies

with a branching link-node network.

To run the WASP8 stream transport module, the user must supply segment information

and flow information. Required segment information includes lengths, widths, and depths

for average flow conditions, as well as bottom slopes and Manning friction coefficients.

The hydrogeometric depth exponents may also be specified to control the channel shape.

Minimum channel depths for zero-flow conditions may be specified, with a default value

of 0.001 m. Bottom slopes less than 10-6 signify ponded or backwater segments. For

ponded segments, the minimum channel depth is interpreted as the outlet weir height.

Required flow information includes the flow pathways for the main channel and each of

the tributaries, as well as the inflow time functions for the simulation period.

Transport variables are provided as output for each of the WASP8 kinetic modules.

Standard output includes segment outflows, depths, velocities, and widths.

WASP8 Stream Transport -

Model Theory and User's Guide

iv

Table of Contents

- Introduction ... 1

- Background .. 1

 WASP Transport Fields .. 1

 WASP Surface Water Flow .. 2

2.2.1 WASP Surface Water Descriptive Flow Options ... 2

2.2.2 WASP Kinematic Wave Stream Flow Option .. 3

- Development of Equations .. 3

 Hydrogeometry ... 3

 Governing Flow Equations ... 6

3.2.1 Kinematic Wave Flow .. 7

3.2.2 Ponded Weir Flow .. 8

3.2.3 Dynamic Flow ... 9

 Implementation of Equations .. 10

3.3.1 Kinematic Wave Flow .. 10

3.3.2 Ponded Weir Flow .. 12

3.3.3 Dynamic Flow ... 13

- Stream Transport Model Inputs .. 15

 Data set screen .. 15

4.1.1 Restart Options.. 16

4.1.2 Date and Times ... 17

4.1.3 Hydrodynamics ... 17

4.1.4 Solution Technique ... 18

4.1.5 Time Step Definition... 18

 Segments screen .. 18

4.2.1 Segment Name .. 19

4.2.2 Segment Type ... 19

4.2.3 Bottom Segment.. 19

4.2.4 Transport Mode ... 19

 Channel Geometry .. 20

WASP8 Stream Transport -

Model Theory and User's Guide

v

4.3.1 Volume .. 21

4.3.2 Length ... 21

4.3.3 Width... 21

4.3.4 Bottom Elevation .. 21

4.3.5 Slope ... 22

4.3.6 Minimum Depth .. 22

4.3.7 Segment Roughness .. 22

4.3.8 Initial Depth .. 22

4.3.9 Initial Surface Elevation ... 22

4.3.10 Depth (multiplier and exponent) ... 22

4.3.11 Velocity (multiplier and exponent) ... 23

 Flows screen.. 23

4.4.1 Flow Field ... 24

4.4.2 Flow Function ... 25

4.4.3 Flow Path Function ... 26

4.4.4 Flow Time Function .. 27

 Exchanges screen .. 27

4.5.1 Exchange Field.. 28

4.5.2 Exchange Function.. 28

4.5.3 Exchange Path Function ... 29

4.5.4 Exchange Time Function .. 30

- Stream Transport Model Outputs ... 30

- References .. 30

- Appendix 1: Derivation of Equations 32

 Hydraulic Exponents for Kinematic Wave Flow .. 32

- Appendix 2: Model Verification Tests 32

 Kinematic Wave Tests .. 33

8.1.1 Stream Transport Test 1 .. 33

8.1.2 Stream Transport Test 2 .. 33

8.1.3 Stream Transport Test 3 .. 33

8.1.4 Stream Transport Test 4 .. 33

WASP8 Stream Transport -

Model Theory and User's Guide

vi

8.1.5 Stream Transport Test 5 .. 34

 Weir Overflow Verification Tests .. 34

8.2.1 Weir Overflow Test 1 – Steady Flow ... 34

8.2.2 Weir Overflow Test 2 – Variable Flow .. 34

8.2.3 Weir Overflow Test 3 – Long Term Dynamics .. 34

 Dynamic Flow Verification Tests ... 34

8.3.1 Dynamic Flow Test 1 - Steady Backwater ... 34

8.3.2 Dynamic Flow Test 2 – Steady Flow, Elevation .. 35

8.3.3 Dynamic Flow Test 3 – Variable Stream Flow .. 35

8.3.4 Dynamic Flow Test 4 – EFDC Stream ... 35

8.3.5 Dynamic Flow Test 5 – Tidal Stream ... 35

8.3.6 Dynamic Flow Test 6 – 2-D Tidal Stream .. 35

Appendix 3: Hydrodynamic Linkage File API 35

 General Concept.. 35

 Application Program Interface (API) Overview ... 36

 Initialization .. 37

9.3.1 Call Hlopen (Hlfile, Ihl_mode, Ihl_handle,Ierror).. 37

9.3.2 Call Hlsetlanguage (Ihl_handle, Ilanguage, Ierror) 38

9.3.3 Call Hlgetlasterror (ErrorString) ... 38

9.3.4 call Hladdescription (Ihl_handle, 0 ,Description(I) , Ierror) 38

9.3.5 Call Hlsetcreator (Ihl_handle, Modtype, Ierror) ... 38

9.3.6 call hlsetseedmoment(Ihl_handle, istartmonth, istartday, istartyear, istarthour,

istartminute, istartsecond, ierror) .. 39

9.3.7 call hlsetnumlayers(Ihl_handle,num_layer,ierror) .. 39

9.3.8 call hlsetnumsegments(Ihl_handle, noseg, ierror) .. 40

9.3.9 call hlsetsegname(ihl_handle,i,segname,ierror) .. 40

9.3.10 call hlsetnumflowpaths(Ihl_handle, numflow, ierror) 40

9.3.11 call hlsetnumsegconsts(Ihl_handle, inumsegconsts, ierror) 41

9.3.12 Hlsetnumfpconsts (Ihl_handle, NumFlowPathConst, ierror) 41

9.3.13 Hlsetfpconsttype (Ihl_handle, IconType, Index, ierror) 41

9.3.14 call hlsetvartimestep(Ihl_handle,IdtOpt,ierror) .. 42

9.3.15 call hlsettimestep(Ihl_handle,hdt,ierror) ... 42

WASP8 Stream Transport -

Model Theory and User's Guide

vii

9.3.16 call hlsethydtimestep(Ihl_handle,hdt,ierror) ... 42

9.3.17 call hlsetupdateint(Ihl_handle,rinterval,ierror) ... 43

9.3.18 call hlsethydtowaspratio(Ihl_handle,numdht,ierror) 43

9.3.19 call hlsetflowpath(Ihl_handle,k,jq(k),iq(k),iflowdir(k),ierror) 43

 Segment Information .. 44

9.4.1 call hlsetseginfo(Ihl_handle,IsegInfo,SegVolume,ierror) 44

 Flow Information .. 44

9.5.1 call hlsetflowinfo(Ihl_handle,1,Flow,ierror) ... 44

9.5.2 call hlsetflowinfo(Ihl_handle,2,brintt,ierror) .. 44

End Moment ... 44

Close File ... 45

Compilation Guidance... 45

Interface Files ... 45

Example Program .. 51

WASP8 Stream Transport -

Model Theory and User's Guide

viii

List of Figures

Figure 1 - Model network with advective transport pathways ... 1

Figure 2 - WASP Descriptive Flow Options .. 3

Figure 3 - Channel hydraulic cross-sections ... 5

Figure 4 - Definition sketch for ponded flow ... 8

Figure 5 - WASP Main Screen Toolbar, data input buttons ... 15

Figure 6 Dataset Parameterization .. 16

Figure 7 Segment Definition Screen ... 20

Figure 8 - WASP Segment Definition Screen .. 21

Figure 9 - Flows screen ... 23

Figure 10 - Example WASP flow input .. 24

Figure 11 - Exchanges Screen ... 28

Figure 12 HYDROLINK Overview ... 36

Figure 13 API Components .. 37

List of Tables

Table 1 WASP8 Flow Transport Options ... 2

Table 2 - Hydraulic Exponents for Figure 3 ... 5

Table 3 - Comparison of Empirical Hydraulic Exponents .. 6

Table 4 - Transport output variables ... 30

1

 - Introduction

The Water Quality Analysis Simulation Program, WASP8 (Di Toro et al. 1983, Ambrose

et al. 1988, Wool et al. 2001, Wool et al. 2006) is a general dynamic mass balance

framework for modeling contaminant fate and transport in surface waters. Based on the

flexible compartment modeling approach, WASP can be applied in one, two, or three

dimensions with advective and dispersive transport between discrete physical

compartments, or “segments.” WASP provides a selection of modules to allow the

simulation of conventional water quality variables as well as toxicants.

The WASP kinetic models are based on a set of transport and transformation equations.

Advective transport is driven by water flow through a specified computational network

(e.g. Figure 1). Inflows bring boundary concentrations into the network, and internal flows

advect most constituents along specified flow paths through the network and out the

downstream boundaries.

Figure 1 - Model network with advective transport pathways

 - Background

 WASP Transport Fields

Advective transport in WASP is divided into six distinct types, or "fields." The first

transport field is advective flow in the water column. Advective flow carries water quality

constituents "downstream" with the water and accounts for instream dilution. The second

transport field specifies the movement of pore water in the sediment bed. Dissolved water

2

quality constituents are carried through the bed by pore water flow. The third, fourth, and

fifth transport fields specify the transport of particulate pollutants by the settling,

resuspension, and burial of solids (descriptive approach). WASP8 allows the user to

specify settling and resuspension rates more directly using segment parameters. WASP8

also implements a mechanistic approach for sediment transport (see Sediment Transport

User’s Manual). Water quality constituents sorbed onto solid particles are transported

between the water column and the sediment bed. The sixth transport field represents

evaporation or precipitation from or to surface water segments.

 WASP Surface Water Flow

Advective water column flows directly control the transport of dissolved and particulate

pollutants in many water bodies. In addition, changes in velocity and depth resulting from

variable flows can affect such kinetic processes as reaeration, volatilization, and photolysis.

In WASP, water column flow is input via transport field 1. Circulation patterns may be

described using 1 of the available 6 flow/transport options (Table 1)

Table 1 WASP8 Flow Transport Options

Flow Option Description

Flow Routing Uses specified flow for segment; volume, depth, and

velocity are not adjusted with flow.

Stream Routing Uses specified flow for segment; volume, depth, and

velocity are adjusted for variable flow based on

hydrogeometry

Kinematic Wave Use kinematic wave routing for segment based on slope

and bottom roughness

Ponded Weir Uses weir height to control flow through assumed flat

surface

Hydrodynamic Linkage Detailed transport is provided by external hydrodynamic

model

Dynamic Wave Uses water surface elevation and surface slope to

calculate flow

2.2.1 WASP Surface Water Descriptive Flow Options

Two descriptive flow options are available in WASP – Flow Routing and Stream Routing.

The outflow from a descriptive flow segment is equal to the sum of the inflows to that

segment. For Flow Routing, there are no adjustments in volume, depth, and velocity if

inflows vary. For Stream Routing, the volume, depth, and velocity varies with flow based

on specified hydrogeometry coefficients.

3

2.2.2 WASP Kinematic Wave Stream Flow Option

The kinematic wave stream flow option was implemented to provide a more realistic

simulation of flow dynamics in branching, one-dimensional networks. Kinematic flow is

controlled by bottom slope and bottom roughness. The kinematic wave formulation can be

used for most stream and small river systems. WASP simulates downstream flow through

the network in response to time-variable inflows and withdrawals.

As in the descriptive flow options, the user must supply both a continuity function and a

time function for each inflow (or withdrawal). Flow paths may diverge (branch) and then

re-join. For surface water segments, the user must specify bottom slopes and roughness

factors, as well as widths and depths for average flow conditions and a depth hydraulic

exponent for non-rectangular channels. The model uses the inflow and flow path functions,

along with specified channel geometry and hydraulic coefficients to calculate time-variable

water movement (flows and velocities) and channel hydrogeometry (top widths, cross-

sectional average depths, and volumes).

Beginning with version 7.3, the stream network can include ponded flow segments along

with kinematic flow segments. Flow through ponded segments is controlled by a

downstream low-head dam, weir, or natural sill. For these segments, the user must specify

bottom slope of 0 (or less than 10-6) and the downstream weir height. Ponded segments

may include stagnant underlying water layers.

Beginning with version 8.0, the stream network can include dynamic flow (or “backwater”)

segments along with kinematic flow and ponded flow segments. Dynamic flow is

controlled by gradients in surface elevation and velocity, as well as bottom roughness. For

these segments, the user must set bottom slope to 0 and specify bottom elevation in

reference to a downstream control point.

 - Development of Equations

 Hydrogeometry

 A good description of segment hydrogeometry as a function of flow can be important in

properly using WASP to simulate streams and rivers. For the hydrodynamic linkage flow

option, velocities and depths computed by the hydrodynamic model are used in WASP.

For the internal flow options (Net Flow, Gross Flow, Kinematic Wave), a set of

user-specified hydraulic discharge coefficients defines the relationship between velocity,

depth, and stream flow in surface water segments. This method follows the implementation

in QUAL2E (Brown and Barnwell, 1987). For the descriptive flow options (Net Flow,

Gross Flow), segment velocities and depths do not influence the transport scheme; they are

only used in calculations of reaeration and volatilization rates. For the Kinematic Wave

flow option, segment velocities, widths, and depths are integral to the transport

calculations.

