Benchmarking and Characterization of a Full Continuous Cylinder Deactivation System

SAE World Congress April 10-12, 2018

Stani Bohac bohac.stani@epa.gov

Benefits and Challenges of Cylinder Deactivation

CDA has the potential to improve engine efficiency at relatively low cost.

- Reduced pumping
- Reduced cylinder heat transfer
- Improved throttle response

Challenges:

- Transitions
- NVH
- Durable deactivation system
- Benefit limited to low engine load

Types of Cylinder Deactivation

EPA considering two types of CDA:

deacPD = partial discrete (e.g., 8 or 4 cylinders)

deacFC = full continuous (e.g., continuous between 0-8 cylinders)

Why is EPA Interested?

EPA continuously evaluates advanced technologies to support the setting of appropriate GHG standards.

> Light-duty GHG standards through 2025 are being reconsidered and revised.

EPA's prior analysis¹ considered deacPD but not deacFC.

DeacFC is a potential enabler for meeting GHG standards².

This investigation was conducted to benchmark and characterize deacFC and evaluate its potential as an advanced, production-ready technology for reducing GHG emissions.

¹⁾ EPA, 2017, EPA-420-R-17-001

²⁾ Younkins et al., 2017, 38th International Vienna Motor Symposium

Objectives

Characterize effectiveness and fly zone of deacFC

- Steady-state tests
 - ✓ EPA chassis benchmarking V8
 - ✓ Tula engine publications V8, I4

effectiveness curves for I3, I4, V6, V8

- Drive cycle tests
 - ✓ EPA benchmarking V8
 - ✓ Tula publications V8

deacFC fly zone

Initial <u>full vehicle modeling</u> using ALPHA

Compare drive cycle efficiencies from simulation and lab

Compare deacFC benefit on two vehicle types

deacFC Vehicles

Photo by Tula

Tula Technology Dynamic Skip Fire (DSF) applied to 2011 GMC Yukon Denali 6.2L L94

- fires 0-8 cylinders
- EPA and Tula

Photo by Tula


Tula Technology DSF applied to 2015 VW Jetta 1.8L EA888

- fires 0-4 cylinders
- Tula

Steady-State Operation

deacFC benefit on V8 (EPA benchmarking)

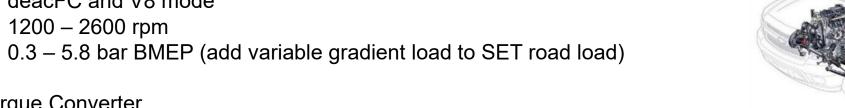
Test vehicle provided by <u>Tula Technology</u>
MY2011 GMC Yukon Denali 2WD
6.2L L94 V8 PFI gasoline engine
6L80 6-speed automatic transmission
Tier 2, 93 AKI test fuel

"V8 mode"

- GM ECU, disabled AFM
- Torque converter slip: 17-39 rpm

"deacFC mode"

- Tula ECU, deacFC
- Torque converter slip: 28-85 rpm


Steady-State Chassis Tests (EPA benchmarking)

