

Decontamination Options for Sensitive Equipment-Related Materials Contaminated with Persistent Chemical Warfare Agents

Lukas Oudejans

US EPA, National Homeland Security Research Center, Research Triangle Park, NC 27711

David See, Carissa Dodds, Anthony Ellingson

Battelle, Columbus, OH 43201

2018 US EPA International Decontamination R&D Conference, May 8-10, 2018

- The U.S. Environmental Protection Agency, through its Office of Research and Development, funded and managed this investigation through Contract No. EP-C-15-002 Task Order 0015 with Battelle. This document has been subjected to the Agency's review and has been approved for presentation. Note that approval does not signify that the contents necessarily reflect the views of the Agency. Mention of trade names or commercial products, or services does not constitute EPA approval, endorsement or recommendation for use
- Questions concerning this presentation or its application should be addressed to Lukas Oudejans, National Homeland Security Research Center, Office of Research and Development, U.S. Environmental Protection Agency (EPA), 109 TW Alexander Dr., Research Triangle Park, NC 27711, 919-541-2973

Background

- U.S. EPA is responsible for planning for, responding to, and recovering from threats to public health, welfare, or the environment caused by hazardous materials incidents.
- EPA ORD's Homeland Security Research Program conducts research focused on CWA decontamination and remediation strategies.
- Either from accidental or intentional release of CWA or as a result of use during response to a CWA incident, sensitive equipment (SE; e.g. computers, night-vision equipment, PDAs, etc.) can become contaminated by CWA.

Background (cont.)

- SE is often expensive, and procurement is typically associated with long lead times.
- Decontamination and reuse of SE is preferred over disposal.
- Decontamination must be efficacious, but not degrade SE materials or deter SE functionality.

- Many traditional decontaminants (such as bleach) are known to be corrosive.
- Alternative decontaminants have been developed to be more materialcompatible, but CWA decontamination efficacy is not as well-characterized.

Project Objectives

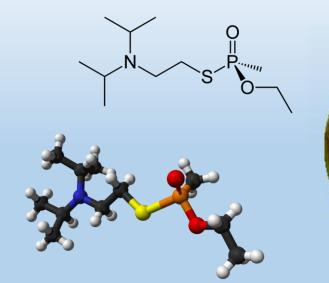
- Quantitatively evaluate the efficacy of candidate technologies to decontaminate CWA contamination from the surface of select SE-related materials.
- Qualitatively evaluate compatibility of the decontamination technologies with the SE-related materials.
 - Visual assessment.
 - Deterioration, degradation, or any damage otherwise.
 - Damage to materials from application of CWAs.
- Limited, semi-quantitative analysis to investigate presence of CWA degradation products following decontamination.

Decontaminants

- Dahlgren Decon
 - First Line Technology
 - Peracetic acid-based
 - Three component system including a surfactant package

• EasyDECON DF200

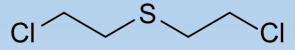
- Intelagard
- Peroxide-based
- Commercial variant of Sandia National Lab's DF200


- Handheld Decontamination Apparatus (HDA)
 - TDA Research, Inc.
 - Electrochemicallygenerated aqueous chlorine dioxide (eClO₂)

Persistent CWAs

• VX

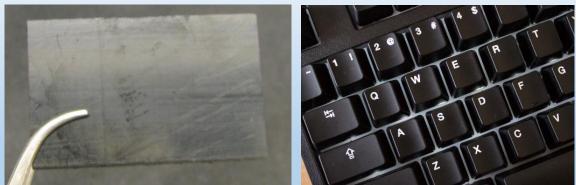
- *O*-ethyl *S*-[2-(diisopropylamino)ethyl] methylphosphonothioate
- Highly persistent nerve agent
- Organophosphate
 acetylcholinesterase inhibitor
- Estimated lethal dose for skin exposure approx. 3 to 6 mg

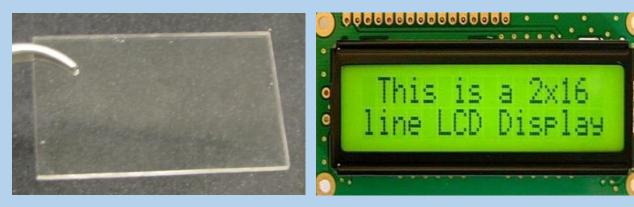


Approximate VX lethal dose volume

• HD

- Bis(2-chloroethyl) sulfide
- Powerful vesicant (blister) agent
- Strongly mutagenic and carcinogenic