Discharge coefficients giving depth and velocity from stream flow are based on empirical

observations of the stream flow relationship with velocity and depth (Leopold and Maddox,

1953). The equations relate velocity, channel width, and depth to stream flow through

power functions:

4

Equation 1

Q vmult = v
v exp

Equation 2

Q dmult = R
dxp

Equation 3

Qbmult = B
b exp

where v is velocity [m/sec], R is hydraulic radius, or cross-sectional average depth [m], B

is top width [m], vmult, dmult, and bmult are empirical coefficients, and vexp, dxp, and

bexp are empirical exponents. Cross-sectional area, A is the product of top width and

average depth, and from continuity, flow is given by:

Equation 4

Q bmult) dmult (vmult =

)Q (bmult)Q (dmult)Q (vmult = B R v = A v = Q

b + dxp + v

bdxpv

expexp

expexp

From inspection, the following hydraulic relationships hold:

Equation 5

1= bmultdmultvmult

Equation 6

1=b+dxp+v expexp

The Net Flow and Gross Flow options in WASP require specification of the hydraulic

relationships for velocity and depth; the width coefficients are calculated internally from

Equation 5 and Equation 6. The Kinematic Wave Flow option requires specification of the

hydraulic depth exponent dxp, along with depth Dm and width Bm under average flow

conditions. Manning’s equation (rearranged) is used to calculate velocity vm under average

flow conditions, and then average flow Qm from depth, width, and velocity:

Equation 7

n

SD
v

fm

m

2/13/2

Equation 8

mmmm BDvQ

A consistent set of hydraulic exponents are set (see Appendix, Section 6.1):

Equation 9

 dxpv
3

2exp

5

Equation 10

exp1exp vdxpb

Finally, a consistent set of hydraulic multipliers are then derived from mean flow width,

the hydraulic geometry equations, and Manning’s equation:

Equation 11

expb

mm QBbmult

Equation 12

/1vmult

Equation 13

bmultdmult /

Equation 14

5/3

2/1

3/2

fS

bmultn

Figure 2 - Channel hydraulic cross-sections

Channel cross-sections for representative hydraulic geometry coefficients in Table 2are

illustrated in Figure 2. Under mean flow, these channels are 10 m wide and 0.5 m deep.

Leopold et al. (1964) have noted that stream channels in humid regions tend towards a

rectangular cross-section because cohesive soils promote steep side slopes whereas

noncohesive soils encourage shallow sloped, almost undefined banks.

Channel Profile

0.0

0.5

1.0

1.5

2.0

-15 -10 -5 0 5 10 15

Width

D
e

p
th

1

2

3
4

Channel Profile

0.0

0.5

1.0

1.5

2.0

-15 -10 -5 0 5 10 15

Width

D
e

p
th

1

2

3
4

Channel Velocity Depth Width

1. Rectangular 0.40 0.60 0.00

2. U-Shape 0.32 0.48 0.20

3. V-Shape 0.26 0.39 0.35

4. Shallow 0.20 0.30 0.50

Table 2 - Hydraulic Exponents for Figure 3

6

Table 3 - Comparison of Empirical Hydraulic Exponents

Channel Velocity Depth Width

Rectangular 0.40 0.60 0.00

Average of 158 U.S. Gaging Stations 0.43 0.45 0.12

Average of 10 Gaging Stations on Rhine River 0.43 0.41 0.13

Ephemeral Streams in Semiarid U.S. 0.34 0.36 0.29

Table 3 compares hydraulic exponents for a rectangular channel with data reported by

Leopold et al. (1964). Note that the average velocity exponent is relatively constant for all

channel cross sections. The major variation occurs as a decrease in the depth exponent and

concomitant increase in the width exponent as channel cross-sections change from the

steep side slopes characteristic of cohesive soils to the shallow slopes of arid regions with

noncohesive soils.

For site-specific river or stream simulations, hydraulic coefficients and exponents must be

estimated. Brown and Barnwell (1987) recommended estimating the exponents (b and d)

and then calibrating the coefficients (a and c) to observed velocity and depth. The

exponents may be chosen based on observations of channel shape noted in a reconnaissance

survey. If cross sections are largely rectangular with vertical banks, the first set of

exponents shown should be useful. If channels have steep banks typical of areas with

cohesive soils, then the second set of exponents is appropriate. If the stream is in an arid

region with typically noncohesive soils and shallow sloping banks, then the last set of

exponents is recommended.

The key property of the channel that should be noted in a reconnaissance survey is the

condition of the bank slopes or the extent to which width would increase with increasing

stream flow. Clearly the bank slopes and material in contact with the stream flow at the

flow rate(s) of interest are the main characteristics to note in a reconnaissance. This gives

general guidance but it should be noted that values are derived for bankful flows. Even in

streams with vertical banks, the low flows may be in contact with a sand bed having

shallow sloped, almost nonexistent banks that are more representative of ephemeral

streams in semi-arid areas.

 Governing Flow Equations

The WASP stream flow model consists of a set of one-dimensional equations solving water

flow and water volume in a branching stream or shallow river network. This network can

include free-flowing stream reaches (kinematic wave flow), ponded reaches (weir

overflow), and backwater or tidally influenced reaches (dynamic flow). The equation of

motion, based on the conservation of momentum, predicts water velocities and flows. The

equation of continuity, based on the conservation of volume, predicts water heights (heads)

and volumes.

The one-dimensional continuity equation is given by:

7

Equation 15

0

t

A

x

Q

where Q is volumetric flow, [m3/sec] and A is cross-sectional area [m2]. For rectangular

channels, where width is constant, Equation 15 becomes:

Equation 16

0

t

H
B

x

Q

where B is channel width [m] and H is water surface elevation [m]. As presently

implemented in WASP, kinematic flow reaches have shapes described by the

hydrogeometric relationships described in Section 3.1, while ponded reaches and dynamic

flow reaches have rectangular channel shapes.

 The equations of motion implemented in the three reach types are described in the

following sections.

3.2.1 Kinematic Wave Flow

For one-dimensional, free-flowing stream reaches, kinematic wave flow routing is a simple

but realistic option to drive advective transport. The kinematic wave equation calculates

flow wave propagation and resulting variations in flows, velocities, widths, and depths

throughout a stream network. This well-known equation is a solution of the one-

dimensional continuity equation and a simplified form of the momentum equation that

considers the effects of gravity and friction:

Equation 17

 00 SSg f

where g is acceleration of gravity [m/sec2], S0 is the bottom slope, and Sf is the friction

slope. Manning’s equation expresses the friction force as a function of water velocity and

hydraulic radius:

Equation 18

R
vn

fS
3/4

22

 where n is the Manning friction factor, v is water velocity [m/sec], and R is hydraulic

radius [m], which is equivalent to the cross-sectional average depth, D. From the simplified

momentum equation, S0 can be equated to Sf. Hydraulic radius can be expressed as cross-

sectional area divided by width, B [m]. Substituting these into the Manning’s equation and

rearranging terms gives flow as a function of bottom slope, cross-sectional area, and width:

Equation 19

2/1

03/2

3/51
S

B

A

n
Q

8

Substituting this expression into the continuity equation and differentiating A with respect

to time gives the kinematic wave differential equation:

Equation 20

01

t

Q
Q

x

Q

where, for rectangular channels:

Equation 21

5/3

2/1

3/2

,5/3

fS

Bn

For channels where width varies with flow, α and β are functions of hydraulic coefficients:

Equation 22

5/3

2/1

3/2

,4.06.0

fS

bmultn
dxp

where the hydraulic coefficients dxp and bmult are defined in Section 3.1.

3.2.2 Ponded Weir Flow

For flow through ponded segments controlled by a downstream low-head dam or natural

sill (Figure 3), the sharp-crested weir overflow equation is a simple solution for calculating

outflows and resultant changes in depth and volume. Weir height Hw [m] and width Bw [m]

are specified by the user, and hydraulic head Hh is the difference between ponded depth H

and Hw.

Figure 3 - Definition sketch for ponded flow

For a sharp-crested weir where Hh/Hw < 0.4, velocity and flow are related to head by

(Finnemore and Franzini 2002):

9

Equation 23

2/3

2/1

83.1

83.1

hwhoo

ho

HBAvQ

Hv

wHHwhen 0

where vo is the velocity of flow over the weir [m/sec], and Ah is the cross-sectional area of

flow over the weir [m2], given by the product of Hh and Bh.

3.2.3 Dynamic Flow

For dynamic flow through backwater segments, the momentum equations from DYNHYD

provide a simple solution for calculating outflows and resultant changes in velocity, surface

elevation, depth and volume. Bottom elevation Hb [m], width B [m], initial depth D [m],

and initial velocity v [m/sec] are specified by the user. Surface elevation Y is the sum of D

and Hb. Driven by variable upstream flows and downstream heads, simulations typically

proceed at 1- to 5-minute intervals.

The dynamic flow routine solves one-dimensional equations describing the propagation of

a long wave through a shallow water system while conserving both momentum and

volume. The equation of motion calculates water velocities and flows. The equation of

continuity calculates surface elevations, along with associated depths and volumes. This

approach assumes that flow is predominantly one-dimensional, that accelerations normal

to the direction of flow are negligible, that channels can be adequately represented by a

constant top width with a variable hydraulic depth (i.e., "rectangular"), that the wave length

is significantly greater than the depth, and that bottom slopes are moderate. Reaches with

steep bottom slopes are best solved with the kinematic wave equations.

Equation 16 gives the equation of continuity implemented for dynamic flow reaches. The

equation of motion calculates local acceleration, the velocity rate of change with respect to

time [m/sec2]:

Equation 24

fg aa
xd

vd
v

td

vd

where v is water velocity [m/sec], ag is gravitational acceleration along the axis of the

channel [m/sec2], and af is frictional acceleration [m/sec2]. The first term, convective inertia

or Bernoulli acceleration, represents the rate of momentum change by mass transfer,

[m/sec2]. The second term, gravitational acceleration, is driven by the slope of the water

surface:

Equation 25

x

Y
gag

where Y is surface elevation [m], and g is the acceleration of gravity [9.81 m/sec2]. The

third term, frictional acceleration, can be expressed using the Manning equation for steady

uniform flow:

10

Equation 26

3/4

22

R

vn
ga f

where n is the Manning friction factor, v is water velocity [m/sec], and R is hydraulic radius

[m], which is equivalent to the cross-sectional average depth, D.

 Local wind acceleration is not included in this implemented of the dynamic flow

equations.

 Implementation of Equations

WASP8 solves the kinematic flow, ponded flow, and dynamic flow equations for

appropriate surface water segments in a stream network using finite-difference

formulations for flow and for continuity.

For each segment, a maximum numerical time step DTmax is calculated from the segment

length and characteristic velocity, as described in the sections below. The overall time step

is the product of the minimum DTmax in the network and a user-specified fraction, DTF

(default = 0.9) that is set to ensure stability:

Equation 27

 maxmin DTDTFDT

This time step DT is divided into two half time steps. For kinematic wave reaches and

ponded weir reaches, flows are calculated sequentially for each half time step and then

averaged for subsequent use by the water quality module. Final velocities, depths,

volumes, and surface elevations at the end of the full time step are passed along to the water

quality module.

For dynamic flow reaches, the two half time steps are used in a predictor-corrector scheme

as described in Section 3.3.3 below. Flows, velocities, volumes, depths, and surface

elevations are updated following each of the numerical steps. Final flows, velocities,

volumes, depths, and surface elevations at the end of the full time step are passed along to

the water quality module.

3.3.1 Kinematic Wave Flow

To solve for flow in kinematic wave reaches, Equation 20 is expressed in finite difference

form:

Equation 28

 0

1

0

DU

DtDDt QQ
L

Q

DT

QQ

where QU is the upstream inflow, QD0 is the outflow from the preceding time step, QDt is

the outflow for this time step, and DT is the time step [days]. Equation 28 is solved using

a Newton-Raphson approach:

11

Equation 29

 02012

1

1 ,,0)(DDUDtDtDt QcQQ
L

DT
ccQcQQf

Equation 30

 DtDt QcQf 11)(1

'

Given an initial estimate of QDt, an updated estimate, QDt2, is calculated by:

Equation 31

Do

DtDt

Dt

Dt

DtDt
Q

QQ
err

Qf

Qf
QQ

 2

'2 ,
)(

)(

Equation 29, Equation 30, and Equation 31 are solved in an iterative loop where QDt it set

equal to QDt2 until err is less than 10-5. Given the new set of flows for the water column

network QDt,ij, volumes for all water segments “i” are updated using the continuity

equation:

Equation 32

iiit

j

ijDti DVVVDTQDV ,0,, ,

Segment widths are updated with the new flows using Equation 3. Associated cross-

sectional areas and depths are then calculated:

Equation 33

iiit

i

i

i DAAA
L

DV
DA ,0,,

Equation 34

i

it

it
B

A
D

,

,

To prevent slow numerical drift in calculated volumes during lengthy simulations, small

adjustments are made to flows based on differences between hydraulic radius calculated

from Equation 2 and cross-sectional average depth calculated through continuity.

Applying Equation 19:

Equation 35

 3/53/52/1

,0,,, iii

i

i
iRiDtierr RDS

n

B
QQQ

Equation 36

ierriDtiDt QQQ ,,,

For each kinematic flow segment, a maximum stable numerical time step DTmax [days] is

calculated from the segment length L [m] and celerity c [m/s]:

12

Equation 37

/vc

Equation 38

c

LDT
86400

5.0
max

 where 0.5 is a safety factor.

3.3.2 Ponded Weir Flow

For ponded reaches “i”, weir overflow (Equation 23) must be solved along with continuity

such that:

Equation 39

2/3

,,, 83.1 ihtiwiDt HBQ

and

Equation 40

DT
LB

QQ
HH

ii

iDtiUt

ihiht

,,

,0,

where QUt,i and QDt,i are the upstream inflow and outflow for this time step [m3/sec], Hht,i

is the head for this time step [m], Hh0,i is the head from the previous time step [m], and DT

is the time step [days]. These equations are solved using a Newton-Raphson approach

where:

Equation 41

083.1)(2/3 htDtDt HBQQf

Equation 42

2/1

,

2/1

,

'

83.15.1
1

2

3
83.11)(

iht

i

ii

ihtDt

H
L

DT

LB

DT
HBQf

Given an initial estimate of QDt,i, a consistent value for Hht,is calculated using Equation 40.