Vehicle

• 49 and 81 mph

Engine

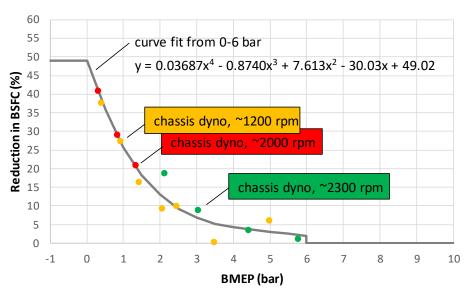
- deacFC and V8 mode

Torque Converter

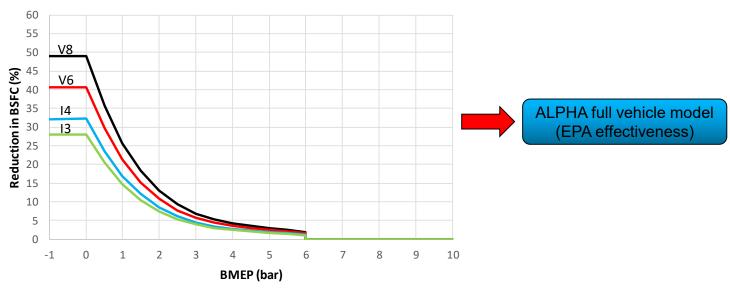
• 17 – 85 rpm slip

<u>Transmission</u>

5th and 6th gear


<u>Component</u>	<u>Loss</u>	<u>Source</u>
Electrical load	0.42 kW	benchmarking
Torque converter	0.03 – 2.17 kW	engine speed and torque, chassis roll speed
Transmission	1.31 – 3.82 kW	2014 GM 6L80 benchmarking ³
		o
Differential	0.38 – 2.65 kW	1999 Ford 3.55 differential/axle benchmarking ⁴
Drive tires	2.35 – 3.90 kW	C_{rr} =0.009 ⁵ , test weight=6000 lbs, wt dist.=55/45

³⁾ Stuhldreher et al., SAE 2017-01-5020


⁴⁾ EPA and SwRI, 1999, Contract No. 68-C7-0012

⁵⁾ NAS, 2006, Tires and Passenger Vehicle Fuel Economy

deacFC benefit on V8 (EPA benchmarking)

chassis dynamometer testing MY2011 Yukon Denali GM 6.2L L94 V8 PFI engine Tier 2, 93 AKI test fuel

deacFC benefit on V8 (Tula publication)

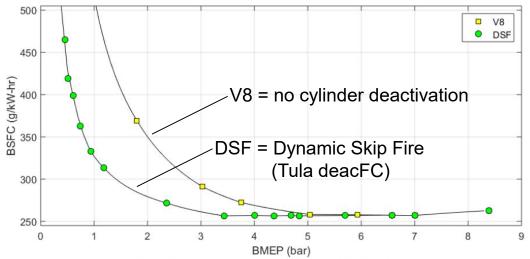
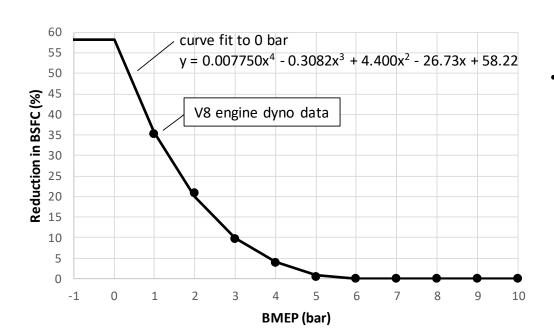
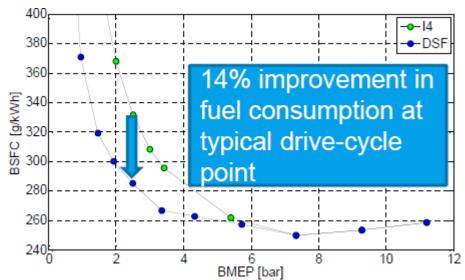
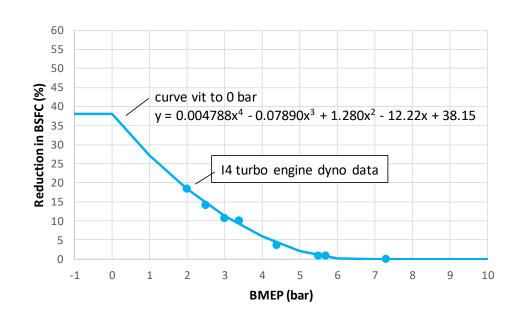



