## **Supplemental Material for**

# Quantitative risk assessment: Developing a complete Bayesian approach to Dichotomous Dose-Response Model averaging

Matthew W. Wheeler<sup>1</sup>, Kan Shao<sup>2</sup>, Jeffrey S Gift<sup>3</sup>, J. Allen Davis<sup>4</sup>, Bruce C Allen<sup>5</sup>, Todd Blessinger and Louis Olszyk

#### **Appendix 1: Explanation of Marginal Approximation to the BMD**

The approximation of the marginal is based upon the Taylor series expansion of  $\pi(\theta|y)$  subject to the parameter of interest  $\eta = g(\theta)$  and is described in Hsu (1). Define  $\theta_{\eta} \in \Theta_{\eta}$  to be the value satisfying

$$\pi(\theta_{\eta}|y) = \sup_{\theta \in \Theta_{\eta}} \pi(\theta|y)$$

where  $\eta$  fixed,  $\Theta_{\eta} = \{\theta : \eta = g(\theta) \text{ for all } \theta \in \Theta\}$ , and  $\Theta$  is the unrestricted parameter space for  $\theta$ . From (1.9) in Hsu, the posterior  $\overline{\pi}^*(\theta|Y) \approx N(\theta_{\eta}, \overline{R}_{\eta}^{-1})$ , where  $\overline{R}_{\eta}$  is the negative hessian of the log posterior probability  $\pi(\theta|y)$  evaluated at  $\theta_{\eta}$ ;

Equivalently  $(x - \theta_{\eta})^T \bar{R}_{\eta} (x - \theta_{\eta}) \approx \chi_k^2$ , where k is the number of parameters constrained by  $\eta = g(\theta)$ .

Define  $\theta^* \in \Theta$  such that

$$\pi(\theta^*|y) = \sup_{\theta \in \Theta} \pi(\theta|y).$$

Now consider the Taylor expansion of  $-2 \log \left[ \frac{\pi(\theta|y)}{\pi(\theta^*|y)} \right]$  around  $\theta_{\eta}$ . Under the restriction  $\eta = g(\theta)$  one has  $\theta_{\eta} - \theta^* \xrightarrow{p} 0$ , and thus from the expansion is approximately  $(\Theta^* - \theta_{\eta})^T \overline{R}_{\eta} (\theta^* - \theta_{\eta})$ , which, from above, can be evaluated as a  $\chi_k^2$  random variable and be used to estimate the posterior distribution.

In the case of the BMD where one is interested in Pr(BMD < x), one computes the profile MAP at a grid of potential BMDs and compares this value to the value of the BMD defined at  $\theta^*$  to the  $\chi_k^2$  random variable. As this RV folds both tails of the distribution into a single tail, the estimated probability is one half of the returned probability. A numerical example using the BMD calculated using the Weibull model from the approximation is given in figure. Note that MCMC sampling took 0.5 seconds, and the approximation took 0.005 seconds. Thus, the approximation was 100 times faster, which is significant when considering batch processing of large data sets.



**Figure SA1-1:** Comparison of the true posterior distribution (calculated using MCMC) of the BMD calculated at a BMR=0.01 for the Weibull model compared to the approximate density (red line) generated using the approximation method.

#### Appendix 2: Parametric simulation model forms M1-M26.

As described in the manuscript, a variety of parametric models were considered in the simulation study. The parametric models were given in two varieties: 1) single dose-responses, M1-14 and M24-M26, and 2) those dose-response curves generated as a convex sum of models. The single parametric simulations were generated from the log-logistic and multistage 3° model, i.e.,

$$\pi_{LL}(d) = \gamma + \frac{1 - \gamma}{1 + \exp[-\beta_0 - \beta_1 \log(d)]}$$

and

$$\pi_{MS3}(d) = \gamma + (1 - \gamma)[1 - \exp(-\beta_1 d - \beta_2 d^2 - \beta_3 d^3)].$$

| Table SA2-1 gives the parameter values for each of these model |
|----------------------------------------------------------------|
| rable SA2-1 gives the parameter values for each of these model |