An updated estimate QDt2, is then calculated by:

Equation 43

Do

DtDt

Dt

Dt

DtDt
Q

QQ
err

Qf

Qf
QQ

 2

'2 ,
)(

)(

Equation 41, Equation 42, Equation 43, and Equation 40 are solved in an iterative loop

where QDt and Hht are set equal to QDt2 and Hht2 until err is less than 10-5.

13

WASP8 solves this weir overflow equation for each ponded segment in a stream network.

In each of the numerical steps, calculated values of dQ/dt and Qo are used to update

volumes, depths, and Hh, which are used in the next numerical step to calculate Qo.

For each weir overflow segment, a maximum stable numerical time step DTmax [days] is

calculated from the segment length and overflow velocity vo:

Equation 44

ov

LDT
5.186400

5.0
max

where 0.5 and 1.5 are safety factors.

3.3.3 Dynamic Flow

Equation 16 and Equation 24 form the basis of the hydrodynamic model DYNHYD5,

which is implemented within this version of WASP. These equations are integrated

numerically on a flexible, computationally efficient "link-node" network (Feigner and

Harris, 1970), which solves the equations of motion and continuity at alternating grid

points. At each time step, the equation of motion is solved at the links (or “channels”),

giving velocities for mass transport calculations, and the equation of continuity is solved

at the nodes (or “junctions”), giving heads for pollutant concentration calculations.

Link-node networks can treat fairly complex branching flow patterns and irregular

shorelines with acceptable accuracy for many studies. They cannot handle stratified water

bodies, small streams, or rivers with a large bottom slope. Link-node networks can be set

up for wide, shallow water bodies if primary flow directions are well defined.

In WASP, nodes correspond to segments, and links correspond to segment interfaces. For

every dynamic flow segment in a WASP network, a distinct channel number “ich” is

defined for each of its downstream segments. Channel ich is defined by upstream segment

j and downstream segment i. Positive flow in channel ich is outflow from segment j and

inflow to segment i. Negative flow in channel ich is outflow from segment i to segment j.

In finite difference form, Equation 24 is given by:

Equation 45

ichich

ich

ich

ich

ich

ich

ich

ich

ichicht
vv

R

ng

x

H
g

x

v
v

DT

vv
3/4

2
,

where vt,ich is the velocity for this time step [m/sec], vich is the velocity from the preceding

time step [m/sec], Δxich is channel ich length [m], Δvich /Δxich is the velocity gradient in

channel ich with respect to distance [sec-1], ΔHich /Δxich is the water surface gradient in

channel ich with respect to distance [m/m], and DT is the time step [days]. All values on

the right hand side of equation 20 are referenced to the previous time step.

The water surface gradient can be computed from the junction heads at either end of the

channel:

14

Equation 46

 2/ij

ij

ich

ich

LL

HH

x

H

where Hj and Lj are the water surface elevation and length of the upstream segment[m],

and Hi and Li are the water surface elevation and length of the downstream segment[m].

The velocity gradient cannot be computed directly from upstream and downstream channel

velocities because of possible branching in the network. If branching does occur, there

would be several upstream and downstream channels, and any computed velocity gradient

would be ambiguous. An expression for the velocity gradient within a channel can be

derived by applying the continuity equation to the channel and substituting v×A for Q:

Equation 47

x

v
A

x

A
v

x

Q

t

A

Rearranging terms gives the channel velocity gradient:

Equation 48

x

A

A

v

t

A

Ax

v

 1

Writing this in finite difference form and substituting B×R for A and B×ΔH for A gives

the velocity gradient term:

Equation 49

ich

ich

ich

ichich

ichich

ich

x

H

R

v

t

H

Rx

v

 1

The term ΔHich/Δt is computed as the average water surface elevation change between the

segments at each end of channel ich during time step t. Substituting Equation 49 into

Equation 45 and rearranging gives the explicit finite difference equation of motion applied

to each channel:

Equation 50

 ichich

ich

ich

ich

ich

ich

ichich

ich

ich
ichicht vv

R

ng

x

H
g

R

v

t

H

R

v
DTvv

3/4

22

,

Writing the equation of continuity in finite difference form and rearranging terms gives:

Equation 51

jj

i

ij

jjt
LB

Q

DTHH

,

Equation 50 and Equation 51 are solved using a 2-step predictor-corrector routine. Based

on initial velocities, surface elevations, and depths from the previous time step, new

15

velocities and flows are solved for the half time step, along with new surface elevations

and depths. Using these predicted half-time step values, velocity and flow derivatives are

recalculated for the half time step. These corrected derivatives are then used with the initial

velocities, depths, and surface elevations to calculate velocities and flows for the full time

step. Finally, surface elevations, depths, and volumes are calculated for the full time step.

For each dynamic flow segment, a maximum stable numerical time step DTmax [days] is

calculated from the segment length L [m] and celerity c [m/s]:

Equation 52

Dgc

Equation 53

c

LDT
86400

5.0
max

 where 0.5 is a safety factor.

 - Stream Transport Model Inputs

To implement stream flow routing, the user must specify information in the Data set screen,

the Segments screen, and the Flows screen, accessed from the gears, the cube, and the

faucet on the main WASP toolbar (Figure 4). Each of these is briefly described in the

sections below.

Figure 4 - WASP Main Screen Toolbar, data input buttons

 Data set screen

In the Data set screen (Figure 5), the user must select the Model Type. In the Time Range

section, the user must specify the simulation Start Date, Start Time, End Date and End

16

Time. In the hydrodynamics section, the user must select the flow option. Finally, the Time

Step information should be specified. Default values are supplied for Fraction of max time

step (0.9), Max time step (1.0 day), and Min time step (0.0001 day). These values should

work well for most cases, but if numerical instability is encountered, lowering the Fraction

of max time step (to 0.5 or even 0.1) could help. In some cases, the user may want to

specify a maximum times step of less than a day. If diurnal output is desired, then a

maximum time step of 0.1 or 0.05 days should give the necessary precision.

When creating a new input dataset the input parameterization data entry form is the first

one that needs to be completed. This form provides basic information that is needed by

the program to parameterize the other data entry forms that follow. This screen informs

the program what type of WASP file you are going to be creating.

4.1.1 Restart Options

The methods used by WASP to read and create restart files have changed substantially in

this version. In previous versions the user would have selected Create Restart File, for

WASP to write the final conditions of the simulation to an output file. This is true for the

current version as well. If the user wants to restart a simulation with the final conditions

of previous simulation this radio must be set. At the end of the WASP simulation a restart

file with the same name as the WIF except with the extension *.RST will be saved. With

the current release of WASP if the user wants to use a restart file they simple click on the

Load Restart File button, this will allow the user to browse to whatever restart file they

want to use. Once the file is selected and the user clicks on the Okay button, the restart file

is opened up and segment volumes and state variable initial conditions are reset to the

values in the user selected *.RST file.

Figure 5 Dataset Parameterization

17

4.1.2 Date and Times

The previous versions of WASP did not require that the model time functions be

represented in Gregorian date format. WASP requires all time functions be represented in

Gregorian fashion (mm/dd/year hh:mm:ss).

Start Date and Start Time - The start time dialog is used to define the date and time for

the start of the simulation or time period being considered in the model input files. This

date and time correspond to time zero within the model.

End Date and End Time - The end time dialog is used to define the date and time when

the simulation will end.

Skip Ahead to Date and Time - This new addition to the WASP interface allows the user

to skip to any portion of the simulation and/or the selected loaded hydrodynamic linkage

file. When the user selects a hydrodynamic linkage file the start time and end time of the

file is read and the interface automatically sets the beginning and end time to these values.

It is best that the user build all of the time series (environmental, boundary and dispersion)

to cover this full range of time. Once the WIF is built the user can set a date and time to

skip the simulation from the start time set in the hydrodynamic file. This is handy for using

the whole hydrodynamic linkage file for calibration and verification, and then using a small

portion of the hydrodynamic linkage file for scenario analysis. It could be the critical time

period that will be used for the waste load allocation or TMDL. The start time of the

simulation should still be set the beginning time in the hydrodynamic linkage file. The

user can change the end time of the simulation by changing the last date/time pair in the

Time Step screen.

4.1.3 Hydrodynamics

Hydrodynamic Linkage -- Realistic simulations of unsteady transport in rivers, reservoirs,

and estuaries can be accomplished by linking WASP8 to a compatible hydrodynamic

simulation. This linkage is accomplished through an external “hyd” file chosen by the user

at simulation time. The hydrodynamic file contains segment volumes at the beginning of

each time step, and average segment interfacial flows during each time step. WASP8 uses

the interfacial flows to calculate mass transport, and the volumes to calculate constituent

concentrations. Segment depths and velocities may also be contained in the hydrodynamic

file for use in calculating reaeration and volatilization rates. Before using hydrodynamic

linkage files with WASP, a compatible hydrodynamic model must be set up for the water

body and run successfully, creating a hydrodynamic linkage file with the extension of

*.hyd. This is an important step in the development of the WASP input file because the

hydrodynamic linkage file contains all necessary network and flow information. When

Hydrodynamic Linkage is selected in the Data Set Parameters screen, the user cannot

provide any additional surface flow information. When you are ready to begin the

development of a WASP input deck, simply open the hydrodynamic linkage file from

within the data preprocessor. The hydrodynamic linkage dialog box allows the user to

browse and select a hydrodynamic linkage file. The data preprocessor will open the

hydrodynamic interface file and extract the number of segments, the starting and ending

time. Once a hydrodynamic linkage file is selected in the data preprocessor, the user will

18

have to add the model systems to use. User can check the numerical stability of the

hydrodynamic linkage by inspecting the Mass Check system on the runtime grid and in

model output. If the simulation is run for a sufficient duration, mass check concentrations

should approach 1.0 mg/L throughout the network. If you are getting a number other than

1 mg/L, you may have to use a different time step in the hydrodynamic model. This is

especially true if the concentrations are oscillating between large and small numbers, a

clear indication of numerical instability. WASP has the ability to get hydrodynamic

information from a host of hydrodynamic models. If a hydrodynamic model does not

support the WASP linkage it is relative straightforward to create a hydrodynamic linkage

file (see Appendix 3 for file format). The hydrodynamic models that currently support the

WASP8 file format are: EFDC (three dimensions), DYNHYD (one dimension branching),

RIVMOD (one dimension no branching, CE-QUAL-RIV1 (one dimension branching),

SWMM/Transport (one dimension branching, SWMM/Extran (one dimension branching)

4.1.4 Solution Technique

The user now has the ability to select the model solution technique to be used by the water

quality module during the simulation. Currently there are 3 solution techniques that can

be selected: 1) Euler – which is the traditional solution technique that has been in WASP

since its inception, 2) COSMIC Flux Limiting – this solution technique is typically used

when WASP is linked to multi-dimensional hydrodynamic models like EFDC, 3) Runge-

Kutta 4 step solution technique used for diurnal simulations.

4.1.5 Time Step Definition

Starting with WASP Version 7.3 the user no longer has control over the computational

time step. Time step optimization routines have been refined to the point where the model

can determine what the most appropriate time step should be used next. This assures the

most efficient run time as well as minimizing numerical dispersion caused by too small of

a time step. While the user can not set the time step directly, they do have some control

over what would be an acceptable time step.

Fraction of Maximum Time Step - This dialog box specifies what fraction of the model

calculated time step will be used for the next time step. Its primary purpose is aid the user

in keeping the model stable. The default is 0.9 (or 90%) of the optimal time step.

Maximum Time Step - This specifies the maximum time step that will be used. If the

time step optimizer calculates a time step larger than this value, this value will be used.

This could be important in constraining the time step for diurnal or daily calculations.

Minimum Time Step - This specifies the minimum time step that will be used. The default

minimum time step is defined in the model as 0.0001 days. Use this dialog to raise the

minimum time step.

 Segments screen

In the Segments screen, the user must enter a row for each segment in the model network

(e.g., by pressing “Insert,” by pressing the down arrow from the bottom row or by copying

19

from spreadsheet). Provide segment type, orientation and transport option to use for

segment.

4.2.1 Segment Name

User must provide a unique segment name for each segment. These segment names are

used to identify the segment in post processor. If the user wants to paste segment

descriptions/names that include spaces, the segment description must be placed in quotes

(i.e. “I 20 Bridge”).

4.2.2 Segment Type

Segment type is entered using a pick list. Four segment types are available: “Surface,”

“Subsurface,” “Surface Benthic,” and “Subsurface Benthic.” The default segment type is

“Surface,” which represents upper water column segments in contact with the atmosphere.

“Subsurface” represents underlying water column segments. “Surface Benthic” represents

the upper benthic sediment segments in contact with the water column. “Subsurface

Benthic” represents underlying benthic segments.

4.2.3 Bottom Segment

Bottom segment is the segment immediately underneath the current segment. The bottom

segment is entered by typing in the segment number or by using a pick list. If no segments

are underneath the current segment, then the bottom segment is designated “none.”

4.2.4 Transport Mode

There are currently six surface flow options available for WASP. The user has the ability

select different transport modes for individual or groups of segments. The only restriction

when using a hydrodynamic linkage file, is if linked to a hydrodynamic model all segments

has be first two options pertain to how WASP will calculate the exchange of mass between

adjoining segments with flow in both directions across a segment interface. The three flow

options available for surface water flow are:

1. Stream Routing -- WASP will calculate net transport across a segment

interface that has opposing flow. WASP will net the flows and move the mass

from the segment that has the higher flow leaving. If the opposed flows are

equal no mass is moved.