Figure 7: Fuel Consumption for DSF and V8 operation, 1600 RPM

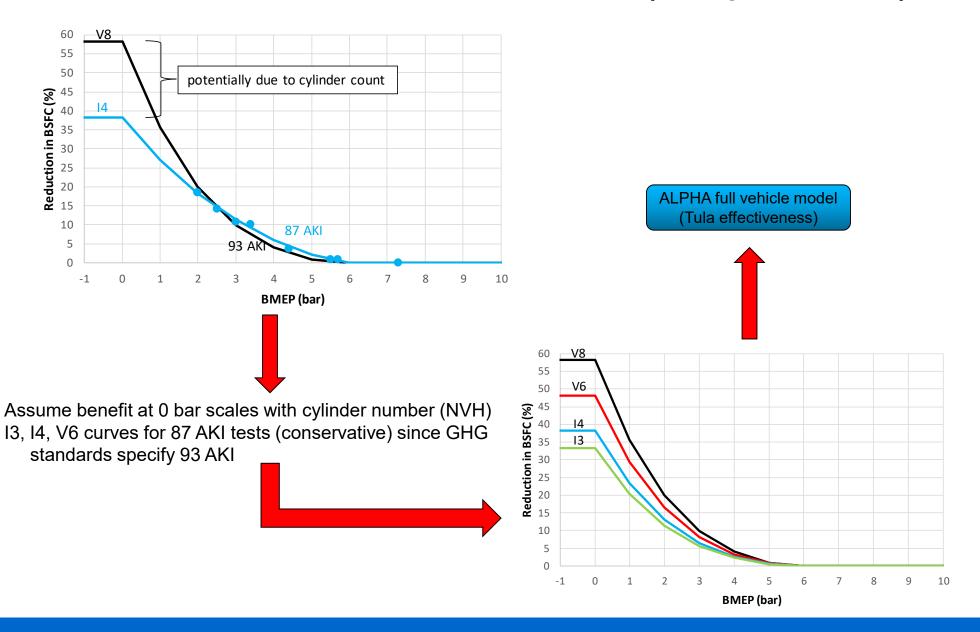


engine dynamometer testing² GM 6.2L L94 V8 PFI engine 1600 rpm 93 AKI fuel

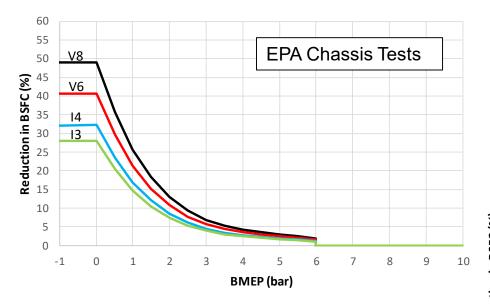
- * GHG standards call for Tier 2 test fuel
- * deacFC benefit would be lower with lower AKI

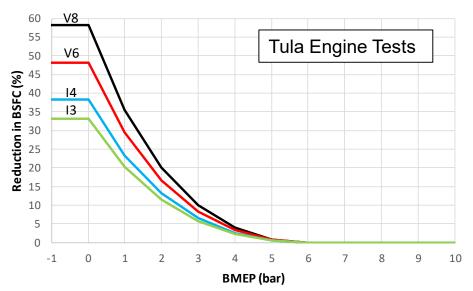

• Extrapolating benefit to -2 bar adds less than 0.1% benefit in FTP-75 (simulation result) because engine doesn't spend time here.

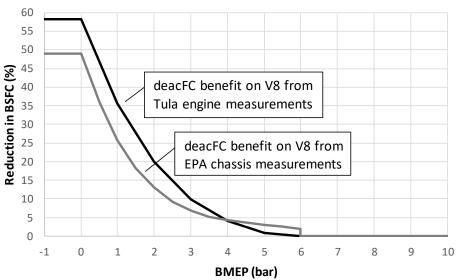
deacFC benefit on I4 turbo (Tula publication)



engine dynamometer testing⁶ VW 1.8L EA888 I4 turbo engine 1600 rpm 87 AKI CARB fuel


- · GHG standards call for Tier 2 test fuel
- Use of 87 AKI gives a lower (conservative) deacFC benefit




deacFC benefit scaled to V8, V6, I4, I3 (Tula publication)

