AN AD-HOC APPROACH TO DATA QUALITY ASSESSMENT: THE BIKING & BREATHING STUDY IN NYC

Darby Jack
dj2183@cumc.Columbia.edu
EPA Air Sensors 2018
Biking and Breathing study design

- In partnership with WNYC, we recruit bike commuters who ride at least 30 minutes each way.
- Volunteers self-deploy sensors for six 24-hour monitoring sessions bracketing a morning commute.
- We estimate potential inhaled dose using minute ventilation from a biometric shirt.
- Epi hypothesis: short duration air pollution exposures increase post-exposure BP and decrease heart rate variability.
- Currently in year 4 of a 5 year study.
- Today:
 - How do we think about data quality in the core epi study?
 - How did we think about data quality in a pilot evaluation of low cost sensors?
 - How might we do a better job?
Environmental Monitors

- MicroAeth
- Black Carbon
- Smart Phone App for GPS
- MicroPEM
- PM$_{2.5}$
PM$_{2.5}$ data quality – core epi study

The RTI microPEM gives real-time optical PM$_{2.5}$ estimates, and also collects a gravimetric filter.

- **Objective 1: sensor was deployed properly & functioned properly**
 - Wearing compliance (via accelerometer)
 - Sampling duration
 - Stable flow rate
 - RH <90%

- **Objective 2: plausible data**
 - Reasonable baseline drift
 - Clean air test at the start and finish of each 24-hour deployment
 - No negative values, implausibly high values

- **Objective 3: consistent with other measurements**
 - Plausible BC/PM ratio
 - Mass concentration from gravimetric filter (one correction factor for 6 x 24 hours)
 - Field blanks, duplicates
Extensions: pilot study evaluating low cost sensors

- What if low cost, small, self deployed sensors could collect high quality data?
- We pilot-tested a software + hardware system that uses
 - knowledge about sensor physical properties,
 - coincidental colocations (with regulatory monitors, and among low cost sensors themselves)
- Currently ingests data from AirBeam ($\text{PM}_{2.5}$; $\$250$) and Terrier ($\text{CO/NO/CO}_2$; $\$330$).
- Evaluation approach:
 - Comparison to microPEM monitors – ask volunteers to carry both for approx. 30 days.
 - Mass deployments (group rides with 10+ monitors)
Low cost sensor evaluation

• Primary data quality objective: correlation w/ microPEM.
 – Overall the low cost monitor did not perform well and postprocessing system did not result in material improvements
 – RMSE = 13 µg/m³ (grand mean: ~10 µg/m³); $R^2 = 27\%$.
 – Minute-by-minute error was not significantly correlated with temperature or RH.
 – Caveat: microPEM not a “gold standard”

• Secondary data quality objective: correlation between low cost monitors in group rides. Similarly low.

• We did not have a pre-defined R^2 threshold for declaring success, but it was clear that the low cost monitor was not reliable enough for use in epi studies.
Where to from here?

- Data quality assessment is not a one-off task
 - **Assess a deployment, not a device**
 - Rationale: inter-deployment changes in the sensor, changes in meteorology (temp, RH), changes in particle composition, size distribution.
- Stratified data quality assessments:
 - Meteorological conditions (temp, RH)
 - PM concentration quantiles
- Optical measurements need external checks
 - Continued role for gravimetric sampling (correction factors)
 - Simple but effective: colocation, clean air check (zero box).
- Use automated tools for visualizing data & generating statistics
 - (if it’s inconvenient it doesn’t happen) → data standards
- **Predefine** clear rules of thumb for accepting/rejecting data
 (quantitative but not necessarily optimal – fit for purpose).
Acknowledgements

Co PI: Steve Chillrud

Funding: NIEHS (R21/R33 ES 024734, P30 ES 009089)

WNYC (Fred Mogul)

www.wnyc.org/streets

Our amazing study participants who tolerate way too many sensors.