2. Flow Routing -- Pertains to mass and water being moved without regard to net

flow.

3. Kinematic Wave -- For one-dimensional, branching streams or rivers,

kinematic wave flow routing is a simple but realistic option to drive advective

transport. The kinematic wave equation calculates flow wave propagation and

resulting variations in flows, volumes, depths, and velocities throughout a

stream network.

4. Dynamic Flow – For one-dimensional flow controlled by surface water slope.

Capable of calculating backwater flow.

20

5. Ponded Weir – For one-dimensional flow where water surface is flat and

controlled by height of weir.

6. Hydrodynamic Linkage – For multi-dimensional flow where all transport

information is provided via a hydrodynamic model. This option utilizes the

Hydrodynamic Application Program Interface (API), described in Appendix

3: Hydrodynamic Linkage File API.

Figure 6 Segment Definition Screen

 Channel Geometry

Depending upon the Transport Option selected for a given segment, the data entry screen

will highlight the columns where data is not needed. The user should provide information

for the columns that are not shaded. Segment volumes [m3] should be specified when using

the Flow and Stream routing. Channel geometry information is assumed to be at average

flow conditions. Much of this geometry information can be obtained from the National

Hydrography Dataset (NHDPlus). If a segment volume is not entered (or is 0), then WASP

will calculate that volume from specified segment length, width, and depth.

For the 1-D Network Kinematic Wave option, input volumes are only used for benthic

segments. WASP calculates initial water column segment volumes from length, width, and

depth under initial flow conditions.

When using the hydrodynamic linkage flow option, initial water column volumes are read

from the external hydrodynamic file. Only benthic segment volumes must be entered.

21

Figure 7 - WASP Segment Definition Screen

4.3.1 Volume

Segment volume (cubic meters) required for the Stream and Flow Routing option. Will be

recalculated for all other options.

4.3.2 Length

Segment length [m] is the bottom length along the center of the flow line from the upstream

end to the downstream end of the segment.

4.3.3 Width

Segment width [m] is the top width averaged along the length of the segment. If no input

volume is specified, then width is used along with length and depth (multiplier) to calculate

an initial volume.

For the 1-D Network Kinematic Wave option, width should be specified for average flow

conditions. Average widths are used along with average depths, depth exponents, slopes,

and roughness coefficients to back-calculate a consistent set of hydraulic coefficients.

4.3.4 Bottom Elevation

Bottom elevations values represent the vertical distance from the segment bottom (cross-

sectional average) to the bottom of the downstream control segment, which is either a weir

or a boundary.

22

4.3.5 Slope

Segment slope [m/m] is the elevation drop divided by length averaged over the segment

length. This is usually calculated as the upstream elevation minus the downstream elevation

divided by segment length. Slope is used only in the 1-D Network Kinematic Wave option.

4.3.6 Minimum Depth

Minimum depth [m] is the average segment depth under zero-flow conditions, used only

in the 1-D Network Kinematic Wave option. If this cell is left blank, a default minimum

depth of 0.001 m is assigned internally. Total depth is hydraulic depth plus minimum depth.

4.3.7 Segment Roughness

Segment roughness is the Manning’s roughness coefficient n. Roughness is used in the 1-

D Network Kinematic Wave option for kinematic wave flow and dynamic flow segments.

Roughness coefficients should usually be between 0.01 and 0.15. If a coefficient of 0 is

input for a free-flowing segment, WASP will reset the coefficient to 0.05 and issue a

message to the screen.

4.3.8 Initial Depth

Represents the initial depth (m) of the segment at average flow.

4.3.9 Initial Surface Elevation

Represents the initial surface elevation of the segment for the dynamic wave option. Initial

depth and surface slope is calculated from Bottom Elevation and initial Surface Elevation.

4.3.10 Depth (multiplier and exponent)

The depth hydraulic multipliers [m / (m3/sec)] and exponents should be specified when

using the Net Flow, Gross Flow, or Kinematic Wave options. Depth multipliers are

required for all segments. For benthic segments, the depth multipliers are interpreted as

segment depths [m].

For the Net Flow and Gross Flow options, the depth multipliers and exponents are used

along with initial segment flows to calculate initial segment depths. If a depth multiplier

is left at 0, it is reset internally to 1.0 and a message is issued to the screen. If a depth

exponent is left at 0, then the depth multiplier is equal to the initial segment depth [m].

During simulations using these descriptive flow options, changing flows do not directly

change segment depths, even if the hydraulic exponent is nonzero. Depths are recalculated

along with volumes based on flow continuity. If a segment outflow continuity multiplier

is equal to the inflow continuity multiplier, then changing flows will not alter that

segment’s volume or depth.

For free-flowing segments in the 1-D Network Kinematic Wave option, the depth

multiplier is taken to be the cross-sectional average segment depth under average flow

conditions [m]. The depth exponent is a value generally between 0.3 and 0.6. If a segment

depth exponent is left at 0, a rectangular cross-section is assumed and the exponent is reset

internally to 0.6. The average depths and depth exponents are used along with segment

23

widths, slopes, and roughness factors to calculate consistent hydraulic coefficients, which

are then used to calculate segment depths under initial flow conditions. During

simulations, changing flows directly change hydraulic depths based on the hydraulic

coefficients. Total segment depth is equal to the hydraulic depth plus the user-input zero-

flow minimum depth.

4.3.11 Velocity (multiplier and exponent)

The velocity hydraulic multipliers [(m/sec) / (m3/sec)] and exponents should be specified

only when using the Net Flow or Gross Flow options. For the Kinematic Wave option, the

velocity multipliers and exponents are internally calculated from the input depth multipliers

and exponents, and the input width. Any input velocity multiplier or coefficient will be

ignored when using this option.

 Flows screen

The Flows screen is used to define advective transport, including surface water and pore

water flow, as well as solids settling and resuspension, precipitation and evaporation. The

Flows screen is also used to define downstream boundary elevations and two-dimensional

channel networks for the Dynamic Flow option.

The flow input screen is a complex screen that contains four tables (Figure 8). The upper

left quadrant is used to select the transport field, such as “Surface Water” flow. For each

transport field selected, the upper right quadrant is used to define a set of transport

functions, including upstream and tributary inflows. For each transport function, the

bottom two quadrants are used to define the flow path and the flow time function.

Figure 8 - Flows screen

24

For surface water and pore water transport, the upstream inflow, each tributary inflow, pore

water inflow, and any flow withdrawals must be described by continuity path functions

and inflow time functions. An example is shown in Figure 9.

Figure 9 - Example WASP flow input

4.4.1 Flow Field

The transport field must be selected. Six transport fields are available:

1. Surface Water – This transport field is used to describe surface water flows. These

flows transport both the particulate and dissolved fractions of a constituent. If the user

has selected the hydrodynamic linkage option they will not be able to enter information

here.

2. Pore Water – This transport field is used to describe pore water flows. These flows

transport only the dissolved fraction of a constituent.

3. Solids 1 – This transport field is used to describe solids type 1 settling and resuspension.

These flows transport only the particulate fraction of a constituent that is mapped to

solid type 1 in the Systems screen.

25

4. Solids 2 – This transport field is used to describe solids type 2 settling and resuspension.

These flows transport only the particulate fraction of a constituent that is mapped to

solid type 2 in the Systems screen.

5. Solids 3 – This transport field is used to describe solids type 3 settling and resuspension.

These flows transport only the particulate fraction of a constituent that is mapped to

solid type 3 in the Systems screen.

6. Evaporation/Precipitation – This transport field subtracts/adds water from the model

network. No constituent mass is added, removed, or transported.

Scale Factor – The scale factor for a transport field multiplies all flows associated with

that field by the input value. This is generally used to scale flows in sensitivity tests. The

default value is 1.0.

Conversion Factor – The conversion factor for a transport field multiplies all flows

associated with that field by the input value. This is generally used to adjust input flow

units to the internal units of m3/sec. If flows are specified in ft3/sec, the conversion factor

should be 0.02832. The default value is 1.0.

4.4.2 Flow Function

The user can define several flow functions for the selected transport field. Each flow

function must have its own flow path function (lower left table) and flow time function

(lower right table). Normally, a Flow Function defines a discrete inflow, such as upstream

flow, tributary flow, or pore water flow. Special flow functions are also used in conjunction

with the Dynamic Flow option to define downstream boundary elevations or two-

dimensional (x-y) channel networks.

To insert a flow function, first highlight the Surface Water flow field in the upper left table,

then move the cursor to the upper right quadrant and click on the insert button. The

resulting flow function cell, labeled “Flow Function,” can be edited to provide a descriptive

name.

To insert additional flow functions, either click on “insert” or highlight the last flow

function and press the down arrow. To delete a flow function, select the function by

highlighting the row and click on the delete button. Deleting a flow function will delete

the corresponding flow path function (lower left table) and flow time function (lower right

table).

Function Name – When a flow function is inserted, it is given the default name “Flow

Function.” The Function cell can be edited to provide a descriptive name, such as

“upstream inflow,” “tributary inflow,” “downstream elevation,” or “channel network.”

Interpolation Option – The default interpolation option for the flow time function

associated with a flow function is “Linear.” This can be changed to “Step” to provide for a

step function. To change options, click in the Interpolation cell, press the down arrow, and

select the interpolation option for this flow function.

26

Bound Option – The default boundary type for the time function is Flow (cms). The user

can also specify water surface elevation used in the dynamic wave transport option. User

can also specify an internal flow boundary where water is moved between the defined

segments without using a transport option.

Once a flow function is selected and named, the user must define the associated flow path

function and flow time function. Be sure that the correct flow field and flow function are

highlighted before entering these next screens.

4.4.3 Flow Path Function

The flow path function traces this flow from its point of entry into the model network to its

point of exit either from the model network or to an alternate pathway associated with

another flow function. The flow path consists of a set of rows, corresponding to segment

interfaces. Each row will have a set of segment pairs and a fraction of flow multiplier.

Segment Pairs - The segment pairs consist of a “From” segment and a “To” segment, and

define the direction of flow across this segment interface. Either the “From” or the “To”

segment can be defined as “Boundary.” Normally the first row will define the inflow from

“Boundary” to the upstream segment and the last row will define the outflow from the

downstream segment to “Boundary.” If this flow path is a tributary, then the last row will

define the outflow from the downstream tributary segment to a segment in another tributary

or the main stem of the river.

Positive values of flow transport water and constituent mass in the defined direction from

the first segment to the second segment. Negative flows transport water and constituent

mass from the second segment to the first segment. For example, if “From” is segment 1

and “To” is segment 2, then negative values of flow in the time function will cause transport

from 2 to 1. Note: While the kinematic wave option checks to make sure that all flow paths

are ultimately connected to outflows, neither the preprocessor nor the model can assure

that the segments are connected properly. Connectivity is the responsibility of the user.

Fraction of Flow - The fraction of flow column defines what fraction of the total flow in

this pathway moves between these segment pairs. For surface water flow, the fraction of

flow is normally 1.0. This allows the user to split flows from one segment into two or more

downstream directions. This can be used to define diverging and converging flows, but

must be used carefully. The sum of all fractions entering each segment must normally equal

the sum of all fractions leaving. If the sum is greater than 1.0, then that segment’s volume

will continually increase. If the sum is less than 1.0, then that segment’s volume will

continually decrease; if the volume reaches 0, the simulation will end badly.

Note for downstream boundary elevation – If a downstream boundary elevation function

is being defined for a dynamic flow network, then the flow path should consist of a single

segment pair from “Boundary” to the downstream segment number. The fraction of flow

should be set to 0.

Note for channel network – If a two-dimensional channel network is being defined for

the Dynamic Flow option, then a channel network must be defined by one or more special

Flow Functions. In a channel network flow function, each segment pair defines a unique

flow channel. The fraction of flow multipliers must be set to 0. Channel lengths and cross-

27

sectional areas for each segment pair are read from the Exchanges screen (Section 4.5).

Channel hydraulic radius is calculated internally as the average of the upstream and the

downstream segment depths. Channel width is calculated internally as the cross-sectional

area divided by hydraulic radius. The channel network must not include any boundaries.

Channels connect two segments within the model network. WASP distinguishes channel

networks from traditional flow paths by the absence of boundaries and flow path

multipliers of 0. The flow time function associated with a channel network is not used, and

flow values can be left at 0.

4.4.4 Flow Time Function

The flow time function is a table consisting of dates, times, and inflow values [m3/sec].

Each row in the table represents a single point in time. During a simulation, inflows are

interpolated between these points based on the flow function interpolation option selected

(see Section 4.4.2). At least two rows must be entered in the flow time function to allow

for interpolation.

Date – As with other WASP time functions, the date must be entered as mm/dd/year (e.g.,

01/01/2004). The first date in the time function should correspond with the Start Date

specified in the Data Set Screen (Section 4.1.2). The last date in the time function normally

will correspond with the End Date.

Time – The time must be entered as hh:mm (e.g., 14:30).

Value – The inflow for this date and time is specified in units of [m3/sec]. Different units

can be used if a conversion factor is provided with the Flow Field (Section 4.4.1). Note

that if a downstream boundary elevation function is being defined, then the value entered

will be surface elevation [m].

The time function table allows the user to enter time variable flow information. For

constant flows, two rows should be specified with the simulation start and end dates, and

the constant flow value. The user can enter the information by hand, paste in from a

spreadsheet, or query in from database/spreadsheets.

 Exchanges screen

The Exchanges screen is used to define dispersive transport, including surface water and

pore water mixing. The Exchanges screen is also used to define channel lengths and initial

cross-sectional areas for channel networks.