Comparing EPA Chassis and Tula Engine deacFC Effectiveness

EPA and Tula effectiveness curves are very similar. **Drive Cycle Operation**

deacFC benefit on V8 (Tula publication²)

Chassis dynamometer testing
MY2011 GMC Yukon Denali 2WD
6.2L L94 V8 PFI gasoline engine
6L80 6-speed automatic transmission
Tier 2, 93 AKI test fuel

Photo by Tula

"V8 mode"

- GM ECU, disabled AFM and DFSO
- GM transmission shift strategy

"deacFC mode"

- Tula ECU, deacFC and DFSO
- Slightly higher torque converter slip

deacFC benefit on V8 (Tula publication²)

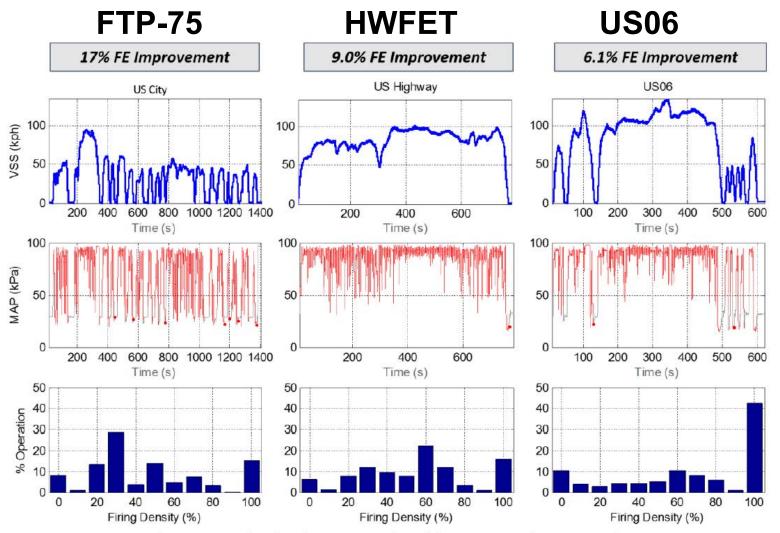


Figure 12: Results of Fuel Economy Testing with DSF, compared to V8 operation

deacFC benchmarking at EPA

Drive cycle benchmarking performed to:

- 1) Compare EPA and Tula results
- 2) Quantify deacFC 'fly zone' needed for vehicle modeling

Test vehicle:

MY2011 GMC Yukon Denali 2WD 6.2L L94 V8 PFI gasoline engine 6L80 6-speed automatic transmission Tier 2, 93 AKI test fuel

"V8 mode"

- GM ECU, disabled AFM and DFSO
- GM transmission shift strategy
- Passed Tier 2 bin 5 NMOG, CO, NO_x, PM

"deacFC mode"

- Tula ECU, deacFC and DFSO
- Slightly higher torque converter slip
- Passed Tier 2 bin 5 CO, NO_x, PM

deacFC benefit on V8

	Tula publication ²	EPA benchmarking*
FTP-75	17.0 %	$13.4 \% (14.6 \rightarrow 16.5 \text{ mpg})$
HWFET	9.0 %	$9.9 \% (25.0 \rightarrow 27.5 \text{ mpg})$
US06	6.1 %	$9.5 \% (14.4 \rightarrow 15.7 \text{ mpg})$

EPA benchmarking shows:

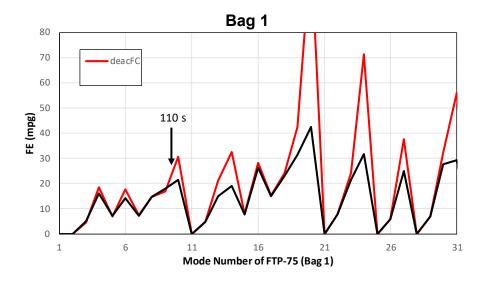
- Smaller deacFC benefit in FTP-75, higher deacFC benefit in HWFET and US06
- Average of 3 cycles almost identical (10.9% versus 10.7% improvement)