| Model     | Parameter Values                                                              | BMD10 | BMD01 |
|-----------|-------------------------------------------------------------------------------|-------|-------|
| M1        | MS3: $\gamma = 0.01$ , $\beta_1 = 10$ , $\beta_2 = 0.5$ , $\beta_3 = 9$       | 0.012 | 0.001 |
| M2        | MS3: $\gamma = 0.01$ , $\beta_1 = 0$ , $\beta_2 = 0$ , $\beta_3 = 20$         | 0.174 | 0.080 |
| M3        | MS3: $\gamma = 0.01$ , $\beta_1 = 3$ , $\beta_2 = -9$ , $\beta_3 = 10$        | 0.040 | 0.003 |
| M4        | MS3: $\gamma = 0.01$ , $\beta_1 = 1.1$ , $\beta_2 = -1$ , $\beta_3 = 3.1$     | 0.102 | 0.009 |
| M5        | MS3: $\gamma = 0.01$ , $\beta_1 = 0$ , $\beta_2 = 0$ , $\beta_3 = 5$          | 0.276 | 0.126 |
| M6        | LL : $\gamma = 0.01, \beta_0 = 11, \beta_1 = 4$                               | 0.569 | 0.458 |
| M7        | LL : $\gamma = 0.01$ , $\beta_0 = 18$ , $\beta_1 = 3$                         | 0.749 | 0.656 |
| <b>M8</b> | MS3: $\gamma = 0.01$ , $\beta_1 = -3$ , $\beta_1 = -5$ , $\beta_3 = 2.8$      | 0.037 | 0.003 |
| M9        | MS3: $\gamma = 0.01$ , $\beta_1 = 0.7$ , $\beta_1 = 0.01$ , $\beta_3 = 0.01$  | 0.150 | 0.014 |
| M10       | MS3: $\gamma = 0.01$ , $\beta_1 = 0$ , $\beta_1 = 0$ , $\beta_3 = 0.7$        | 0.532 | 0.243 |
| M11       | LL : $\gamma = 0.01$ , $\beta_0 = 9$ , $\beta_1 = 0.4$                        | 0.749 | 0.574 |
| M12       | MS3: $\gamma = 0.01$ , $\beta_1 = 1.25$ , $\beta_2 = -2$ , $\beta_3 = 1.07$   | 0.099 | 0.008 |
| M13       | MS3: $\gamma = 0.01$ , $\beta_1 = 0.25$ , $\beta_2 = 0.01$ , $\beta_3 = 0.01$ | 0.411 | 0.040 |
| M14       | MS3: $\gamma = 0.01$ , $\beta_1 = 0.01$ , $\beta_2 = 0.01$ , $\beta_3 = 0.25$ | 0.719 | 0.292 |
| M24       | MS3: $\gamma = 0.2, \beta_1 = 0.27, \beta_2 = -2.5, \beta_3 = 1$              | 0.036 | 0.003 |
| M25       | MS3: $\gamma = 0.2, \beta_1 = 0$ , $\beta_2 = 0, \beta_3 = 1.5$               | 0.413 | 0.189 |
| M26       | MS3: $\gamma = 0.2, \beta_1 = 1$ , $\beta_2 = 0.5, \beta_3 = -0.02$           | 0.100 | 0.010 |

**Table SA2-1:** The true models, parameter values, and benchmark doses for models M1-M14 and M24-M26. Here MS3 is the multistage 3° model and LL is the log-logistic model. The manuscript gives parametrization of the MS3 and the LL models.

Dose-response simulations M15-24-M26 come from a convex sum of four parametric dose response models.

This convex sum takes the form

$$\pi_{MX} = \sum_i p_i \, \pi_i(d),$$

where X is 15 through 23 in the manuscript, the weights  $p_i$  sum to one, and the parametric models used are

$$\begin{aligned} \pi_{PRO}(d) &= \Phi(-1.6 + 2.5d), \\ \pi_{QL}(d) &= 0.02 + 0.98[1 - \exp(-1.6d)], \\ \pi_{LOG}(d) &= 0.02 + \frac{0.98}{1 + \exp[-1.3 - 2 \times \log(d)]}, \end{aligned}$$

and

$$\pi_{WEI}(d) = 0.02 + 0.98[1 - \exp(-1.5d^{2.2})].$$

For these conditions, the weights assigned to the convex sum are in tables SA2-2 and SA2-3.

| Model | True Model Weights | <b>BMD-10</b> | <b>BMD-01</b> |
|-------|--------------------|---------------|---------------|
| M15   | LOG: 0.8; QL: 0.2  | 0.206         | 0.022         |
| M16   | LOG: 0.5; QL: 0.5  | 0.123         | 0.012         |
| M17   | LOG: 0.2; QL: 0.8  | 0.085         | 0.008         |
| M23   | LOG: 0.0; QL: 1.0  | 0.070         | 0.007         |

**Table SA2-2:** The weighting schemes for simulation models M15-M17 and M23 and corresponding BMD10 and BMD-01. The exact form of the logistic and quantal linear (QL) models are described in in the main text.

| Model | True Model Weights                    | <b>BMD10</b> | <b>BMD01</b> |
|-------|---------------------------------------|--------------|--------------|
| M18   | PRO:0.55; QL:0.15; LOG:0.15; WEI:0.15 | 0.180        | 0.024        |
| M19   | PRO:0.15; QL:0.55; LOG:0.15; WEI:0.15 | 0.107        | 0.011        |
| M20   | PRO:0.15; QL:0.15; LOG:0.55; WEI:0.15 | 0.166        | 0.029        |
| M21   | PRO:0.15; QL:0.15; LOG:0.15; WEI:0.55 | 0.205        | 0.032        |
| M22   | PRO:0.25; QL:0.25; LOG:0.25; WEI:0.25 | 0.159        | 0.020        |

**Table SA2-3:** The weighting schemes for simulation models M18-M22 and corresponding BMD10 and BMD01. The exact form of the probit (PRO), logistic (LOG) and Weibull (WEI) models are described in the main text.