The Exchanges input screen is a complex screen that contains four tables (Figure 10). The

upper left quadrant is used to select the transport field, such as “Surface Water” flow. For

each transport field selected, the upper right quadrant is used to define a set of transport

functions, including lateral and longitudinal dispersion functions that provide data for any

channel networks defined in the Flow functions (Section 4.4.3). For each exchange

28

function, the bottom two quadrants are used to define the exchange path and the exchange

time function.

Figure 10 - Exchanges Screen

4.5.1 Exchange Field

The exchange field must be selected. Two transport fields are available:

1. Surface Water – This transport field is used to describe surface water mixing. These

turbulent flows transport both the particulate and dissolved fractions of a constituent.

Pore Water – This transport field is used to describe pore water mixing. These flows

transport only the dissolved fraction of a constituent.

Scale Factor – The scale factor for a transport field multiplies all exchanges associated

with that field by the input value. This is generally used to scale exchanges in sensitivity

tests. The default value is 1.0.

Conversion Factor – The conversion factor for a transport field multiplies all exchanges

associated with that field by the input value. This is generally used to adjust input

dispersion coefficient units to the internal units of m2/sec. If dispersion coefficients are

specified in cm3/sec, the conversion factor should be 0.0001. The default value is 1.0.

4.5.2 Exchange Function

The user can define several exchange functions for the selected transport field. Each

exchange function must have its own exchange path function (lower left table) and

dispersion time function (lower right table). Normally, an Exchange Function defines a

type of exchange, such as lateral or longitudinal dispersion or surface water-pore water

exchange. Exchange functions are also used in conjunction with the Dynamic Flow option

29

to define channel lengths and initial cross-sectional areas for two-dimensional (x-y)

channel networks.

To insert an exchange function, first highlight the Surface Water field in the upper left

table, then move the cursor to the upper right quadrant and click on the insert button. The

resulting flow function cell, labeled “Exchange Function,” can be edited to provide a

descriptive name.

To insert additional exchange functions, either click on “insert” or highlight the last flow

function and press the down arrow. To delete an exchange function, select the function by

highlighting the row and click on the delete button. Deleting an exchange function will

delete the corresponding exchange path function (lower left table) and disperson time

function (lower right table).

Function Name – When an exchange function is inserted, it is given the default name

“Exchange Function.” The Function cell can be edited to provide a descriptive name, such

as “lateral dispersion,” “longitudinal dispersion,” “pore water exchange,” or “channel

network.”

Interpolation Option – The default interpolation option for the exchange time function

associated with an exchange function is “Linear.” This can be changed to “Step” to provide

for a step function. To change options, click in the Interpolation cell, press the down arrow,

and select the interpolation option for this exchange function.

Once an exchange function is selected and named, the user must define the associated

exchange path function and exchange time function. Be sure that the correct exchange

field and exchange function are highlighted before entering these next screens.

4.5.3 Exchange Path Function

The exchange path function specifies a set of dispersive exchange flows. The function

consists of a set of rows, corresponding to segment interfaces (or “channels” in a channel

network). Each row will have a set of segment pairs, a cross-sectional area, and a

characteristic mixing length.

Segment Pairs – Each discrete exchange pathway is defined by a set of two segments

between which exchange flows occur. Either “Segment One” or “Segment Two” can be

defined as “Boundary.” Neither the preprocessor nor the model can assure that the

segments are connected properly. Connectivity is the responsibility of the user.

Cross-Sectional Area, m2 - Cross-sectional areas are specified for each dispersion

coefficient, reflecting the area through which mixing occurs. These can be surface areas

for vertical exchange, such as in lakes or in the benthos. Areas are not modified during the

simulation to reflect flow changes.

Mixing Length, m – Mixing lengths or distance are specified for each dispersion

coefficient, reflecting the characteristic length over which mixing occurs. These are

typically the lengths between the center points of adjoining segments. A single segment

may have three or more mixing lengths for segments adjoining longitudinally, laterally,

and vertically. For surficial benthic segments connecting water column segments, the

depth of the benthic layer is a more realistic mixing length than half the water depth.

30

Note for channel network – If a two-dimensional channel network is being defined for

the Dynamic Flow option, then cross-sectional areas and mixing lengths entered here will

be assigned to corresponding channels defined in the Flow Path screen (Section 4.5.3).

4.5.4 Exchange Time Function

The exchange time function is a table consisting of dates, times, and dispersion coefficient

values [m2/sec]. Each row in the table represents a single point in time. During a simulation,

dispersion coefficients are interpolated between these points based on the dispersion

function interpolation option selected (see Section 4.5.2). At least two rows must be

entered in the flow time function to allow for interpolation.

Date – As with other WASP time functions, the date must be entered as mm/dd/year (e.g.,

01/01/2004). The first date in the time function should correspond with the Start Date

specified in the Data Set Screen (Section 4.1.2). The last date in the time function normally

will correspond with the End Date.

Time – The time must be entered as hh:mm (e.g., 14:30).

Value – The inflow for this date and time is specified in units of [m2/sec]. Different units

can be used if a conversion factor is provided with the Exchange Field (Section 4.5.1).

Dispersive mixing coefficients may represent pore water diffusion in benthic segments,

vertical diffusion in lakes, and lateral and longitudinal dispersion in large water bodies.

Values can range from 10-10 m2/sec for molecular diffusion to 5×102 m2/sec for

longitudinal mixing in some estuaries.

The time function table allows the user to enter time variable exchange information. For

constant exchanges, two rows should be specified with the simulation start and end dates,

and the constant dispersion coefficient value. The user can enter the information by hand,

paste in from a spreadsheet, or query in from database/spreadsheets.

 - References

Ambrose, R. B., J. L. Martin, and T. A. Wool, 2006. Wasp7 Benthic Algae - Model Theory

and User's Guide. U.S. Environmental Protection Agency, Washington, DC,

EPA/600/R-06/106 (NTIS PB2007-100139), 2006.

Wool T.A., R.B. Ambrose, J.L. Martin, and E.A. Comer, 2001. The Water Quality Analysis

Simulation Program, WASP6; Part A: Model Documentation. U.S. Environmental

Protection Agency, Center for Exposure Assessment Modeling, Athens, GA.

Ambrose, R.B., Jr., T.A. Wool, and J.L. Martin, 1993. The Water Quality Analysis

Simulation Program, WASP5; Part A: Model Documentation. Internal Report

Distributed by USEPA Center for Exposure Assessment Modeling, U.S.

Environmental Protection Agency, Athens, GA.

Ambrose R.B., T.A. Wool, J.P. Connolly, and R.W. Schanz, 1988. WASP4, A

Hydrodynamic and Water Quality Model—Model Theory, User's Manual, and

31

Programmer's Guide. EPA/600/3-87-039, U.S. Environmental Protection Agency,

Athens, GA.

Di Toro DM, J.J. Fitzpatrick, and R.V. Thomann, 1983. Water Quality Analysis Simulation

Program (WASP) and Model Verification Program (MVP) - Documentation.

Contract No. 68-01-3872, Hydroscience Inc., Westwood, NY, for U.S. EPA,

Duluth, MN.

Chapra, S.C. 1997. Surface Water-Quality Modeling, McGraw-Hill, New York, New York,

844 pp.

Chapra, S.C. 2003. QUAL2K: A Modeling Framework for Simulating River and Stream

Water Quality (Beta Version): Documentation and Users Manual. Civil and

Environmental Engineering Dept., Tufts University, Medford, MA.

Chapra, S.C. and G.J. Pelletier. 2004. QUAL2K: A Modeling Framework for Simulating

River and Stream Water Quality, Version 1.3: Documentation and Users Manual.

Civil and Environmental Engineering Dept., Tufts University, Medford, MA.

Feigner, K.D. and H.S. Harris, 1970. Documentation Report – FWQA Dynamic Estuary

Model. U.S. Department of Interior, Federal Water Quality Administration.

Wool, T.A., R.B. Ambrose, and J. L. Martin. 2001. “The Water Analysis Simulation

Program, User Documentation for Version 6.0,” Distributed by USEPA Watershed

and Water Quality Modeling Technical Support Center, Athens, GA.

32

 - Appendix 1: Derivation of Equations

 Hydraulic Exponents for Kinematic Wave Flow

Manning’s formula (Equation 19) provides the basis for deriving relationships among the

hydraulic exponents. Rearranging terms gives cross-sectional area as a function of flow:

Equation 54

5/35/210/3

0

5/3 QBSnA

Cross-sectional average depth (hydraulic radius) is given by:

Equation 55

5/35/310/3

0

5/3 QBSn
B

A
d

Velocity is given by:

Equation 56

5/25/210/3

0

5/3 QBSn
A

Q
v

Substituting Equation 3 for width as a function of flow gives:

Equation 57

 exp15/35/310/3

0

5/3 bQbmultSnd

Equation 58

 exp15/25/210/3

0

5/3 bQbmultSnv

Equation 57 and Equation 58 give the depth and velocity hydraulic exponents as a function

of the width exponent:

Equation 59

 exp14.0expexp16.0 bvbdxp

Comparing the flow exponents confirms that the velocity exponent is 2/3 of the depth

exponent, confirming Equation 9.

 - Appendix 2: Model Verification Tests

Model verification tests were designed to assure that the equations are implemented

correctly in the model code. Results are stored in separate folders at:

 \WASP7\QA\Stream Transport\ 4-Stream Kinematic Wave Flows\

33

Verification tests are outlined below. Results are detailed in a companion document.

 Kinematic Wave Tests

7.1.1 Stream Transport Test 1

This series tests the kinematic wave flow routines in WASP using the Simple Toxicant

module with intermediate slope and steady inflow with an example problem taken from

Chapra, Example 14.6, pp. 253, 254. Results are compared with analytical solutions

implemented in a spreadsheet, and by simple hand calculations.

 Test 1a – Upstream Inflow Only

 Test 1b – Upstream and Pore Water Inflow

 Test 1c – Upstream and Precipitation Inflow

 Test 1d – Upstream Inflow and Evaporation Outflow

7.1.2 Stream Transport Test 2

This series tests the kinematic wave flow routines in WASP using the Heat module with

shallow slope and step changes in inflow. Results for each flow step are compared with

analytical calculations calculated in a spreadsheet.

 Test 2a – Rectangular Cross-Section

 Test 2b – U Cross-Section

 Test 2c – V Cross-Section

7.1.3 Stream Transport Test 3

This series tests the kinematic wave flow routines in WASP using the Eutrophication

module with shallow slope, U-shape cross-section, step changes in upstream inflow, and

inflow or withdrawal at Segment 3.

 Test 3a – Constant Tributary Inflow

 Test 3b - Constant Flow Withdrawal

7.1.4 Stream Transport Test 4

This series tests the kinematic wave flow routines in WASP using the Mercury module

with a branching stream system. A medium stream with moderate slope is connected to a

small tributary with shallow slope.

 Test 4a – Step Inflows

 Test 4b - Long-Term, Variable Inflows

Test 4a specifies step changes in upstream and tributary inflows. Results for each flow step

are compared graphically and to analytical solutions from a spreadsheet. Test 4b uses

variable upstream and tributary inflows repeating in a 2-year pattern over a long simulation

period. Results are examined graphically for stationary (repeating) output.

34

7.1.5 Stream Transport Test 5

This tests the kinematic wave flow routines in WASP using the Heat module with a

diverging-converging stream system. A small river with steep slope diverges into two

branches receiving 40% and 60% of the upstream flow. These branches converge

downstream. This test uses step changes in the upstream inflow. Results for each flow step

are compared graphically and to analytical solutions from a spreadsheet.

 Weir Overflow Verification Tests

Model verification tests were designed to assure that the equations are implemented

correctly in the model code. Results are stored in separate folders at:

 \WASP7\QA\Stream Transport\4-Ponded Weir Flows\

Tests are outlined below.

7.2.1 Weir Overflow Test 1 – Steady Flow

This tests the ponded weir overflow routine in WASP using the Mercury module with

steady inflow and sequentially increasing weir heights. Results are compared with

analytical calculations.

7.2.2 Weir Overflow Test 2 – Variable Flow

This tests the ponded weir overflow routine in WASP using the Mercury module with

sequentially increasing inflow and sequentially increasing weir heights. Results are

compared with analytical calculations.

7.2.3 Weir Overflow Test 3 – Long Term Dynamics

This tests weir overflow routines in WASP for long-term performance with variable

inflows repeating in a 2-year pattern. Results are examined for long-term drift in depths,

volumes, and velocities.

 Dynamic Flow Verification Tests

Model verification tests were designed to assure that the equations are implemented

correctly in the model code. Results are stored in separate folders at:

 \WASP7\QA\Stream Transport\4-Dynamic Flows\

Tests are outlined below.

7.3.1 Dynamic Flow Test 1 - Steady Backwater

This tests the dynamic flow routine in WASP with mild slope, steady inflow, and

downstream pond with weir. Weir height is set to provide downstream ponded depth equal

to the kinematic flow depth. Results are compared with output from an equivalent

kinematic wave simulation.

35

7.3.2 Dynamic Flow Test 2 – Steady Flow, Elevation

This tests the dynamic flow routine in WASP with mild slope, steady inflow, and constant

downstream boundary elevation. Results are compared with output from an equivalent

DYNHYD simulation linked with WASP.

7.3.3 Dynamic Flow Test 3 – Variable Stream Flow

This tests the dynamic flow routine in WASP using the Mercury module with sequentially

increasing flow. Results are compared with output from a DYNHYD simulation linked

with WASP.

7.3.4 Dynamic Flow Test 4 – EFDC Stream

This tests the dynamic flow routine in WASP with mild slope, steady inflow, and constant

downstream boundary elevation. Results are compared with output from an equivalent

EFDC simulation linked with WASP.