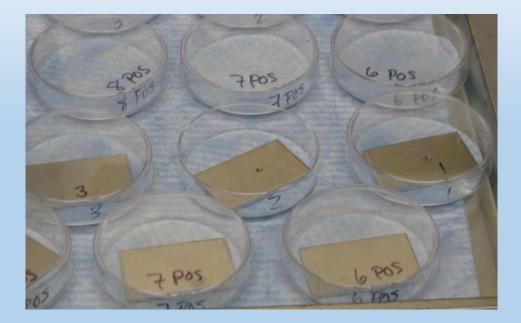

Blisters caused by exposure to HD

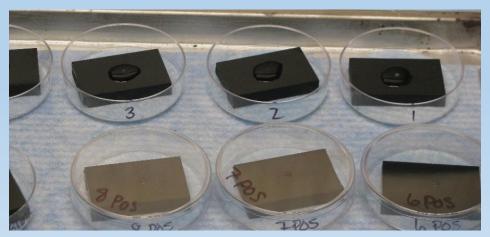
Materials

- ABS molded plastic
- Electrical enclosures, medical devices, keyboard keycaps
- 4.0 cm length, 2.5 cm width, 6.4 mm thick

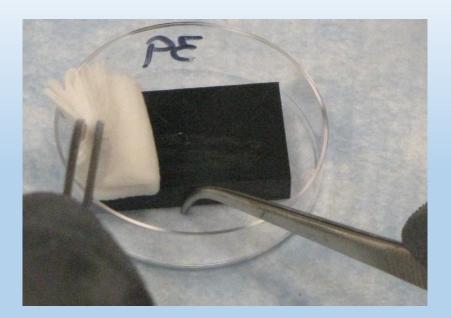
- Acrylic
- Semiconductors, dosimeters, LCD displays, optical media such as CDs and DVDs
- 4.0 cm length, 2.5 cm width, 1.6 mm thick

- Aluminum (6061 alloy)
- Handheld electronic devices, mobile phones, PC cases
- 4.0 cm length, 2.5 cm width, 2 mm thick



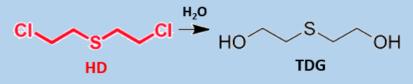


Experimental Approach

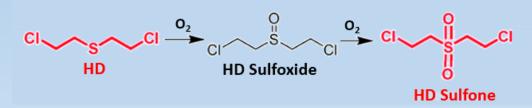

- Bench scale studies to evaluate efficacy of the decontaminants on the surface of material coupons
 - 1. Coupons were spiked with 2 μL of VX or HD (single 2 μL droplet in center)
 - Nominal 200 µg/cm² VX
 - Nominal 250 μ g/cm² HD
 - 2. CWA allowed to weather on coupon surface for 60 minutes (loosely covered)
 - 3. Following CWA contact period, 100μ L of one of the test decontaminants was applied over the CWA droplet
 - 4. Decontaminants allowed to react with CWA on the coupon surface for 60 minutes (uncovered)

Experimental Approach

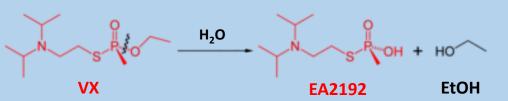
- Following the decontamination period, residual CWA on the coupon surface was sampled via wiping with subsequent coupon extraction (residual decontaminant was quenched)
- Extracts were analyzed via GC/MS to quantify residual VX or HD and qualitatively identify byproducts