## **Appendix 3: Priors and Simulation Results**

|            | Priors 1a (Proposed) <sup>1</sup> | Priors 2                         | Priors 3                         | Priors 4 (Empirical)           |
|------------|-----------------------------------|----------------------------------|----------------------------------|--------------------------------|
| Quantal    | $logit(\gamma) \sim N(0,2)$       | $logit(\gamma) \sim N(-2.5,2)$   | $logit(\gamma) \sim N(-2.5,1)$   | $logit(\gamma) \sim N(-2.5,2)$ |
| Linear     | $\beta \sim LN(0,1)$              | $\beta \sim LN(0,1)$             | $\beta \sim LN(-1,1)$            | $\beta \sim LN(-0.46, 1.44)$   |
| Multistage | $logit(\gamma) \sim N(0,2)$       | $logit(\gamma) \sim N(-2.5,2)$   | $logit(\gamma) \sim N(-2.5,1)$   | $logit(\gamma) \sim N(-2.5,2)$ |
|            | $\beta_1 \sim LN(0, 0.25)$        | $\beta_1 \sim LN(0.5, 0.44)$     | $\beta_1 \sim LN(0.5, 0.44)$     | $\beta_1 \sim LN(-1.44, 1.9)$  |
|            | $\beta_2 \sim LN(0,1)$            | $\beta_2 \sim LN(0,4)$           | $\beta_2 \sim LN(0,4)$           | $\beta_2 \sim LN(-1.232,2)$    |
| Weibull    | $logit(\gamma) \sim N(0,2)$       | $logit(\gamma) \sim N(-2.5,2)$   | $logit(\gamma) \sim N(-2.5,1)$   | $logit(\gamma) \sim N(-2.5,2)$ |
|            | $\alpha \sim LN(\log(2), 0.18)$   | $\alpha \sim LN(\log(2), 0.44)$  | $\alpha \sim LN(\log(2), 0.44)$  | $\alpha \sim LN(0.64, 0.1)$    |
|            | $\beta \sim LN(0,1)$              | $\beta \sim LN(0,2)$             | $\beta \sim LN(0,2)$             | $\beta \sim LN(-0.31,2)$       |
| Gamma      | $logit(\gamma) \sim N(0,2)$       | $logit(\gamma) \sim N(-2.5,2)$   | $logit(\gamma) \sim N(-2.5,1)$   | $logit(\gamma) \sim N(-2.5,2)$ |
|            | $\alpha \sim LN(\log(2), 0.18)$   | $\alpha \sim LN(\log(2), 0.44)$  | $\alpha \sim LN(\log(2), 0.44)$  | $\alpha \sim LN(0.82, 0.19)$   |
|            | $\beta \sim LN(0,1)$              | $\beta \sim LN(0,2)$             | $\beta \sim LN(0,2)$             | $\beta \sim LN(0.76, 0.85)$    |
| Hill       | $logit(\gamma) \sim N(0,2)$       | $logit(\gamma) \sim N(-2.5,1)$   | $logit(\gamma) \sim N(-2.5,1)$   | $logit(\gamma) \sim N(-2.5,2)$ |
|            | $logit(v) \sim N(4,2)$            | $logit(v) \sim N(4,2)$           | $logit(v) \sim N(4,2)$           | $logit(v) \sim N(2,2,0.5)$     |
|            | $a \sim N(0, 0.25)$               | $a \sim N(0, 0.7)$               | $a \sim N(0, 0.7)$               | $a \sim N(5.8, 1.0)$           |
|            | $b \sim LN(\log(10), 0.0625)$     | $b \sim LN(\log(10), 0.44)$      | $b \sim LN(\log(10), 0.44)$      | $b \sim LN(1.79, 0.19)$        |
| Logistic   | $\beta_0 \sim N(0,2)$             | $\beta_0 \sim N(-2.5,2)$         | $\beta_0 \sim N(-2.5,1)$         | $\beta_0 \sim N(-2.5, 2.2)$    |
|            | $\beta_1 \sim LN(0.45,1)$         | $\beta_1 \sim LN(0.45,1)$        | $\beta_1 \sim LN(0.45,1)$        | $\beta_1 \sim LN(0,1)$         |
| Log-       | $logit(\gamma) \sim N(0,2)$       | $logit(\gamma) \sim N(-2.5,2)$   | $logit(\gamma) \sim N(-2.5,1)$   | $logit(\gamma) \sim N(-2.5,2)$ |
| Logistic   | $\beta_0 \sim N(0,1)$             | $\beta_0 \sim N(0,1)$            | $\beta_0 \sim N(0,1)$            | $\beta_0 \sim N(0.25, 4.5)$    |
| 0          | $\beta_1 \sim LN(\log(2), 0.25)$  | $\beta_1 \sim LN(\log(2), 0.44)$ | $\beta_1 \sim LN(\log(2), 0.44)$ | $\beta_1$                      |
|            |                                   |                                  |                                  | ~ <i>LN</i> (0.8329,0.316)     |
| Probit     | $\beta_0 \sim N(0,2)$             | $\beta_0 \sim N(-2.5,2)$         | $\beta_0 \sim N(-2.5,1)$         | $\beta_0 \sim N(-1.44, 0.5)$   |
|            | $\beta_0 \sim N(0,1)$             | $\beta_0 \sim N(0,1)$            | $\beta_0 \sim N(0,1)$            | $\beta_0 \sim N(0.45, 0.65)$   |
| Log-Probit | $logit(\gamma) \sim N(0,2)$       | $logit(\gamma) \sim N(-2.50,2)$  | $logit(\gamma) \sim N(-2.50,1)$  | $logit(\gamma) \sim N(-2.5,2)$ |
|            | $\beta_0 \sim N(0,1)$             | $\beta_0 \sim N(0,1)$            | $\beta_0 \sim N(0,1)$            | $\beta_0 \sim N(0.15,2)$       |
|            | $\beta_1 \sim LN(\log(2), 0.25)$  | $\beta_1 \sim LN(\log(2), 0.44)$ | $\beta_1 \sim LN(\log(2), 0.44)$ | $\beta_1 \sim LN(0.41, 0.4)$   |