7.3.5 Dynamic Flow Test 5 – Tidal Stream

This tests the dynamic flow routine in WASP with flat slope, no inflow, and sinusoidal

tidal downstream boundary elevation. Results are compared with output from equivalent

DYNHYD and EFDC simulations linked with WASP.

7.3.6 Dynamic Flow Test 6 – 2-D Tidal Stream

This tests the dynamic flow routine in WASP on a 2-dimensional network with flat slope,

no inflow, and sinusoidal tidal downstream boundary elevation. Results are compared with

output from an equivalent EFDC simulation linked with WASP.

 Appendix 3: Hydrodynamic Linkage File API

his application program interface function was developed to efficiently allow multi-

dimensional hydrodynamic and sediment transport models to pass simulation information

to WASP. The WASP developers believe it is best to separate the hydrodynamic and water

quality models and facilitate the soft linkage of the algorithms through this hydrodynamic

linkage file. This allows hydrodynamic model developers an easy method for linking their

models with the WASP kinetics. The linkage allows hydrodynamic models provide

transport information to all of the WASP modules.

The purpose of this document is to give an overview of the API and describe the various

functions that are available. The details of the format and storage of the hydrodynamic

linkage file is totally controlled by the API

 General Concept

Figure 11 provides a schematic of how a hydrodynamic model would interact with the API

to create a hydrodynamic linkage file and how WASP interacts with the same API to read

the information. There are two methods that could be employed by the hydrodynamic

model developer:

36

In-Line Code – embed the calls to the API that creates the hydrodynamic model. This

allows the model to create the hydrodynamic linkage file as the hydrodynamic model

simulates through time.

Post process and output file. Basically, the hydrodynamic model writes a file using its own

structure. Then a utility program like HYDROLINK.EXE that is distributed with WASP

will read this file and create the hydrodynamic linkage file.

Figure 11 HYDROLINK Overview

 Application Program Interface (API) Overview

The API allows other model developers to link their hydrodynamic models with WASP

without worrying about format or changes made within the WASP framework. The API

when implemented correctly will allow the creation of a correctly formatted linkage file

that WASP can read.

There are several steps that need to be completed to initialize and ultimately write a correct

file. Figure 12 illustrates the various stages in building the file. The initialization block

controls the creation of the file, specifying the time range, number of segment, number of

flow paths, and assorted switches which control the options of the file. All options will be

discussed below. The main portion of the API is the writing of time variable segment

information (volumes, depths, velocities, salinity, and temperature) from the

hydrodynamic model for use by WASP. After segment information is written, flows and

dispersion are written for each of the flow paths simulated in the hydrodynamic model.

Hydrodynamic
Model

HYDROLINK

Hydrodynamic
Linkage File

WASP
Eutrophi

37

Figure 12 API Components

 Initialization

This initialization block must be completed prior to saving information in the time loop.

Many of the initialization calls will control how the information will be stored, in particular

which language type will be used to create or read the information. C++ array indices

range from 0 to number of values, while FORTRAN indices range from 1 to number of

values, it is critical that these be set correctly because the API uses pointers to save and

send array data. It is recommended that you use the order as described below.

8.3.1 Call Hlopen (Hlfile, Ihl_mode, Ihl_handle,Ierror)

This routine is used to initialize a hydrodynamic linkage file or open one for reading

depending on how ihl_mode is set (see option in use). If this call is successful (Ierror =0),

the files is either created (open for writing) or open for reading an important variable is set

that is needed in virtually every other call to the API. Hlopen will return a file handle

(Ihl_handle), this integer will be to be stored.

Where:

 Hlfile – this is a character string that contains the path and filename of the hydrodynamic

linkage file.

 Ihl_mode – is an integer (I4 or Short integer) that specifies writing (create) or reading. 0

= Read, 1 = write.

 Ihl_handle – this value is assigned once the call to Hlopen is successful. This is an integer

value that is used to reference the file that was open or created in the call to Hl_open.

Note that you can have more than one file open in the API.

38

 Ierror – virtually all of the calls to the API will return an error code. If there is no error this

integer will return a 0, a number greater than 0 means there was an error. The user can

get a description of the error by calling Hlgetlasterror (described below).

8.3.2 Call Hlsetlanguage (Ihl_handle, Ilanguage, Ierror)

This routine sets the language type that will be writing to the hydrodynamic linkage file.

Currently the switches are between C and FOTRAN. For C array indices start at 0 and

two/three dimensional arrays vary from left to right. For FORTRAN arrays start at 1, and

arrays vary right to left. The default is C.

Where:

 Ihl_handle – the file handle assigned by Hlopen (integer)

 Ilanguage – integer value that sets the language of the writing or reading program (0 =

C++, 1 = FORTRAN)

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

8.3.3 Call Hlgetlasterror (ErrorString)

This method is used to return a string describing the last error encounter by the API. After

ever call to an API function the user should check the status of error returned by the calling

function. If the error status is greater than 0 there was an error. To get an error message

Call Hlgetlasterror.

Where:

 Errstring – this is a character string that will receive the error message

8.3.4 call Hladdescription (Ihl_handle, 0 ,Description(I) , Ierror)

This function allows the user to add descriptions to the hydrodynamic linkage file that can

be displayed at run time in WASP. There is no limit to the number of description lines that

you can add.

Where:

 Ihl_handle– the file handle assigned by Hlopen (integer)

 Iline – this is the indices of the description being saved.

 Description(I) – description (string)

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

8.3.5 Call Hlsetcreator (Ihl_handle, Modtype, Ierror)

This function is used to inform WASP what the of hydrodynamic model was used to create

the linkage file. Currently WASP recognizes four linkage types: 1) Environmental Fluids

39

Dynamic Code (EFDC), 2) 1-Dimensional Dynamic Flow Model (DYNHYD), 3) EPD-

RIV1 Model, 4) WASP to WASP linkage

Where:

 Ihl_handle -- the file handle assigned by Hlopen (integer

 Modtype – this is an integer designated for the type of hydrodynamic model that created

the linkage file.

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

8.3.6 call hlsetseedmoment(Ihl_handle, istartmonth, istartday,
istartyear, istarthour, istartminute, istartsecond, ierror)

This function is used to set the initial time and date for th hydrodynamic information in the linkage

file. WASP will automatically set the start and end date of the water quality model simulation.

The API will increment time from the seed time as information is added to the hydrodynamic

linkage file.

Where:

 Ihl_handle -- the file handle assigned by Hlopen (integer

 istartmonth – this is an integer month designation.

 Istartday – this is an integer day designation.

 Istartyear – this is an integer year designation

 Istarthour – this is an integer hour designation

 Istartminute – this is an integer minute designation

 Istartsecond – this is an integer second designation

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

8.3.7 call hlsetnumlayers(Ihl_handle,num_layer,ierror)

This function is used to determine the number of layers that will be passed in the hydrodynamic

linkage file. If the hydrodynamic model is a sigma stretch grid (constant number of layers), when

WASP is initially linked to the hydrodynamic file it will automatically determine segment

orientation for the light path and determine which segments have an air interface. If the

hydrodynamic model does not have a constant number of layers an auxiliary file will need to be

created (SEE SECTION).

Where:

 Ihl_handle -- the file handle assigned by Hlopen (integer)

 Num_layer – this is an integer that specifies the number of layers contained in the

hydrodynamic model.

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

40

8.3.8 call hlsetnumsegments(Ihl_handle, noseg, ierror)

This function defines the number of cells/segments that will be transferred from the

hydrodynamic model. This number is constant throughout development of the hydrodynamic

linkage. This number defines the number of segment that segment constituents will be saved.

WASP uses this number to set the number of segments when initially linked to the hydrodynamic

linkage file.

Where:

 Ihl_handle -- the file handle assigned by Hlopen (integer)

 Noseg – this is an integer that specifies the number of segments that information will be

saved.

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

8.3.9 call hlsetsegname(ihl_handle,i,segname,ierror)

This function allows a segment name be assigned to each cell. This segment name will be

imported into WASP during the initial linkage process. Typically segment names could be the cell

designation in the hydrodynamic model, such as I=1, J=1, K=4.

Where:

 Ihl_handle -- the file handle assigned by Hlopen (integer)

 Iseg – is the segment number from 1 to noseg that name is being defined.

 Segname – this is a string no larger than 30 characters that can specify a name associated

with each cell.

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

8.3.10 call hlsetnumflowpaths(Ihl_handle, numflow, ierror)

This function sets the number of flow paths that will be defined in the hydrodynamic linkage file.

See figure xx for what defines a flow path. Once the time loop starts, this is the number of flows

that will need to be written.

Where:

 Ihl_handle – the file handle assigned by Hlopen (integer)

 Numflow – the number of flow paths that will be passed to WASP

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

41

8.3.11 call hlsetnumsegconsts(Ihl_handle, inumsegconsts,
ierror)

This function is used to set the number of segment constituents that will be written to the

hydrodynamic linkage file. The current version of the HYDROLINK API assumes a particular order.

To get to a particular constituent you must define the earlier ones. Segment constituents are:

volume, depth, velocity, temperature and salinity.

Where:

 Ihl_handle – the file handle assigned by Hlopen (integer)

 Inumsegconsts – defines the number of segment constituents that will be written to

hydrodynamic linkage file (integer)

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

8.3.12 Hlsetnumfpconsts (Ihl_handle, NumFlowPathConst,
ierror)

This function is used to specify the number of flow path constituents. The number of flow path

constituents that are passed by the hydrodynamic model is typically a function of the

dimensionality of the model. For models like EFDC the number of flow path constituents is three:

1) Flow 2) Dispersion/residual flow, 3) Direction of Flow. For simple 1 dimensional models like

DYNHYD the number of flow path constituents is one, Flow.

Where:

 Ihandle – the handle assigned by Hlopen (integer)

 NumFlowPathConst – Number of Flow path constituent

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

8.3.13 Hlsetfpconsttype (Ihl_handle, IconType, Index, ierror)

This function is from 1 to the Number of Flow Path Constituents, setting the characteristic of

individual flow path constituent.

Where:

For Index = 1, NumFlowPathConst

 Ihandle – the handle assigned by Hlopen (integer)

 IconType – Integer value to define flow constituent

 1 – Flow

 2 – dispersion

 3 – Flow Direction

 Index – 1 to NumFlowPathConst

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

42

End Do

8.3.14 call hlsetvartimestep(Ihl_handle,IdtOpt,ierror)

This function is used to specify the timestep option. If the hydrodynamic model has the ability to

take dynamic timestep, additional information will need to be written to the hydrodynamic

linkage file so that WASP can take the same timestep.

Where:

 Ihl_handle – the handle assigned by Hlopen (integer)

 IdtOpt – sets the timestep option (integer)

 0 – Constant Timestep, the hydrodynamic model timestep will be constant

 1 – Time variable timestep, note additional information needs to be written to the

hydrodynamic linkage

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

8.3.15 call hlsettimestep(Ihl_handle,hdt,ierror)

This function is used to set the timestep that WASP will use. This value is typically set to the

timestep that is used by the hydrodynamic model. If the time variable timestep option is not

used, this value only has to be specified once. If the time variable timestep is selected, it needs

to be specified each time a data frame of data is written.

Where:

 Ihl_handle -- the handle assigned by Hlopen (integer)

 Hdt --- timestep to set in seconds (integer)

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

8.3.16 call hlsethydtimestep(Ihl_handle,hdt,ierror)

This function specifies the timestep that is used for the hydrodynamic model simulation. This

value only needs to be set once.

Where:

 Ihl_handle -- the handle assigned by Hlopen (integer)

 Hdt --- timestep to set in seconds (integer)

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

43

8.3.17 call hlsetupdateint(Ihl_handle,rinterval,ierror)

This function specifies the time interval in which data is written to the hydrodynamic linkage file.

WASP does not require information at every hydrodynamic model timestep. The time interval in

which information is written is:

timestep * numdht

It is t this interval that WASP will read a new set of data from the hydrodynamic linkage file.

Where:

 Ihl_handle -- the handle assigned by Hlopen (integer)

 rinterval—this specifies the time interval between reading new information from the

hydrodynamic linkage file in seconds (integer)

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

8.3.18 call hlsethydtowaspratio(Ihl_handle,numdht,ierror)

This function specifies the number of hydrodynamic model timesteps that will be taken before

information is saved to the hydrodynamic linkage file. This value is used to calculate the

simulation time interval between writes/reads to/from of the hydrodynamic linkage file.

Where:

 Ihl_handle -- the handle assigned by Hlopen (integer)

 numdht --- specifies the number of timesteps the hydrodynamic model takes between

writing information to the hydrodynamic linkage file (integer)

 ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

8.3.19 call hlsetflowpath(Ihl_handle,k,jq(k),iq(k),iflowdir(k),ierror)

This function sets the physical flow paths so that information can be mapped into WASP. This is

a critical step in setting up a linkage file for WASP. The order of the flow path information that is

entered here dictates the order that the actual flow information has to written later.

Where:

DO K=1, NumFlow

 Ihl_handle – is the handle thst is assigned by Hlopen (integer)

 K – is the index number of the flow path being defined (integer)

 JQ – is the upstream cell (has to be a number 1 to number os segments)

 IQ – is thedownstream cell (has to be a number 1 to number of segments)

 Iflowdir(k) –is the direction of the flow path

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

End DO

44

 Segment Information
Segment information is sent to the API for 3 segment components that are needed by WASP. All

of the data that will be sent to WASP must be loaded in the array prior to the API call. The same

call is used for all segment information. The variable ISegInfo determines which data is currently

being sent.

8.4.1 call hlsetseginfo(Ihl_handle,IsegInfo,SegVolume,ierror)

where:

 Ihl_handle – is the handle that is assigned by Hlopen (integer)

 ISegInfo = 1 Segment Volume (m3)

 ISegInfo = 2 Segment Depth (m)

 IsegInfo = 3 Segment Velocity (m/sec)

 SegVolume = is a real array dimension 1 to number of segments, containing the

corresponding volume.