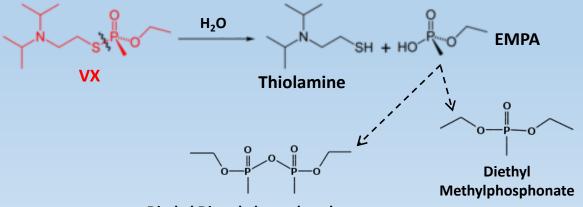

Decontamination Test Matrix

Test	Sample Type	Material	Decontamination Technology	Replicates
1	Test Sample	ABS Molded Plastic	EasyDECON DF200	5
L.	Positive Control	ABS Molded Plastic	None	3
2	Test Sample	Acrylic	EasyDECON DF200	5
2	Positive Control	Acrylic	None	3
3	Test Sample	Aluminum	EasyDECON DF200	5
Э	Positive Control	Aluminum	None	3
4	Test Sample	ABS Molded Plastic	Dahlgren Decon	5
4	Positive Control	ABS Molded Plastic	None	3
5	Test Sample	Acrylic	Dahlgren Decon	5
5	Positive Control	Acrylic	None	3
6	Test Sample	Aluminum	Dahlgren Decon	5
D	Positive Control	Aluminum	None	3
7	Test Sample	ABS Molded Plastic	eClO ₂	5
/	Positive Control	ABS Molded Plastic	None	3
8	Test Sample	Acrylic	eClO ₂	5
	Positive Control	Acrylic	None	3
0	Test Sample	Aluminum	eClO ₂	5
9	Positive Control	Aluminum	None	3


- Matrix was completed twice
 - VX as the challenge CWA
 - HD as the challenge CWA
- Environmental conditions (laboratory temperature and RH) were monitored and recorded, but not controlled
- QA controls included during every test

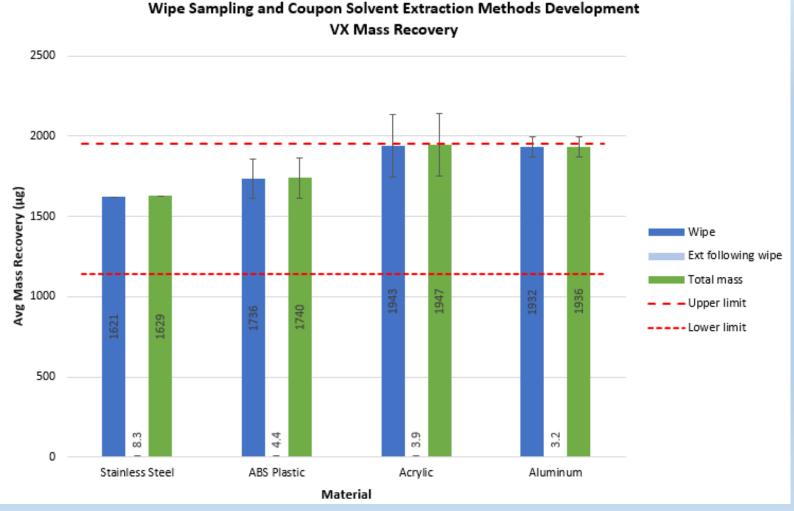
GC/MS Analysis Methods and Degradation Product Analysis


- HD degradation product analysis:
 - Thiodiglycol (TDG)
 - Mustard Sulfone (HD Sulfone)
- HD degradation routes (highly toxic compounds in red)
 - Hydrolysis


• Oxidation

- VX degradation product analysis:
 - EA2192 not amenable to analysis by the GC/MS method that was used (requires alternative methods or LC-MS/MS analysis)
 - EMPA byproducts were detectable, and thus used to semiquantitatively indicate the presence of VX byproducts
- VX hydrolysis routes (highly toxic compounds in red):
 - Cleavage at P-O bond

• Cleavage at P-S bond (dominating)