| Table SA3-1: | Proposed | and | Alternative | Priors |
|--------------|----------|-----|-------------|--------|
|--------------|----------|-----|-------------|--------|

<sup>1</sup> "Priors 1a" represent the proposed priors referred to in the manuscript. Simulation "Priors 1b" are the proposed priors with diffuse variance conditions (all parameters variances multiplied by 4). Simulation "Priors 1c" are the exact same as the proposed (Priors 1a) condition except the prior on the hill parameters were  $a \sim N(0,0.25)$  and  $b \sim LN(\log(2),0.25)$ , which mimic the priors on the log-logistic model.

<sup>2</sup> Priors 2 and 3 are sensitivity analyses of the effect of the prior on the background rate, the diffuseness of the shape parameter, and the location of the quantal linear slope parameter.

<sup>3</sup> Priors 4 are empirical priors derived from BMD analyses documented in the EPA IRIS database.

### Simulation Results

## Table SA3-2: Coverage

|     | Priors 1a |          |        |          | Priors 1b (diffuse Hill) |          |        |          |        | Priors 1c (all diffuse) |        |          |        | Priors 2 |        |          |        | Priors 3 |        |          |        | riors 4 (E | mperical | )        | BM        | DS         | BAYES    | NP     | SHAO MA     | (MAKS)     |
|-----|-----------|----------|--------|----------|--------------------------|----------|--------|----------|--------|-------------------------|--------|----------|--------|----------|--------|----------|--------|----------|--------|----------|--------|------------|----------|----------|-----------|------------|----------|--------|-------------|------------|
|     | BMF       | R 0.1    | BMR    | 0.01     | BMR                      | 0.1      | BMF    | 0.01     | BMF    | 0.1                     | BMR    | 0.01     | BMR    | 0.1      | BMR    | 0.01     | BMF    | 0.1      | BMR    | 0.01     | BMF    | 0.1        | BMR      | 0.01     | BMR = 0.1 | 3MR = 0.01 | BMR =    | 0.1    | BMR = 0.1 B | 3MR = 0.01 |
|     | Even      | QL = 0.5 | Even   | QL = 0.5 | Even                     | QL = 0.5 | Even   | QL = 0.5 | Even   | QL = 0.5                | Even   | QL = 0.5 | Even   | QL = 0.5 | Even   | QL = 0.5 | Even   | QL = 0.5 | Even   | QL = 0.5 | Even   | QL = 0.5   | Even     | QL = 0.5 |           |            |          |        |             |            |
| M1  | 97.9%     | 97.0%    | 98.5%  | 97.0%    | 98.4%                    | 97.6%    | 98.4%  | 97.6%    | 99.8%  | 99.0%                   | 99.8%  | 99.0%    | 99.0%  | 98.4%    | 99.4%  | 98.4%    | 98.4%  | 97.8%    | 99.4%  | 98.4%    | 98.4%  | 97.6%      | 99.4%    | 97.7%    | 99.1%     | 99.3%      | 0.0%     | 0.0%   | 93.6%       | 93.3%      |
| M2  | 99.7%     | 99.7%    | 100.0% | 100.0%   | 99.5%                    | 99.5%    | 100.0% | 100.0%   | 99.7%  | 99.7%                   | 100.0% | 100.0%   | 99.6%  | 99.6%    | 100.0% | 100.0%   | 99.6%  | 99.6%    | 100.0% | 100.0%   | 99.9%  | 99.9%      | 100.0%   | 100.0%   | 90.8%     | 91.8%      | 100.0% ( | 100.0% | 100.0%      | 100.0%     |
| M3  | 0.0%      | 0.0%     | 5.1%   | 4.2%     | 0.0%                     | 0.0%     | 13.8%  | 13.7%    | 0.0%   | 0.1%                    | 13.9%  | 13.9%    | 0.0%   | 0.0%     | 11.9%  | 11.7%    | 0.0%   | 0.0%     | 11.9%  | 11.8%    | 0.0%   | 0.0%       | 0.0%     | 0.0%     | 0.0%      | 0.0%       | 0.0%     | 0.0%   | 0.0%        | 0.0%       |
| M4  | 52.1%     | 55.6%    | 35.0%  | 45.7%    | 30.5%                    | 43.4%    | 32.3%  | 43.7%    | 30.6%  | 40.5%                   | 33.0%  | 41.0%    | 48.3%  | 51.2%    | 41.5%  | 46.6%    | 48.3%  | 50.6%    | 41.4%  | 45.9%    | 22.5%  | 36.5%      | 13.7%    | 32.2%    | 36.2%     | 31.0%      | 92.7%    | 86.1%  | 67.9%       | 32.5%      |
