Detection of *Bacillus anthracis* spores from non-porous surfaces using ‘bioluminescent’ reporter bacteriophage

Cathy Nguyen1, Natasha J. Sharp1 Martin A. Page2, Ian J. Molineux3 and David A. Schofield1

1GUILD BioSciences, Charleston, South Carolina, USA
2U.S. Army Corps of Engineers, Engineer Research and Development Center, Construction Engineer Research Laboratory, Champaign, Illinois, USA
3Institute for Cellular and Molecular Biology, University of Texas at Austin, Texas, USA

Abstract

Bacillus anthracis is a pathogenic spore-former and etiological agent of anthrax. Spores are naturally found in the environment where they can persist and remain infectious for more than 200 years. A contaminated area has potential to cause extensive disruption as it is uninhabitable until successful remediation. To ensure public health and preparedness for such an event, an efficient and rapid environmental detection system for spores is essential. To address this need, we previously generated a ‘light-tagged’ *B. anthracis*-specific reporter phage (Wβ::luxAB) which can rapidly and sensitively detect pure cultures from germinating spores by conferring a bioluminescent response.

The efficacy of Wβ::luxAB to detect *B. anthracis* ΔSterne spores from 3 non-porous contaminated surfaces was assessed. 2x2 inch coupons of stainless steel, glass and polycarbonate were used to represent the various surfaces. Coupons were inoculated with spores (101 to 104 CFU/coupon) suspended in 95% ethanol (EtOH), then left overnight for EtOH to evaporate, leaving ‘dried’ spores on the coupon surfaces. To sample, macrofoam swabs moistened with phosphate-buffered saline with 0.02% Tween 80 were used to methodically wipe the coupon surface to ‘collect’ spores, which had an estimated processing time of 1 min per coupon. Extraction efficiency was assessed by plating samples and controls for CFU onto brain heart infusion (BHI) agar plates. Swabs were submersed in media containing reporter phage (106 PFU/mL), vortexed vigorously for 2 min, incubated at 35°C with continuous shaking (250rpm) to allow for germination and phage infection, and then analyzed for bioluminescence after 4-8h. To emulate ‘real life’ environmental samples, swabs were also deliberately ‘dried’ by moistening in PBST harboring either Arizona test dust (10mg/mL), *Bacillus subtilis* spores, *Staphylococcus epidermidis* (104 CFU/mL) or all three contaminants combined before sampling.

Swab sampling extraction efficiency was similar from all 3 surfaces, consistently yielding 50-70% recovery of spores from coupons. *B. anthracis* was detectable from ‘clean’ coupons deliberately inoculated with spores, yielding a limit of detection of 101 CFU/coupon within 6 h or 8 h for polycarbonate, stainless steel and glass surfaces, respectively. Wβ::luxAB was able to detect 104 CFU within 8h from ‘dirty’ stainless steel, glass and polycarbonate coupons. As the methodology is simple with minimal hands-on time, the technology displays potential for rapid detection of viable spores from various non-porous surfaces under fieldable or laboratory conditions.

Detection System:

Fig. 1. *B. anthracis* ΔSterne Wβ::luxAB phage assay

Fig. 2. Bioluminescent signal response of ΔSterne spores

Table 1. Persistence of biowarfare bacteria

Table 2. National planning scenario for aerosol anthrax

Table 3. Steel coupon extraction efficiency

Methods/Results:

Fig. 3. Coupon spore inoculation

Fig. 4. Spore extraction and detection

Fig. 5. Spore detection from ‘clean’ steel coupons

Fig. 6. Detection from ‘clean’ glass & plastic coupons

Fig. 7. Detection of 10¹ CFU from ‘dirty’ coupons

Fig. 8. Bioluminescent signal response of ΔSterne spores

References

1Hodges, L.R., Ross, L.J., O’Connell, H., Arduino, M.J. 2010 National validation study of a swab protocol for the recovery of *Bacillus anthracis* spores from surfaces. Journal of Microbiological Methods. 81, 141-146.

Research funded by US Army ERDC CERL W912DY-12-C-0017, the USDA NIFA (2003-35130-20038). Phase 19 SBIR program and NIH/NAID R01 grant AI910611-13-03.

* B. anthracis ΔSterne spores were prepared and kindly provided by Dr. Tony Buhr (Navy Surface Warfare Centre, Dahlgren Division).