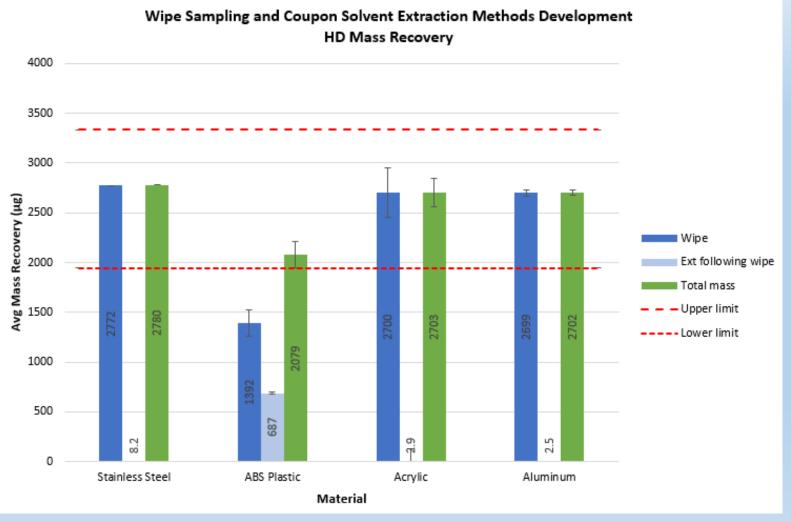


Diethyl Dimethylpyrophosphonate

Methods Development Results VX Wipe Sampling and Coupon Solvent Extraction

- Following VX contact period, coupons were sampled via wiping and then subsequently extracted in solvent
- Stainless steel included as an inert control material
- Hexane was demonstrated as the wipe wetting and wipe and coupon extraction solvent
- Nearly all VX recovered in the wipe samples of all three material types

Material	Avg Percent Recovery	
ABS Plastic	107%	
Acrylic	120%	
Aluminum	119%	



- Error bars equal ± one standard deviation
- Upper limit equals 120% of mean total mass recovery from stainless steel
- Lower limit equals 70% of mean total mass recovery from stainless steel

Methods Development Results HD Wipe Sampling and Coupon Solvent Extraction

- Following HD contact period, coupons were sampled via wiping and then subsequently extracted in solvent
- Stainless steel included as an inert control material
- Hexane was demonstrated as the wipe wetting and wipe and coupon extraction solvent
- Nearly all HD recovered in the wipe samples of ABS and aluminum
- HD demonstrated absorption into ABS plastic

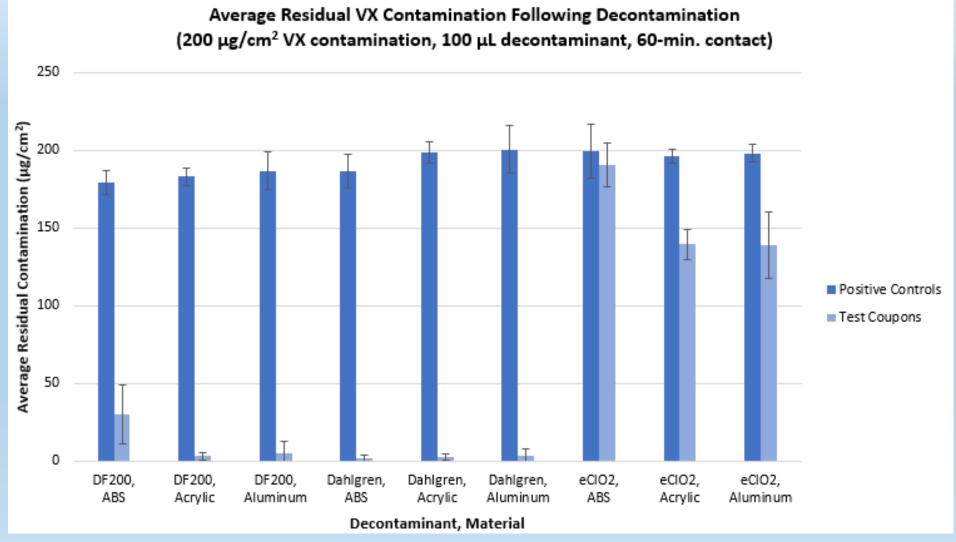
Material	Avg Percent Recovery
ABS Plastic	75%
Acrylic	97%
Aluminum	97%

- Error bars equal ± one standard deviation
- Upper limit equals 120% of mean total mass recovery from stainless steel
- Lower limit equals 70% of mean total mass recovery from stainless steel