| M5  | 98.8%     | 98.8%    | 100.0% | 100.0%   | 98.1%                    | 98.1%    | 100.0% | 100.0%   | 98.3%  | 98.3%                   | 100.0% | 100.0%   | 98.2%  | 98.2%    | 100.0% | 100.0%   | 98.2%  | 98.2%    | 100.0% | 100.0%   | 97.9%  | 97.9%      | 99.1%    | 99.1%    | 77.8%     | 88.2%      | 99.2%    | 100.0% | 100.0%      | 100.0%     |
| M6  | 100.0%    | 100.0%   | 100.0% | 100.0%   | 100.0%                   | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%                  | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%     | 100.0%   | 100.0%   | 91.4%     | 100.0%     | 100.0% : | 100.0% | 100.0%      | 100.0%     |
| M7  | 100.0%    | 100.0%   | 100.0% | 100.0%   | 100.0%                   | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%                  | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%     | 100.0%   | 100.0%   | 100.0%    | 100.0%     | 100.0% : | 100.0% | 100.0%      | 100.0%     |
| M8  | 100.0%    | 100.0%   | 93.3%  | 61.3%    | 84.1%                    | 56.3%    | 94.2%  | 69.8%    | 100.0% | 100.0%                  | 99.5%  | 92.4%    | 100.0% | 100.0%   | 94.2%  | 64.8%    | 100.0% | 100.0%   | 95.0%  | 67.1%    | 11.5%  | 6.1%       | 3.9%     | 0.2%     | 97.0%     | 98.5%      | 0.0%     | 0.0%   | 0.0%        | 0.0%       |
| M9  | 87.4%     | 91.0%    | 88.8%  | 91.9%    | 89.2%                    | 91.7%    | 90.8%  | 92.5%    | 93.2%  | 92.5%                   | 94.0%  | 93.1%    | 84.4%  | 87.9%    | 85.6%  | 88.6%    | 84.9%  | 87.4%    | 86.0%  | 88.3%    | 84.3%  | 89.4%      | 84.6%    | 89.7%    | 88.0%     | 94.3%      | 94.1%    | 91.3%  | 68.9%       | 65.2%      |
| M10 | 0.0%      | 0.0%     | 92.6%  | 92.5%    | 99.0%                    | 99.0%    | 99.8%  | 99.8%    | 6.8%   | 1.5%                    | 92.7%  | 92.8%    | 0.0%   | 0.0%     | 97.2%  | 97.2%    | 0.0%   | 0.0%     | 98.3%  | 98.3%    | 100.0% | 100.0%     | 100.0%   | 100.0%   | 92.6%     | 91.5%      | 99.7%    | 100.0% | 99.3%       | 99.5%      |
| M11 | 100.0%    | 100.0%   | 100.0% | 100.0%   | 100.0%                   | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%                  | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%     | 100.0%   | 100.0%   | 100.0%    | 100.0%     | 100.0% : | 100.0% | 100.0%      | 100.0%     |
| M12 | 29.7%     | 6.2%     | 100.0% | 100.0%   | 35.1%                    | 9.7%     | 80.6%  | 32.4%    | 86.5%  | 55.4%                   | 100.0% | 100.0%   | 21.2%  | 1.9%     | 100.0% | 100.0%   | 20.1%  | 1.8%     | 100.0% | 100.0%   | 0.4%   | 0.2%       | 0.2%     | 0.1%     | 48.8%     | 52.1%      | 33.5%    | 4.0%   | 0.0%        | 0.0%       |
| M13 | 67.7%     | 83.5%    | 60.8%  | 84.1%    | 79.3%                    | 87.6%    | 79.0%  | 90.0%    | 79.7%  | 85.0%                   | 86.1%  | 89.3%    | 72.2%  | 82.1%    | 71.7%  | 84.0%    | 72.4%  | 81.0%    | 71.5%  | 83.6%    | 76.9%  | 88.6%      | 75.5%    | 89.8%    | 80.9%     | 94.0%      | 98.8%    | 97.5%  | 82.9%       | 78.6%      |
| M14 | 94.9%     | 95.0%    | 98.9%  | 98.9%    | 96.6%                    | 97.0%    | 100.0% | 100.0%   | 93.6%  | 94.3%                   | 97.8%  | 97.8%    | 95.1%  | 95.5%    | 99.9%  | 99.9%    | 95.7%  | 95.7%    | 100.0% | 100.0%   | 96.9%  | 97.6%      | 100.0%   | 100.0%   | 91.6%     | 95.9%      | 100.0% : | 100.0% | 98.8%       | 100.0%     |