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

 Flow Information
The user has the ability to send two types of flows to the API that could be used by WASP. The

first type is advective flow and dispersive flow. All of the data that will be sent to WASP must be

loaded in the array prior to the API call. The same call is used for all flow information. The second

variable in the call controls whether it is advective flow (1) or dispersive flow (2).

8.5.1 call hlsetflowinfo(Ihl_handle,1,Flow,ierror)

8.5.2 call hlsetflowinfo(Ihl_handle,2,brintt,ierror)

Where:

 Ihl_handle – is the handle that is assigned by Hlopen (integer)

 1 or 2 – designates advective or dispersive flow

 Flow/Brintt = is a real array dimensioned 1 to number of flows, corresponding to flow

paths defined above.

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

 End Moment

Once a complete data frame (segment and flow information) has been saved for the current

timestep, the API needs to be informed to advance to the next data frame. The call below gives

this instruction. When called the data frame is flushed out of memory and compressed in the

hydrodynamic linkage file.

45

call hlmomentcomplete(Ihl_Handle,ierror)

Where:

 Ihl_handle – is the handle that is assigned by Hlopen (integer)

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

 Close File

Before exiting the program that is using this API, an instruction has to be given for the API to close

the file. Failing to make this call will make the hydrodynamic linkage file unusable.

call hlclose(Ihl_handle,ierror)

Where:

 Ihl_handle – is the handle that is assigned by Hlopen (integer)

 Ierror -- If there is no error this integer will return a 0, a number greater than 0 means

there was an error.

 Compilation Guidance

When compile code to link with the HYDROLINK API the user will have to be aware that you are

linking to external functions. Depending upon the compiler/linker you may be required to take

additional steps. The HYDROLINK API has been successfully called from the following

development environments:

 Absoft Fortran

 Intel Fortran *

 GNU Fortran

 Microsoft Visual C++

 Microsoft Visual Basic

The Intel compiler as others may require interface files for functions contained in the API.

Interface Files

 Interface Files

If your compiler requires interface files for the external calls, they are listed below.

 interface

 subroutine hlsetdebug(hl_debug)

 !ms$attributes c,dllimport,alias:'__hlsetdebug'::hlsetdebug

 Integer hl_debug

 !ms$attributes reference :: hl_debug

 end subroutine

 end interface

46

!---

 interface

 subroutine hlgetlasterror(message)

 !ms$attributes c,dllimport,alias:'__hlgetlasterror'::hlgetlasterror

 character*(*) message

 !ms$attributes reference :: message

 end subroutine

 end interface

!---

 interface

 subroutine hlopen(FName, hl_mode, hl_handle, ierror)

 !ms$attributes c,dllimport,alias:'__hlopen'::hlopen

 character*(*) Fname

 Integer hl_mode, hl_handle, ierror

 !ms$attributes reference :: FName, hl_mode, hl_handle, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetlanguage(hl_handle, hl_language, ierror)

 !ms$attributes c,dllimport,alias:'__hlsetlanguage'::hlsetlanguage

 Integer hl_handle, hl_language, ierror

 !ms$attributes reference :: hl_handle, hl_language, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetcreator(hl_handle, hl_creator, ierror)

 !ms$attributes c,dllimport,alias:'__hlsetcreator'::hlsetcreator

 Integer hl_handle, hl_creator, ierror

 !ms$attributes reference :: hl_handle, hl_creator, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hladddescription(hl_handle, id, string, ierror)

 !ms$attributes c,dllimport,alias:'__hladddescription'::hladddescription

47

 Integer hl_handle, id, ierror

 character *(*) string

 !ms$attributes reference :: hl_handle, id, string, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetseedmoment(hl_handle, month, day, year, hour, minute,second,ierror)

 !ms$attributes c,dllimport,alias:'__hlsetseedmoment'::hlsetseedmoment

 Integer hl_handle, month, day, year, hour, minute,second,ierror

 !ms$attributes reference :: hl_handle, month, day, year, hour

 !ms$attributes reference :: minute,second,ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetnumsegments(hl_handle, numsegs, ierror)

 !ms$attributes c,dllimport,alias:'__hlsetnumsegments'::hlsetnumsegments

 Integer hl_handle, numsegs, ierror

 !ms$attributes reference :: hl_handle, numsegs,ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetsegname(hl_handle,index, segname, ierror)

 !ms$attributes c,dllimport,alias:'__hlsetsegname'::hlsetsegname

 Integer hl_handle, index, ierror

 Character *(*) segname

 !ms$attributes reference :: hl_handle, index, segname,ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetnumflowpaths(hl_handle,numfp, ierror)

 !ms$attributes c,dllimport,alias:'__hlsetnumflowpaths'::hlsetnumflowpaths

 Integer hl_handle, numfp, ierror

 !ms$attributes reference :: hl_handle, numfp, ierror

 end subroutine

48

 end interface

!---

 interface

 subroutine hlsetnumsegconsts(hl_handle,numsc, ierror)

 !ms$attributes c,dllimport,alias:'__hlsetnumsegconsts'::hlsetnumsegconsts

 Integer hl_handle, numsc, ierror

 !ms$attributes reference :: hl_handle, numsc, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetnumfpconsts(hl_handle,numfpc, ierror)

 !ms$attributes c,dllimport,alias:'__hlsetnumfpconsts'::hlsetnumfpconsts

 Integer hl_handle, numfpc, ierror

 !ms$attributes reference :: hl_handle, numfpc, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetsegconsttype(hl_handle,sc_index, sc_type,ierror)

 !ms$attributes c,dllimport,alias:'__hlsetsegconsttype'::hlsetsegconsttype

 Integer hl_handle, sc_index, sc_type, ierror

 !ms$attributes reference :: hl_handle, sc_index, sc_type, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetfpconsttype(hl_handle,fp_index, fp_type,ierror)

 !ms$attributes c,dllimport,alias:'__hlsetfpconsttype'::hlsetfpconsttype

 Integer hl_handle, fp_index, fp_type, ierror

 !ms$attributes reference :: hl_handle, fp_index, fp_type, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetvartimestep(hl_handle,vardt,ierror)

 !ms$attributes c,dllimport,alias:'__hlsetvartimestep'::hlsetvartimestep

49

 Integer hl_handle, vardt, ierror

 !ms$attributes reference :: hl_handle,vardt, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsethydtimestep(hl_handle,timestep,ierror)

 !ms$attributes c,dllimport,alias:'__hlsethydtimestep'::hlsethydtimestep

 Integer hl_handle, ierror

 Real timestep

 !ms$attributes reference :: hl_handle,timestep, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetupdateint(hl_handle,updateinterval,ierror)

 !ms$attributes c,dllimport,alias:'__hlsetupdateint'::hlsetupdateint

 Integer hl_handle, ierror

 Real updateinterval

 !ms$attributes reference :: hl_handle,updateinterval, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsethydtowaspratio(hl_handle,iratio,ierror)

 !ms$attributes c,dllimport,alias:'__hlsethydtowaspratio'::hlsethydtowaspratio

 Integer hl_handle, iratio, ierror

 !ms$attributes reference :: hl_handle,iratio, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetnumlayers(hl_handle,numlayers,ierror)

 !ms$attributes c,dllimport,alias:'__hlsetnumlayers'::hlsetnumlayers

 Integer hl_handle, numlayers, ierror

 !ms$attributes reference :: hl_handle,numlayers, ierror

 end subroutine

 end interface

50

!---

 interface

 subroutine hlsetflowpath(hl_handle,flow_index,from_seg, to_seg, direction, ierror)

 !ms$attributes c,dllimport,alias:'__hlsetflowpath'::hlsetflowpath

 Integer hl_handle, flow_index,from_seg, to_seg,direction,ierror

 !ms$attributes reference :: hl_handle,flow_index,from_seg

 !ms$attributes reference :: to_seg,direction,ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetflowinfo(hl_handle,index,value,ierror)

 !ms$attributes c,dllimport,alias:'__hlsetflowinfo'::hlsetflowinfo

 Integer hl_handle, index, ierror

 Real value

 !ms$attributes reference :: hl_handle,index, value, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsetseginfo(hl_handle,index,value,ierror)

 !ms$attributes c,dllimport,alias:'__hlsetseginfo'::hlsetseginfo

 Integer hl_handle, index, ierror

 Real value

 !ms$attributes reference :: hl_handle,index, value, ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlsettimestep(hl_handle,value,ierror)

 !ms$attributes c,dllimport,alias:'__hlsettimestep'::hlsettimestep

 Integer hl_handle, ierror

 Real value

 !ms$attributes reference :: hl_handle,value, ierror

 end subroutine

 end interface

!---

51

 interface

 subroutine hlmomentcomplete(hl_handle,ierror)

 !ms$attributes c,dllimport,alias:'__hlmomentcomplete'::hlmomentcomplete

 Integer hl_handle, ierror

 !ms$attributes reference :: hl_handle,ierror

 end subroutine

 end interface

!---

 interface

 subroutine hlclose(hl_handle,ierror)

 !ms$attributes c,dllimport,alias:'__hlclose'::hlclose

 Integer hl_handle, ierror

 Real value

 !ms$attributes reference :: hl_handle,ierror

 end subroutine

 end interface

!---

 Example Program

The following is source code to a utility program that is distributed with WASP. It converts

ASCII and binary outputs from several hydrodynamic models into the format required by

WASP. This would be a good starting point for your development.

 Program HydroLink

!---

 Integer, Allocatable, Dimension (:):: IQ, JQ, IFLOWDIR

 Real, Allocatable, Dimension (:):: SegVolume, SegDepth, SegVel, Flow, crnu, brintt

 integer*4 Ihl_handle

 character*1 ANS

 character*30 segname

 character*256 HLFILE,INFILE,segfile

 character*256 DESCRIPTION(10)

 character*256 MODELERNAME

 character*256 errstring

 logical binary, ConfigFile,EFDC,DYNHYD, EPDRIV1, HECRAS

52

!---

! Opening Message

!---

! write(6,6120)

!6120 format(3(/),62('-'),/,

! 'The purpose of this program is to convert a previously created',/ &

! 'hydrodynamic linkage file from EFDC, DYNHYD, EPDRIV1 to the ',/ &

! 'new HYDROLINK method. This is required for the latest version',/ &

! 'of WASP. The user must specify the path and filename of all ',/ &

! 'files to be created, must specify the file type and from which',/ &

! 'hydrodynamic model created the old file. The user must also ',/ &

! 'specify the start time (Gregorian Format) of the hydrodynamic ',/ &

! 'linkage file. ',/ &

! 62('-'),2(/))

!---

! hlopen parameters

!---

 Ihl_language = 1

 Ihl_creator = 1

 Ihl_handle = 0

 Ihl_debug = 1

 Ihl_mode = 1

 inumsegconsts = 3

 inumfpconsts = 3

 binary = .true.

 ConfigFile = .false.

 EFDC = .false.

 DYNHYD = .false.

 EPDRIV1 = .false.

 HECRAS = .false.

!---

! Open the Control File

!---

 open (unit=10,file='hydrolink.ctl',status='old',iostat=istat)

 if (istat .eq. 0) then

 write(6,*)'Previous Control File Found'

53

 write(6,*)'Do you want to read from File (Y=Yes, N=No)'

 read(5,*)ANS

 If(ANS .eq. 'Y' .or. ANS .eq. 'y')ConfigFile=.true.

 If(ANS .eq. 'A' .or. ANS .eq. 'a')ConfigFile=.false.

 if (ConfigFile) then

 write(6,*)'Reading Information from HYDROLINK.CTL'

 else

 close(unit=10)

 endif

 endif

!---

 if (ConfigFile)then

 read(10,*)ANS

 If(ANS .eq. 'A' .or. ANS .eq. 'a')binary=.false.

 If(ANS .eq. 'B' .or. ANS .eq. 'b')binary=.true.

!---

 read(10,*)ANS

 If(ANS .eq. 'E' .or. ANS .eq. 'e')EFDC=.true.

 If(ANS .eq. 'D' .or. ANS .eq. 'd')DYNHYD=.true.

 If(ANS .eq. 'R' .or. ANS .eq. 'r')EPDRIV1=.true.

 If(ANS .eq. 'H' .or. ANS .eq. 'h')HECRAS=.true.

!---

 read(10,1000)INFILE

 if (binary) then

 open(unit=1,file=INFILE,form='unformatted',status='old', &

 iostat=istat)

 if (istat .gt. 0) then

 write(6,*)'HYD File not Found: '

 stop

 endif

 else

 open(unit=1,file=INFILE,status='old',iostat=istat)

 if (istat .gt. 0) then

 write(6,*)'HYD File not Found: '

 stop

 endif

 endif

!---

54

 read(10,1000)HLFILE

 HLFILE=trim((HLFILE)//CHAR(0))

 read(10,*)istartmonth

 read(10,*)istartday

 read(10,*)istartyear

 read(10,*)istarthour

 read(10,*)istartminute

 read(10,*)istartsecond

 read(10,1000)segfile

 READ(10,*)NUM_DESCRIPTIONS

 do i=1,NUM_DESCRIPTIONS

 READ(10,1111)DESCRIPTION(I)

1111 format(A256)

 end do

1000 format(A64)

 else

!---

 open (unit=10,file='hydrolink.ctl',status='unknown')

 write(6,*)'Is Old HYD ASCII or Binary (A=ASCII, B=Binary)'

 read(5,*)ANS

 write(10,1060)ANS

1060 format(A1)

 If(ANS .eq. 'A' .or. ANS .eq. 'a')binary=.false.

 If(ANS .eq. 'B' .or. ANS .eq. 'b')binary=.true.