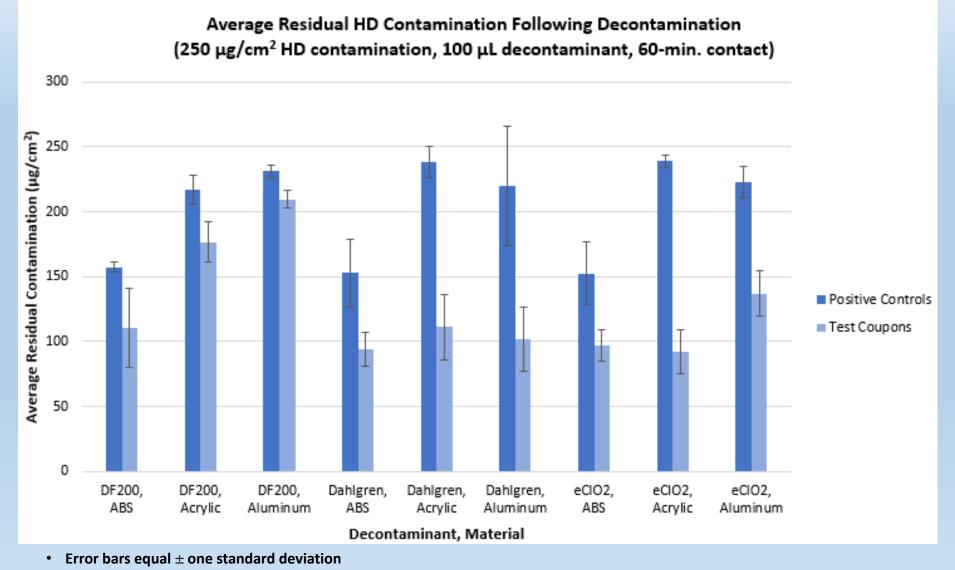
Methods Development Results Decontaminant Quench Methods

Quench by Solvent Extraction Alone

- Decontaminated aluminum wipe and coupon extracts (containing residual decontaminant)
- Post-spiked with dilute solution of VX or HD in hexane (approx. 5 μg/mL)
- Extracts analyzed immediately, and then again after 3 days in storage at -20°C
- eClO₂ decontamination of HD and VX and DF200 decontamination of HD were quenched by extraction in hexane alone
- Decontamination of post-spiked VX by Dahlgren Decon and DF200 and of post-spiked HD by Dahlgren Decon still occurred


Quench using 3M Sodium Thiosulfate

- Second test evaluated use of 3M sodium thiosulfate (STS) as a quench method
- Same procedure as that used during first test, but 3M STS included with solvent used to extract wipes/coupons
- Addition of 3M STS quench appeared to prevent decontamination of post-spiked VX and HD by Dahlgren Decon as well as post-spiked VX by DF200



Decontamination Efficacy Results Average Residual VX Contamination

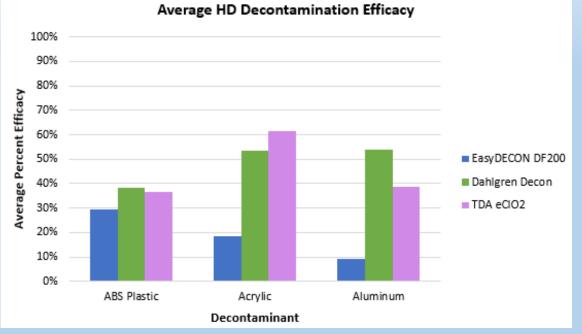
[•] Error bars equal ± one standard deviation

Decontamination Efficacy Results Average Residual HD Contamination

Decontamination Efficacy Results Average Percent Decontamination Efficacy

	Material	EasyDECON DF200	Dahlgren Decon	TDA eClO ₂
Average V/V Decontamination	ABS Plastic	83%	99%	4.4%
Average VX Decontamination Efficacy (%)	Acrylic	98%	99%	29%
Efficacy (%)	Aluminum	97%	98%	30%
Average HD Decentemination	ABS Plastic	29%	38%	37%
Average HD Decontamination	Acrylic	19%	53%	61%
Efficacy (%)	Aluminum	9.4%	54%	39%

BOLD: Highest measured average decontamination percent efficacy for CWA/material combination


- For the decontaminant:CWA ratio (50:1, by volume) and decontaminant contact time (60 minutes) evaluated during this work, the highest average VX decontamination efficacy on all three SE-related material types was obtained using Dahlgren Decon and EasyDECON DF200 (Dahlgren Decon for ABS plastic)
- Highest average HD decontamination efficacy from ABS plastic and aluminum was also obtained using Dahlgren Decon
- Highest average HD decontamination efficacy from acrylic was obtained using TDA's eClO₂ decontaminant

Decontamination Efficacy Results Average Percent Decontamination Efficacy and Statistical Analyses Results A

