"Is it good enough?"

The Role of PM and Ozone Sensor Testing/Certification Programs

George Allen, NESCAUM

Session 7: Perspectives on Testing/Certification Program Scope and Structure

EPA Air Sensors 2018: Deliberating Performance Targets Workshop

RTP, NC June 26, 2018
“Sensors”: a huge range of price and performance

< $10 to > $5,000

Qualitative to Semi-Quantitative to “near-FEM/FRM” data quality

Very different users, different testing / performance needs

Examples of these extremes:

Conscious Clothing: $10 Sharp PM Sensor

Winner of 2013 EPA “My Air, My Health”

pDR1500 vs. TAPI 640 FEM

Rutland, VT (woodsmoke)

Slope: 0.98

R2: 0.98

Visual indicator of PM
Testing Program Structure and Scope

"Certification" (think EPA regulatory FRM/FEM programs) is difficult
- Expensive for any gov agency to do or sponsor
- Example: EPA Environmental Technology Verification Program (ETV)
 Verified – didn't "certify", vendor funded (!)
- Good longer term goal, meanwhile: test test test

Test programs must communicate a wide range of end-user data quality needs
 1. non-technical users: qualitative data
 2. everyone else: technical audience, (semi) quantitative data

AQ-Spec: high end model (disclosure: member of AQ-Spec Advisory Board)
- Very expensive project, but very valuable product
- Does not make application recommendations
 – is a testing pgm but not a certification pgm.
 – results are for a technical audience
Sensor Performance Parameters

Accuracy (bias), stability over time, temperature, averaging time

Linearity (including saturation)

R² (if appropriate), RMSD, other? – averaging time

Precision (in-motion degradation?), bias corrected precision?

Sensitivity / LOD (as a function of averaging time)

Baseline stability (with time / temperature)
 - Important at low end of sensor range
 - Can be driver of data quality at ambient concentrations

Interferences Can be data quality driver!

Values for these parameters depend on
 - type of sensor, pollutant
 - performance tier / DQOs
 - averaging time of interest
Interferences!

Example: Electrochemical O3 sensor – NO2 interference
 – Can have 1:1 response with NO2
 – In urban air, NO2 is higher and O3 is lower (NO scavenging)
 – Result: large positive error for O3

Example: PM Sensor – RH interference
 – Ambient tests in semi-arid climate (western US) may not reflect performance in humid climate (eastern US)
 – Useful to know if a sensor measures and reports RH (and corrects data for it?)

Cloud-based post-processing of data
 Could it improve sensor performance?
 Integrated with sensor package?
 - include as part of data quality evaluation?
Binary (yes/no) vs. Tiered Performance Systems

Binary: One set of performance targets (for all non-regulatory purposes)

Tiered: Different performance targets for different sensor applications
 – as defined in Workshop Objectives

Tiered is preferred – “Is it good enough” for my application?
 – cost effective (don’t pay for what you don’t need)
 – defines a sensor's suitability for a given use: Qual/(semi)Quantitative
 ... for what I want to find out / how I plan to use the data?
 – useful when messaging sensor performance to non-technical end users
 – A testing pgm should include results for non-technical users
Possible Tier Descriptors

0. Just don’t use it: \(R^2 < 0.25 \) ..or.. RMSD > 100%

1. Qualitative: \(R^2 0.25 \) to 0.50, RMSD < 100%

2. Semi-quantitative: \(R^2 0.50 \) to .75, RMSD <50%, bias < 50%

3. Reasonably quantitative: \(R^2 0.75 \) to .90, RMSD <20%, bias <30%

4. Almost regulatory quality: \(R^2 >.90 \), RMSD <10%, bias < 15%

Example for PM2.5: Thermo pDR1500 (EPA Village Green PM)

Need to specify averaging time.
Summary

- Testing programs must accommodate a wide range of:
 - sensor quality/price
 - end user data quality needs, level of technical knowledge

- “Certification”: desirable but will be complicated/difficult...
 Verification?

- Tiered Performance Testing: more relevant to end-user needs
 5 Tiers: “don’t use” to “almost regulatory quality”

- Performance Parameters should include:
 - Accuracy, Precision, R^2 and/or RMSD
 - Zero/span stability over time and temperature
 - Interferences
 - Specify averaging time!
Acknowledgments:

Environmental Council of the States for travel support

NESCAUM State Air Agencies for staff support

EPA for making it all happen!

Contact info:
George Allen
gallen@nescaum.org
617-259-2035