| M15 | 94.9%     | 95.0%    | 98.9%  | 98.9%    | 82.7%                    | 87.3%    | 61.1%  | 78.0%    | 93.6%  | 94.3%                   | 97.8%  | 97.8%    | 95.1%  | 95.5%    | 99.9%  | 99.9%    | 95.7%  | 95.7%    | 100.0% | 100.0%   | 78.2%  | 85.0%      | 48.9%    | 73.5%    | 57.8%     | 53.9%      | 97.2%    | 98.0%  | 78.8%       | 57.9%      |
| M16 | 88.2%     | 95.1%    | 85.9%  | 94.7%    | 85.5%                    | 94.6%    | 83.1%  | 94.5%    | 85.4%  | 93.5%                   | 83.2%  | 93.3%    | 85.7%  | 94.0%    | 83.9%  | 93.3%    | 86.4%  | 94.4%    | 84.6%  | 93.6%    | 80.1%  | 92.7%      | 78.0%    | 92.6%    | 56.3%     | 72.7%      | 94.1%    | 92.0%  | 82.3%       | 75.2%      |
| M17 | 91.6%     | 96.9%    | 91.6%  | 96.9%    | 93.1%                    | 97.1%    | 92.8%  | 97.2%    | 94.0%  | 96.9%                   | 94.4%  | 97.0%    | 93.1%  | 96.8%    | 93.4%  | 96.8%    | 93.4%  | 96.6%    | 93.5%  | 96.6%    | 89.7%  | 95.9%      | 89.3%    | 95.7%    | 81.2%     | 89.9%      | 89.2%    | 100.0% | 61.9%       | 55.5%      |
| M18 | 91.6%     | 93.1%    | 90.0%  | 92.1%    | 86.9%                    | 90.3%    | 80.2%  | 86.6%    | 86.5%  | 89.3%                   | 83.7%  | 88.0%    | 83.4%  | 87.4%    | 72.2%  | 82.5%    | 84.6%  | 87.9%    | 74.5%  | 82.9%    | 80.9%  | 86.3%      | 69.1%    | 81.7%    | 65.6%     | 85.9%      | 98.4%    | 100.0% | 88.5%       | 84.0%      |
| M19 | 95.5%     | 98.3%    | 95.3%  | 98.3%    | 93.5%                    | 98.0%    | 92.8%  | 98.0%    | 93.6%  | 97.6%                   | 93.4%  | 97.6%    | 95.4%  | 98.0%    | 95.2%  | 98.0%    | 95.4%  | 97.7%    | 95.1%  | 97.9%    | 89.2%  | 96.7%      | 88.1%    | 96.4%    | 73.6%     | 88.0%      | 97.1%    | 97.3%  | 89.6%       | 89.1%      |
| M20 | 97.2%     | 97.9%    | 99.3%  | 99.4%    | 94.5%                    | 96.7%    | 97.7%  | 98.7%    | 94.5%  | 96.5%                   | 98.8%  | 99.2%    | 93.8%  | 95.6%    | 95.1%  | 96.9%    | 94.1%  | 95.7%    | 95.7%  | 97.1%    | 89.2%  | 94.3%      | 94.3%    | 96.5%    | 76.2%     | 97.0%      | 99.0%    | 100.0% | 94.4%       | 97.9%      |
| M21 | 91.5%     | 92.7%    | 100.0% | 100.0%   | 89.3%                    | 90.9%    | 89.3%  | 90.9%    | 88.4%  | 90.0%                   | 100.0% | 100.0%   | 84.1%  | 86.5%    | 100.0% | 100.0%   | 85.6%  | 87.5%    | 100.0% | 100.0%   | 85.7%  | 88.4%      | 85.7%    | 88.4%    | 78.7%     | 93.1%      | 99.2%    | 99.9%  | 88.4%       | 86.7%      |
| M22 | 92.7%     | 94.5%    | 92.3%  | 94.2%    | 86.4%                    | 91.7%    | 82.0%  | 90.0%    | 86.4%  | 90.9%                   | 85.5%  | 89.9%    | 85.6%  | 90.1%    | 79.1%  | 87.6%    | 86.5%  | 90.4%    | 80.7%  | 87.7%    | 79.8%  | 87.4%      | 69.6%    | 84.1%    | 61.6%     | 84.0%      | 98.3%    | 99.7%  | 88.6%       | 85.5%      |
| M23 | 89.6%     | 90.5%    | 90.1%  | 90.0%    | 92.0%                    | 91.1%    | 91.5%  | 90.6%    | 95.5%  | 93.2%                   | 95.7%  | 93.0%    | 92.4%  | 90.7%    | 92.6%  | 90.0%    | 92.5%  | 90.3%    | 92.8%  | 89.7%    | 86.2%  | 88.5%      | 86.3%    | 88.2%    | 87.5%     | 92.7%      | 83.7%    | 76.0%  | 50.9%       | 46.1%      |
| M24 | 97.1%     | 99.9%    | 96.7%  | 99.9%    | 94.7%                    | 99.6%    | 93.9%  | 99.6%    | 94.0%  | 99.6%                   | 93.3%  | 99.5%    | 93.8%  | 99.5%    | 93.0%  | 99.5%    | 91.7%  | 99.1%    | 88.1%  | 99.1%    | 89.0%  | 98.8%      | 85.7%    | 98.7%    | 67.7%     | 91.7%      | 65.8%    | 37.6%  | 99.9%       | 99.9%      |
| M25 | 100.0%    | 100.0%   | 100.0% | 100.0%   | 100.0%                   | 100.0%   | 100.0% | 100.0%   | 99.8%  | 99.8%                   | 99.5%  | 99.5%    | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%   | 100.0% | 100.0%   | 99.9%  | 99.9%      | 99.8%    | 99.8%    | 99.7%     | 99.0%      | 100.0%   | 100.0% | 100.0%      | 100.0%     |