Average Percent VX Decontamination Efficacy

Average Percent HD Decontamination Efficacy

- Dahlgren Decon demonstrated statistically significant VX decontamination on ABS plastic compared to DF200 and eClO₂
- Dahlgren Decon and DF200 demonstrated statistically significant VX decontamination compared to eClO₂ on acrylic
- Dahlgren Decon and DF200 demonstrated statistically significant VX decontamination compared to eClO₂ on aluminum

^A Tukey-adjusted pairwise comparisons of geometric means of ANOVA models

- No significant statistical differences between decontaminants for HD decontamination efficacy from ABS plastic
- No significant statistical differences between decontaminants for HD decontamination efficacy from acrylic
- Difference between Dahlgren Decon and DF200 for HD decontamination efficacy from aluminum was statistically significant (no significant statistical differences between eClO₂ and DF200 or between Dahlgren Decon and $eClO_2$) 19

Decontamination Efficacy Results Degradation Product Analysis Results

VX:

• Neither EMPA-associated VX degradant was detected in any sample

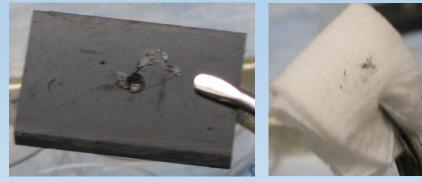
HD:

- No TDG detected in any sample
- Mustard sulfone was detected in 4 of 5 extracts of wipe samples taken from aluminum coupons decontaminated using Dahlgren Decon
- Mustard sulfone detected in extracts of wipe samples taken from all coupons of all three material types decontaminated with eClO₂
- Mustard sulfone also detected in extracts of ABS plastic and acrylic coupons decontaminated with eClO₂

Decontaminant/Material Compatibility

Dahlgren Decon

- Generally, appeared to demonstrate the highest degree of compatibility with the three SE-related materials
- Liquid decontaminant still remaining after 1 week; no residue; remaining decontaminant was easily removed
- Acrylic unaffected
- Slightly discolored ABS plastic
- Slightly discolored aluminum

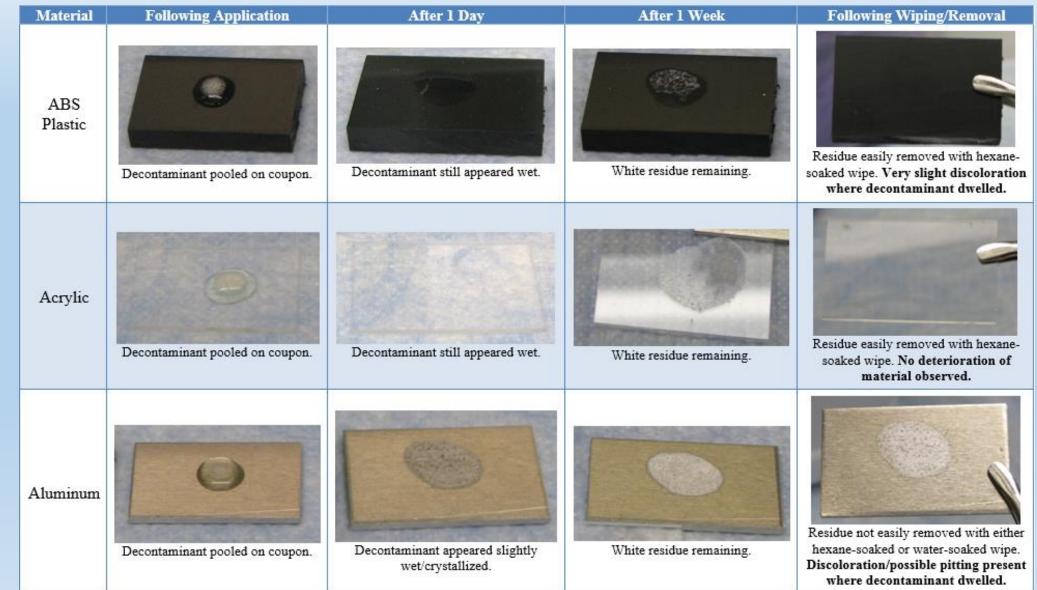

• DF200

- Crystallized residue left after 1 week; easily removed from ABS and acrylic; difficult to remove from aluminum
- Acrylic unaffected
- Discolored ABS plastic
- Discolored aluminum