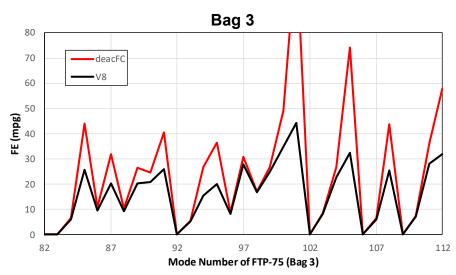
Why the difference?

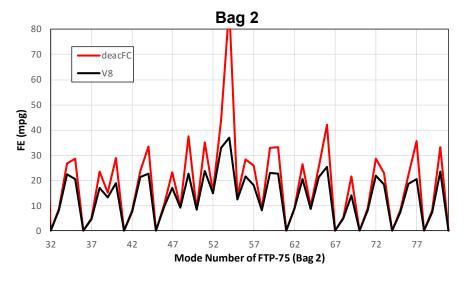
- different driver, different lab, different day
- deacFC benefit is the ratio of 2 tests (MPG_{deacFC}/MPG_{V8}); error stacking

<u>Note</u>

- DFSO is active in deacFC mode but not in V8 mode
- Full vehicle modeling⁷ shows DSFO provides 2.5% benefit in FTP-75 and 1.2% in HWFET in V8 mode.


2) Younkins et al., 2017, 38th International Vienna Motor Symposium 7) ALPHA model introduced by Lee et al., SAE 2013-01-0808


^{*} Average of 2 tests in V8 mode / average of 2 tests in V8 mode


deacFC benefit on V8 – FTP-75 by Bag (EPA benchmarking)

	deacFC relative to V8 (% improvement in MPG)	Comment	
Bag 1	7.1 %	deacFC inactive until oil warms	
Bag 2	15.8 %	Lowest engine loads	
Bag 3	14.0 %	Higher loads than bag 2	

deacFC benefit on V8 – FTP-75 by Mode (EPA Benchmarking)

- deacFC becomes active after 110 s.
- deacFC advantage only present when FE is high (low engine load).

deacFC Fly Zone on V8 (EPA benchmarking)

ALPHA full vehicle model

Used FTP-75, HWFET, US06 tests and MAP to quantify V8 deacFC fly zone.

Activate deacFC if all conditions are true:

- 1) $T_{coolant} > 47.3$ °C
- 2) Engine speed > 940 rpm
- 3) Gear = 2-6

Full Vehicle Modeling

ALPHA Full Vehicle Model of V8 Yukon

ALPHA full vehicle model⁷

Vehicle characteristics

Test weight=6000 lbs

Road load coefficients: A=32.15 lb, B=1.0382 lb/mph, C=0.02111 lb/mph²

Engine

GM 4.3L LV3 engine⁸ scaled to GM 6.2L L94 considering⁹: —
Heat transfer
Friction
Knock propensity

Engine inertia=0.33 kg/m² (scaled based on displacement)

deacFC effectiveness curve from

- a) EPA chassis tests
- b) Tula engine tests

deacFC fly zone from EPA chassis tests

DFSO

allowed in deacFC mode not allowed in V8 mode

Torque converter

Locked

Semi-locked

26 rpm slip in V8 mode

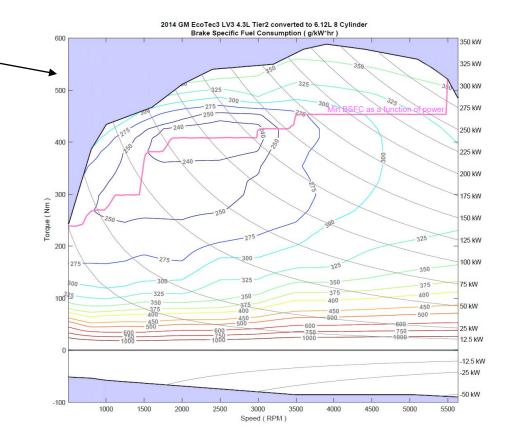
55 rpm slip in deacFC

Unlocked

Transmission

2014 GM 6L80 benchmarking³ Min. downshift speed=540 rpm

Min. upshift speed=1200 rpm


Differential

3.42 ratio

1999 Ford 3.55 differential/axle benchmarking4

Tier 2 Fuel:

ρ=0.74277 g/cm³@60F H/C=1.836 molar ratio LHV=42.898 MJ/kg

- 3) Stuhldreher et al., SAE 2017-01-5020
- 4) EPA and SwRI, 1999, Contract No. 68-C7-0012
- 7) Lee et al., SAE 2013-01-0808
- 8) Stuhldreher, SAE 2016-01-0622
- 9) Dekraker et al., SAE 2017-01-0899

Chassis Tests and Full Vehicle Model – V8 Yukon

	EPA chassis dyno	ALPHA model EPA chassis dyno effectiveness
FTP-75	$14.6 \rightarrow 16.5 \text{ mpg}$ 13%	$14.7 \rightarrow 16.5 \text{ mpg}$ 13%
HWFET	25.0 → 27.5 mpg 10 %	24.9 → 27.5 mpg 11 %

- deacFC mode (with DFSO) compared to V8 mode (no DFSO)
- DFSO provides 2.5% benefit in FTP-75 and 1.2% in HWFET in V8 mode

	Tula chassis dyno ²	ALPHA model Tula engine dyno effectiveness
FTP-75	17%	18%
HWFET	9%	16%

- deacFC mode (with DFSO) compared to V8 mode (no DFSO)
- DFSO provides 2.5% benefit in FTP-75 and 1.2% in HWFET in V8 mode

Combined Cycle Simulation Results 2011 Large SUV and 2025 Midsize Car

CO₂ Reduction (g/mi) Only Adding deacFC Combined Cycle

8.8%

Vehicle

Description

2011 Large SUV

Photo by Tula

Vehicle: 2011 GM Yukon Denali

Engine:

2014 GM 4.3L LV3 scaled to 6.2L9

DFSO

no stop/start

no AFM

2011 GM Yukon accessories

deacFC effectiveness from EPA chassis tests

Transmission: 6-speed GM 6L80

2025 Midsize Car

Vehicle: typical 2016 midsize car¹⁰ with:

7.5% curb weight reduction

10% aerodynamic improvement

10% coefficient of rolling resistance reduction

Engine:

2016 Honda 1.5L L15B7 scaled to 1.42L9,10

DFSO stop/sta

stop/start

no CDA

high efficiency accessories¹¹

deacFC effectiveness from EPA chassis tests, scaled to I4

Transmission: future 8-speed¹¹

2.6%

9) Dekraker et al., SAE 2017-01-0899
 10) Stuhldreher et al., SAE 2018-01-0319
 11) EPA, 2016, EPA-420-R-16-021

Summary and Conclusions

Characterized deacFC effectiveness and fly zone

- Demonstration vehicle that met NVH and emissions constraints
- Benefit curves for I3, I4, V6, V8
- Fly zone

Conducted preliminary <u>full vehicle modeling</u>

- deacFC-equipped 6.2L Yukon
- Compared drive cycle efficiencies from chassis tests and full vehicle model
- Compared combined cycle CO₂ reduction for 2011 large SUV and 2025 midsize car

Based on this investigation, EPA considers deacFC to be a promising production-ready technology for reducing GHG emissions.

Acknowledgements

Tula Technology

Matthew Younkins and Sam Hashemi for providing Tula Yukon Denali test vehicle.

EPA NVFEL

Scott Ludlam, Paul Burbage, Michael Matthews, Garrett Brown for chassis testing.

EPA NCAT

Kevin Newman, Paul Dekraker, Dan Barba for ALPHA modeling and guidance.