| M26 | 95.8%     | 98.8%    | 95.8%  | 98.9%    | 96.0%                    | 99.0%    | 95.2%  | 99.0%    | 95.4%  | 98.4%                   | 94.7%  | 98.4%    | 96.9%  | 99.0%    | 96.7%  | 98.9%    | 97.2%  | 98.9%    | 96.9%  | 99.1%    | 89.8%  | 98.0%      | 88.3%    | 98.1%    | 53.1%     | 66.3%      | 95.4%    | 95.3%  | 96.5%       | 97.6%      |
| M27 | 99.5%     | 99.8%    | 100.0% | 100.0%   | 99.4%                    | 99.7%    | 100.0% | 100.0%   | 99.4%  | 99.7%                   | 100.0% | 100.0%   | 99.0%  | 99.4%    | 100.0% | 100.0%   | 99.1%  | 99.6%    | 100.0% | 100.0%   | 98.2%  | 99.1%      | 99.1%    | 99.5%    | 95.1%     | 99.4%      | 99.6%    | 100.0% | 99.5%       | 100.0%     |
| M28 | 100.0%    | 100.0%   | 40.6%  | 40.6%    | 100.0%                   | 100.0%   | 27.4%  | 27.4%    | 100.0% | 100.0%                  | 18.5%  | 18.5%    | 100.0% | 100.0%   | 41.9%  | 41.9%    | 100.0% | 100.0%   | 42.1%  | 42.1%    | 100.0% | 100.0%     | 20.3%    | 20.3%    | 100.0%    | 0.8%       | 100.0%   | 100.0% | 100.0%      | 100.0%     |
| M29 | 100.0%    | 100.0%   | 93.8%  | 95.5%    | 92.2%                    | 92.0%    | 99.8%  | 99.8%    | 100.0% | 100.0%                  | 93.0%  | 96.1%    | 100.0% | 100.0%   | 97.3%  | 98.5%    | 100.0% | 100.0%   | 98.7%  | 99.4%    | 100.0% | 100.0%     | 100.0%   | 100.0%   | 100.0%    | 92.1%      | 100.0%   | 100.0% | 100.0%      | 100.0%     |
| M30 | 92.7%     | 97.3%    | 92.2%  | 98.2%    | 97.6%                    | 99.2%    | 75.1%  | 81.9%    | 95.3%  | 97.6%                   | 96.4%  | 98.8%    | 96.0%  | 98.5%    | 94.7%  | 99.1%    | 96.6%  | 98.3%    | 96.7%  | 99.0%    | 97.1%  | 99.2%      | 99.1%    | 99.9%    | 93.2%     | 97.1%      | 99.8%    | 100.0% | 97.6%       | 99.1%      |
| M31 | 95.7%     | 99.0%    | 96.4%  | 99.2%    | 96.8%                    | 99.1%    | 97.2%  | 99.3%    | 96.8%  | 99.2%                   | 97.0%  | 99.4%    | 96.1%  | 99.3%    | 96.9%  | 99.6%    | 94.6%  | 99.0%    | 95.7%  | 99.3%    | 89.1%  | 98.4%      | 89.7%    | 98.6%    | 67.3%     | 88.4%      | 56.1%    | 46.9%  | 92.6%       | 94.2%      |
| M32 | 95.9%     | 100.0%   | 94.5%  | 100.0%   | 100.0%                   | 100.0%   | 100.0% | 100.0%   | 95.0%  | 100.0%                  | 97.7%  | 100.0%   | 97.0%  | 100.0%   | 98.7%  | 100.0%   | 97.0%  | 100.0%   | 98.7%  | 100.0%   | 100.0% | 100.0%     | 99.9%    | 99.9%    | 77.7%     | 100.0%     | 100.0%   | 100.0% | 100.0%      | 100.0%     |
| M33 | 0.9%      | 36.4%    | 15.6%  | 92.7%    | 44.6%                    | 46.0%    | 96.6%  | 97.5%    | 5.4%   | 69.7%                   | 20.4%  | 99.4%    | 2.6%   | 49.2%    | 29.0%  | 97.5%    | 2.3%   | 49.4%    | 27.5%  | 96.1%    | 31.0%  | 42.6%      | 96.5%    | 99.3%    | 59.6%     | 99.9%      | 96.9%    | 100.0% | 46.4%       | 98.3%      |
| M34 | 80.7%     | 99.8%    | 92.6%  | 100.0%   | 99.9%                    | 98.5%    | 100.0% | 100.0%   | 95.3%  | 100.0%                  | 96.8%  | 100.0%   | 79.8%  | 99.7%    | 87.6%  | 100.0%   | 80.7%  | 99.8%    | 87.4%  | 100.0%   | 65.8%  | 75.1%      | 72.3%    | 89.3%    | 99.7%     | 100.0%     | 98.9%    | 99.7%  | 83.7%       | 98.8%      |
| AVG | 82.9%     | 85.6%    | 86.3%  | 90.1%    | 86.3%                    | 86.8%    | 86.6%  | 87.3%    | 84.8%  | 87.4%                   | 86.9%  | 90.7%    | 82.0%  | 85.1%    | 86.7%  | 90.3%    | 82.1%  | 85.1%    | 86.8%  | 90.4%    | 79.6%  | 83.5%      | 77.5%    | 82.6%    | 77.8%     | 83.2%      | 84.9%    | 83.0%  | 80.9%       | 80.4%      |