• eClO₂

- White residue left after 1 week; easily removed from ABS and acrylic; difficult to remove from aluminum
- Acrylic unaffected
- Slightly discolored ABS plastic
- Damaged the surface of aluminum coupons (left surface rough/pitted)

- ABS plastic appeared to be most damaged by application of HD rather than by application of any of the three decontaminants (left)
- Plastic debris was removed during wipe sampling where HD contamination was placed (right)


Decontaminant/Material CompatibilityDahlgren Decon

Material	Following Application	After 1 Day	After 1 Week	Following Wiping/Removal
ABS Plastic	Decontaminant pooled on coupon.	Decontaminant still appeared wet.	Decontaminant still wet, but appeared thicker/tacky when wiped.	Decontaminant easily removed with hexane-soaked wipe. Very slight discoloration where decon dwelled.
Acrylic	Decontaminant pooled on coupon.	Decontaminant still appeared wet	Decontaminant still wet, but appeared thicker/tacky when wiped.	Decontaminant easily removed with hexane-soaked wipe. No deterioration of material observed.
Aluminum	Decontaminant pooled on coupon.	Decontaminant still appeared wet.	Decontaminant still wet, but appeared thicker/tacky when wiped.	Decontaminant easily removed with hexane wipe. Very slight discoloration where decon dwelled.

Decontaminant/Material Compatibility

Mater	ial Following Application	After 1 Day	After 1 Week	Following Wiping/Removal
ABS Plasti		Decontaminant appeared slightly wet/crystallized.	Crystallized/crusty residue remaining.	Residue easily removed with hexane- soaked wipe. Discoloration where decontaminant dwelled.
Acryl	ic Decontaminant pooled on coupon.	Decontaminant spread and appeared slightly wet/crystallized.	Crystallized/crusty residue remaining.	Residue easily removed with hexane- soaked wipe. No deterioration of material observed.
Alumin	hum Decontaminant pooled on coupon.	Decontaminant spread and appeared dry/crystallized.	Crystallized/crusty residue remaining.	Residue not easily removed with either hexane-soaked or water-soaked wipe. Discoloration/white residue present where decontaminant dwelled.

Decontaminant/Material Compatibility TDA eCIO₂

Summary Decontamination Efficacy

- For five of the six CWA/SE-related material combinations evaluated, Dahlgren Decon demonstrated the highest average percent decontamination efficacy
 - Decontamination of VX on ABS plastic, acrylic, and aluminum
 - Decontamination of HD on ABS plastic and aluminum
- TDA's eClO₂ decontaminant demonstrated the highest efficacy for the remaining CWA/material combination (HD/acrylic)

Highest Average Percent Decontamination Efficacy by CWA/Material ^A

	ABS Plastic	Acrylic	Aluminum
vx	Dahlgren Decon	Dahlgren Decon	Dahlgren Decon
	(99%)	(99%)	(98%)
HD	Dahlgren Decon	TDA eClO ₂	Dahlgren Decon
	(38%)	(61%)	(54%)

^A May not be statistically different from other decontaminants

Material Compatibility

- Dahlgren Decon
 - Demonstrated greatest degree of compatibility with the three SE-related materials
- DF200
 - Demonstrated compatibility with acrylic, but discolored ABS plastic and aluminum
 - Left residue on the surface of coupons (difficult to remove from aluminum)
- eClO₂
 - Compatible with acrylic, but discolored ABS plastic and damaged the surface of aluminum
 - Left residue on the surface of coupons (difficult to remove from aluminum)
- ABS was significantly damaged by HD

Further Study....

It can be done

- Expand degradation product analysis capabilities; include LC-MS/MS analysis of extracts to investigate presence of EA2192 and EMPA directly
- Decontamination efficacy tests using actual SE (system-level decontamination efficacy tests)
 - Subsequent compatibility tests can include full functionality tests
 - ASTM tests for material compatibility (originally intended for this work but limited by funding)
- CWA vapor contamination
- Evaluation of alternative decontaminants
 - Hot air decontamination
 - Fumigants/volumetric decontaminants
 - Plasma
- Extended contact hazard tests (prolonged contact) or repeated contact hazard tests (multiple repeated wipe samples of the same area cumulative transferred hazard) following decontamination
- Vapor offgas testing following decontamination

Questions?