!---

 write(6,*)'Enter File Type (E=EFDC, D=DYNHYD, R=EPDRIV1, H=HECRAS)'

 read(5,*)ANS

 write(10,1060)ANS

 If(ANS .eq. 'E' .or. ANS .eq. 'e')EFDC=.true.

 If(ANS .eq. 'D' .or. ANS .eq. 'd')DYNHYD=.true.

 If(ANS .eq. 'R' .or. ANS .eq. 'r')EPDRIV1=.true.

 If(ANS .eq. 'H' .or. ANS .eq. 'h')HECRAS=.true.

!---

 write(6,*)'Enter Name of Previous Version HYD File to Convert'

 read(5,*)INFILE

 write(10,1000)INFILE

 if (binary) then

 open(unit=1,file=INFILE,form='unformatted',status='old', iostat=istat)

 if (istat .gt. 0) then

55

 write(6,*)'HYD File not Found: '

 stop

 endif

 else

 open(unit=1,file=INFILE,status='old',iostat=istat)

 if (istat .gt. 0) then

 write(6,*)'HYD File not Found: '

 stop

 endif

 endif

!---

 write(6,*)'Enter Name of HYDROLINK HYD File to Create'

 read(5,*)HLFILE

 write(10,1000)HLFILE

!---

 Write(6,6600)

6600 format('Seed Time Information Needed for the Start of ',/' Hydrodynamic Linkage File

mm/dd/yyyy hh:mm:ss')

 write(6,*)'Enter Start Month (mm)'

 read(5,*)istartmonth

 write(6,*)'Enter Start Day (dd)'

 read(5,*)istartday

 write(6,*)'Enter Start Year (yyyy)'

 read(5,*)istartyear

 write(6,*)'Enter Start Hour (hh)'

 read(5,*)istarthour

 write(6,*)'Enter Start Minute (mm)'

 read(5,*)istartminute

 write(6,*)'Enter Start Second (ss)'

 read(5,*)istartsecond

 write(10,*)istartmonth

 write(10,*)istartday

 write(10,*)istartyear

 write(10,*)istarthour

 write(10,*)istartminute

 write(10,*)istartsecond

 write(6,*)'Enter Name of Segment Name File (Type NONE)'

 read(5,1000)segfile

 write(10,1000)segfile

 write(6,6610)

56

6610 format('How Many Description Lines would you like to add to the file (0=None)')

 read(5,*)NUM_DESCRIPTIONS

 write(10,*) NUM_DESCRIPTIONS

 do i=1, NUM_Descriptions

 write(6,*)'Enter Description:',I

 read(5,1111)description(i)

 write(10,1111)description(i)

 end do

 close(unit=10)

 End If

 if(EFDC)MODTYPE =1

 if(DYNHYD)MODTYPE =2

 if(EPDRIV1)MODTYPE =3

 if(HECRAS)MODTYPE =2

!---

 HLFILE=(TRIM(HLFILE)//CHAR(0))

 write(6,*)'About to Create Hydrolink File'

 call hlopen(HLFILE, Ihl_mode, Ihl_handle, ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 write(6,*)'Hydrolink File Created'

!---

! Set the language to FORTRAN

!---

 call hlsetlanguage(Ihl_handle, 1, ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

!---

! Store a description string

!---

 write(6,*)'Storing Descriptions'

57

 do i =1,NUM_DESCRIPTIONS

 call hladddescription(Ihl_handle,0,DESCRIPTION(I),ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 end do

!---

! Store the modeler name

!---

! call hladddescription(Ihl_handle,1,MODELERNAME,ierror)

! if(ierror .gt. 0)then

! call hlgetlasterror(errstring)

! write(6,6000) ierror, errstring

! stop

! end if

!---

! Set the creator

!---

 write(6,*)'Setting Creator'

 call hlsetcreator(Ihl_handle, MODTYPE, ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

!---

! Set the seed moment

!---

 write(6,*)'Setting Seed Moment'

 IF (.not. HECRAS) THEN

 call hlsetseedmoment(Ihl_handle, istartmonth, istartday,istartyear, istarthour, istartminute,

istartsecond, ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

58

 write(6,6000) ierror, errstring

 stop

 end if

 ENDIF

!---

! Read the Header from Hydrodynamic Linkage File

!---

 write(6,*)'Starting to Process Hydrodynamic File'

 IF(BINARY)THEN

 IF (EFDC)READ(1)NOSEG,NUMFLOW, NUMDHT,HDT, START,END,NUM_LAYER

 IF (DYNHYD)READ(1)NOSEG,NUMFLOW, HDT, START,END,NUM_LAYER

 ELSE

 IF(EFDC)READ(1,*)NOSEG,NUMFLOW, NUMDHT, HDT, START,END, NUM_LAYER

 IF(DYNHYD)READ(1,*)NOSEG,NUMFLOW, HDT, START,END,NUM_LAYER

 IF(HECRAS)Then

 READ(1,*)NOSEG,NUMFLOW, HDT, IMON, IDAY, IYEAR, IHour, Imin,NUM_LAYER

 call hlsetseedmoment(Ihl_handle, IMON, IDAY, IYEAR, IHour,Imin, 0, ierror)

 NUMDHT = 1

 Endif

 END IF

!---

 Allocate (IQ(NUMFLOW))

 Allocate (JQ(NUMFLOW))

 Allocate (IFLOWDIR(NUMFLOW))

 Allocate (SEGVOLUME(NOSEG))

 Allocate (SEGDEPTH(NOSEG))

 Allocate (SEGVEL(NOSEG))

 Allocate (Flow(NUMFLOW))

 Allocate (CRNU(NUMFLOW))

 Allocate (BRINTT(NUMFLOW))

!---

 if (num_layer .lt. 1) then

 num_layer=1

 numdht=1

 endif

 if (numdht .lt. 1)numdht=1

!---

59

 call hlsetnumlayers(Ihl_handle,num_layer,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

!---

! Set the number of segments

!---

 call hlsetnumsegments(Ihl_handle, noseg, ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

!---

! Get Segment Name Map File if exists

!---

 open(unit=15,file=segfile,status='old', iostat=istat)

 write(6,*)'Opening segment map file; iostat = ',istat !3/11/08,rba !

 if (istat.eq.0) then

 write(6,*)'Segment Map Text file is: ',segfile !

 do i=1, NOSEG

 read(15,4000)SEGNAME

 SEGNAME =(TRIM(SEGNAME)//CHAR(0)) !

 call hlsetsegname(ihl_handle,i,segname,ierror)

 write(6,*)'Segment ',i,' name: ',segname,' err code ',ierror !

4000 format(A30)

 end do

 Else

 do i=1, NOSEG

 call hlsetsegname(ihl_handle,i,'WASP-Seg',ierror)

 end do

 endif

!---

! Set the number of flow paths

60

!---

 call hlsetnumflowpaths(Ihl_handle, numflow, ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

!---

! Set the number of segment constituents

!---

 call hlsetnumsegconsts(Ihl_handle, inumsegconsts, ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

!---

! Set the number of flow path constituents

!---

 if(EFDC)call hlsetnumfpconsts (Ihl_handle, 3, ierror)

! if(DYNHYD)call hlsetnumfpconsts (Ihl_handle, 1, ierror)

 if(DYNHYD)call hlsetnumfpconsts (Ihl_handle, 2, ierror) !6/10/08,rba

 if(HECRAS)call hlsetnumfpconsts (Ihl_handle, 2, ierror) !6/10/08,rba

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

!---

! Now we will set all the constitituent types

!---

 call hlsetsegconsttype(Ihl_handle, 1, 0, ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

61

 stop

 end if

!---

 if(EFDC)then

 call hlsetsegconsttype(Ihl_handle, 2, 1, ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 call hlsetsegconsttype(Ihl_handle, 3, 2, ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 endif

!---

 call hlsetfpconsttype(Ihl_handle, 1, 0, ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 if (DYNHYD)then !6/10/08,rba

 call hlsetfpconsttype(Ihl_handle, 2, 0, ierror) !

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 endif

 end if

 if (HECRAS)then !6/10/08,rba

 call hlsetfpconsttype(Ihl_handle, 1, 0, ierror) !

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 endif

 end if

62

 if (EFDC)then

 call hlsetfpconsttype(Ihl_handle, 1, 1, ierror) !shouldn't this be 2,1

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 endif

 call hlsetfpconsttype(Ihl_handle, 1, 2, ierror) !shouldn't this be 3,1

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 end if

!---

 call hlsetvartimestep(Ihl_handle,0,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 timestep=(hdt/86400.)

!---

 IF (HECRAS)then

 call hlsettimestep(Ihl_handle,timestep,ierror)

 Else If (DYNHYD) then

 call hlsettimestep(Ihl_handle,timestep,ierror)

 Else

 call hlsettimestep(Ihl_handle,hdt,ierror)

 End If

!---

 call hlsethydtimestep(Ihl_handle,hdt,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 rinterval=(hdt*numdht)/86400.

 IF (DYNHYD) THEN

63

 rinterval=(hdt*numdht)

 ENDIF

!---

 call hlsetupdateint(Ihl_handle,rinterval,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

!---

 call hlsethydtowaspratio(Ihl_handle,numdht,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 idt=1

!---

 do i=1,numflow

 if (binary) then

 read(1)JQ(I), IQ(I)

 else

 IF(EFDC)read(1,1001)JQ(I), IQ(I)

 IF(DYNHYD)read(1,1001)JQ(I), IQ(I)

 IF(HECRAS)read(1,*)JQ(I), IQ(I)

1001 format(2(I5))

 endif

 end do

!---

 NOCYCLES= END-START

 NOCYCLES=NOCYCLES/(HDT*numdht)

 IF(HECRAS)nocycles=1000000

 Do itime=1,nocycles

 do k=1,Noseg

 if (itime .eq. 1) then

 if (binary) then

 if(EFDC)Read(1,end=999)SegVolume(k),SegDepth(k), SegVel(k)

 if(DYNHYD)read(1,end=999)SegVolume(k),rjunk, SegDepth(k),SegVel(k)

64

 else

 if(EFDC)read(1,*,end=999)SegVolume(k),SegDepth(k),SegVel(k)

 if(DYNHYD)read(1,*,end=999)SegVolume(k),rjunk, SegDepth(k),SegVel(k)

 if(HECRAS)read(1,*,end=999)SegVolume(k),SegDepth(k), SegVel(k)

 endif

1020 Format(5x,F15.0,5x,F15.0,5x,F15.0)

 else

 if (binary) then

 if(EFDC)Read(1,end=999)SegVolume(k),SegDepth(k), SegVel(k)

 if(DYNHYD)read(1,end=999)SegVolume(k),rjunk,SegDepth(k),SegVel(k)

 else

 if(EFDC)read(1,*,end=999)SegVolume(k),SegDepth(k), SegVel(k)

 if(DYNHYD)read(1,*,end=999)SegVolume(k),rjunk, SegDepth(k),SegVel(k)

 if(HECRAS)read(1,*,end=999)SegVolume(k),SegDepth(k),SegVel(k)

 Write(6,*)'Segment = ',k

 endif

1011 format(4(F17.0))

 endif

 end do

!---

 do k=1,numflow

 if (binary) then

 if(EFDC)read(1)Flow(k),crnu(k),iflowdir(k)

 IF(DYNHYD)READ(1)Flow(k),brintt(k) !6/10/08,rba

 else

 if (EFDC)read(1,*)Flow(k),crnu(k),brintt(k),iflowdir(k)

 IF (DYNHYD)read(1,1012)Flow(k),brintt(k) !6/10/08,rba

 IF (HECRAS)read(1,*)Flow(k)

 endif

1012 format(2F20.0) !6/10/08,rba

1010 format(3(F17.0),I5)

 end do

!---

 if(itime .eq. 1)then

 do k=1,numflow

 if(EFDC)call hlsetflowpath(Ihl_handle,k,jq(k),iq(k),iflowdir(k),ierror)

 if(DYNHYD)call hlsetflowpath(Ihl_handle,k,jq(k),iq(k),1,ierror)

 if(HECRAS)call hlsetflowpath(Ihl_handle,k,jq(k),iq(k),1,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

65

 write(6,6000) ierror, errstring

 stop

 end if

 end do

 end if

!---

 call hlsetseginfo(Ihl_handle,1,SegVolume,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 call hlsetseginfo(Ihl_handle,2,SegDepth,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 call hlsetseginfo(Ihl_handle,3,SegVel,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

!---

 call hlsetflowinfo(Ihl_handle,1,Flow,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 if(DYNHYD)Then !6/10/08,rba

 call hlsetflowinfo(Ihl_handle,2,brintt,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 end if

 if(HECRAS)Then

66

 DO Itemp=1,numflow

 brintt(Itemp)=0.00

 End Do !6/10/08,rba

 call hlsetflowinfo(Ihl_handle,2,brintt,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 end if

 if(EFDC)Then

 call hlsetflowinfo(Ihl_handle,2,crnu,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 call hlsetflowinfo(Ihl_handle,3,brintt,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 end if

 time=RINTERVAL*itime

 write(6,*)'Time is: ',itime,time

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 call hlmomentcomplete(Ihl_Handle,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 end do

999 continue

6000 format('Error ',I10, ' : ', A)

 call hlgetcompfact(Ihl_handle,compact,ierror)

 if(ierror .gt. 0)then

67

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 compact=compact*100

 write(6,6040)compact

6040 format('Compaction Ratio is: ',F8.4)

 call hlclose(Ihl_handle,ierror)

 if(ierror .gt. 0)then

 call hlgetlasterror(errstring)

 write(6,6000) ierror, errstring

 stop

 end if

 stop

 end

	Structure Bookmarks
	
	H1
	H1
	H1
	H1
	H1
	H1
	H1
	H1
	H1
	H1
	H1
	H1
	H1

