REMOVAL OF PERFLUORINATED COMPOUNDS FROM POST-EMERGENCY WASTEWATER BY ADVANCED OXIDATION PROCESS AND GRANULAR ACTIVATED CARBON ADSORPTION

Sean Dyson, John Stubbs, David Kempisty, Willie Harper, Jr.
US Air Force Institute of Technology

Matthew Magnuson, Marc Mills
US Environmental Protection Agency

10 May 2018
At the end of 2014, there were 290 documented military fire training areas, which included a total of 664 point-release sites (DoD, 2015; Hu et al, 2016).

PFAS have very low volatility and are stable and mobile in soil, and have half-life degradations in the environment up to 92 years (EPA, 2012).
• Source water starts with a TOC of ~3 mg/L and increases to ~100 mg/L (Schmidt, 2017).

• TOC may have a higher affinity for adsorption in the GAC, leaving fewer sites for PFAS to adsorb to (Schmidt, 2017).

• Pretreating the water to reduce TOC levels has been recommended as an area of further research (Schmidt, 2017).
The first research objective was to determine whether UV/H$_2$O$_2$ AOP reduces TOC in contaminated AFFF-groundwater.

The second research objective was to determine whether pretreatment with AOP affects PFAS GAC adsorption capacity.
Advanced Oxidation Process

The AFIT of Today is the Air Force of Tomorrow.

Air University: The Intellectual and Leadership Center of the Air Force
Aim High...Fly - Fight - Win

Background/ Making the Case
Previous Research
Research Objectives
Current Data
- AOP
 - TOC
 - PFAS
 - RSSCT
 - PFOS
 - PFOA
 - PFAS
Future Research Needs
Questions

Advanced Oxidation Process

\[+ \text{H}_2\text{O}_2 \]

[Diagram of Advanced Oxidation Process system]

[Water treatment equipment: TANK, FILTER, PUMP, UV]

[Chemical equation: \(\text{TOC} + \text{PFAS} + \text{RSSCT} + \text{PFOS} + \text{PFOA} + \text{PFAS} \rightarrow \text{TANK} \rightarrow \text{FILTER} \rightarrow \text{PUMP} \rightarrow \text{UV} \)]
AOP Data – TOC

The AFIT of Today is the Air Force of Tomorrow.

Background/Making the Case

Previous Research

Research Objectives

Current Data

AOP

TOC

PFAS

RSSCT

PFOS

PFOA

PFAS

Future Research Needs

Questions

Air University: The Intellectual and Leadership Center of the Air Force

Aim High...Fly - Fight - Win
AOP Data – PFOS & PFOA

The AFIT of Today is the Air Force of Tomorrow.

Background/Making the Case

Previous Research

Research Objectives

Current Data

- AOP
- TOC
- PFAS
- RSSCT
- PFOS
- PFOA
- PFAS

Future Research Needs

Questions
Background/ Making the Case
Previous Research
Research Objectives
Current Data
AOP
TOC
PFAS
RSSCT
PFOS
PFOA
PFAS
Future Research Needs
Questions

Air University: The Intellectual and Leadership Center of the Air Force
Aim High...Fly - Fight - Win

AOP Data – PFPeA & PFHxDA

The AFIT of Today is the Air Force of Tomorrow.

UV/H2O2 AOP PFPeA Concentrations at Various H2O2 Concentrations

0 (mg/L) H2O2 (0-Hr) AOP Test
250 (mg/L) H2O2 (0-Hr) AOP Test
500 (mg/L) H2O2 (0-Hr) AOP Test

UV/H2O2 AOP PFHxDA Concentrations at Various H2O2 Concentrations

0 (mg/L) H2O2 (0-Hr) AOP Test
250 (mg/L) H2O2 (0-Hr) AOP Test
500 (mg/L) H2O2 (0-Hr) AOP Test
Rapid Small Scale Column Test

The AFIT of Today is the Air Force of Tomorrow.

Background/ Making the Case

Previous Research

Research Objectives

Current Data

AOP

TOC

PFAS

RSSCT

PFOS

PFOA

PFAS

Future Research Needs

Questions

Rapid Small Scale Column Test (RSSCT)

RSSCT Process Flow Diagram

Air University: The Intellectual and Leadership Center of the Air Force

Aim High...Fly - Fight - Win
Current Data - RSSCT PFOS

RSSCT results for 9 minute EBCT with and without pre-AOP treatment

TOC degradation of INL water with AFFF at various H₂O₂ concentrations using UV/H₂O₂ AOP

- 500 mg/L H₂O₂ (2-Hr)
- (2) 500 mg/L H₂O₂ (8-Hr)
- 250 mg/L H₂O₂ (8-Hr)
RSSCT PFOS

The AFIT of Today is the Air Force of Tomorrow.
PFOS GAC Capacity

The AFIT of Today is the Air Force of Tomorrow.

Background/Making the Case

Previous Research

Research Objectives

Current Data

AOP
TOC
PFAS
RSSCT
PFOS
PFOA
PFAS

Future Research Needs

Questions

Air University: The Intellectual and Leadership Center of the Air Force
Aim High…Fly - Fight - Win
RSSCT PFOA

The AFIT of Today is the Air Force of Tomorrow.

Background/Making the Case

Previous Research

Research Objectives

Current Data

AOP

TOC

PFAS

RSSCT

PFOS

PFOA

PFAS

Future Research Needs

Questions

RSSCT results for 9 minute EBCT with and without pre-AOP treatment

PFOA Normalized Concentration (C/C₀)

Throughput (Bed Volumes)

10% Breakthrough

PFOA (w/ AOP) 500 mg/L

H₂O₂ (2-Hr) Initial=0.105 mg/L

#2 PFOA (w/ AOP) 500 mg/L

H₂O₂ (3-Hr) Initial=0.215 mg/L

PFOA (w/ AOP) 250 mg/L

H₂O₂ (3-Hr) Initial=0.151 mg/L
PFOA GAC Capacity

The AFIT of Today is the Air Force of Tomorrow.

Background/Making the Case

Previous Research

Research Objectives

Current Data

AOP

TOC

PFAS

RSSCT

PFOS

PFOA

PFAS

Future Research Needs

Questions

Air University: The Intellectual and Leadership Center of the Air Force

Aim High...Fly - Fight - Win
RSSCT PFAS

The AFIT of Today is the Air Force of Tomorrow.

Background/
Making the Case

Previous Research

Research Objectives

Current Data
AOP
TOC
PFAS
RSSCT
PFOS
PFOA
PFAS

Future Research Needs

Questions
Future Research Needs

The AFIT of Today is the Air Force of Tomorrow.

- To determine the optimal H_2O_2 concentration and UV contact time during the AOP process, and to further understand the impact to the formation of other PFAS

- To determine the characteristics of the TOC in the INL groundwater, and the characteristics of the TOC once AFFF is in solution

- To conduct a life-cycle cost analysis on implementing the proposed treatment-train
Questions

“EPA Disclaimer: The U.S. Environmental Protection Agency, through its Office of Research and Development, funded and collaborated in the research described here under Interagency Agreement 57924409 with US Air Force Institute of Technology. This document was reviewed in accordance with EPA policy prior to publication. Note that approval for publication does not signify that the contents necessarily reflect the views of the Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use of a specific product.”

“USAF Disclaimer: The views expressed in this presentation are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.”