|     | Priors 1a       |          |          |         | Priors 1b (diffuse Hill) |          |         | Priors 1c (all diffuse) |        |          |         | Priors 2 |        |          |         | Priors 3 |        |          |         | I        | Priors 4 (I | Emperical | )       | BN       | 1DS       | BAY        | S NP      | SHAO MA (MAKS) |           |            |
|-----|-----------------|----------|----------|---------|--------------------------|----------|---------|-------------------------|--------|----------|---------|----------|--------|----------|---------|----------|--------|----------|---------|----------|-------------|-----------|---------|----------|-----------|------------|-----------|----------------|-----------|------------|
|     | BMI             | R 0.1    | BMR 0    | .01     | BMR                      | 0.1      | BMR     | 0.01                    | BMR    | 0.1      | BMR     | 0.01     | BMR    | R 0.1    | BMR     | 0.01     | BMF    | R 0.1    | BMR     | 0.01     | BMF         | R 0.1     | BMR     | 0.01     | BMR = 0.1 | BMR = 0.01 | BMR = 0.1 | BMR = 0.01     | BMR = 0.1 | 3MR = 0.01 |
|     | Even            | QL = 0.5 | Even Q   | L = 0.5 | Even                     | QL = 0.5 | Even    | QL = 0.5                | Even   | QL = 0.5 | Even    | QL = 0.5 | Even   | QL = 0.5 | Even    | QL = 0.5 | Even   | QL = 0.5 | Even    | QL = 0.5 | Even        | QL = 0.5  | Even    | QL = 0.5 |           |            |           |                |           |            |
| M1  | L 8.6%          | 99.9%    | 121.2% 1 | L01.6%  | 209.5%                   | 125.9%   | 429.6%  | 179.5%                  | 152.2% | 104.9%   | 226.2%  | 118.3%   | 196.7% | 115.6%   | 317.2%  | 140.3%   | 238.4% | 134.3%   | 407.8%  | 180.1%   | 174.8%      | 117.7%    | 403.6%  | 175.6%   | 755.5%    | 3097.8%    | 274.5%    | 262.0%         | 246.8%    | 513.8%     |
| M2  | 86.4%           | 86.2%    | 51.9%    | 51.8%   | 91.2%                    | 91.0%    | 64.2%   | 64.1%                   | 89.8%  | 89.7%    | 56.4%   | 56.4%    | 90.1%  | 90.0%    | 58.5%   | 58.5%    | 90.1%  | 90.1%    | 58.5%   | 58.5%    | 87.7%       | 87.5%     | 61.2%   | 61.1%    | 96.4%     | 69.0%      | 13.0%     | 58.4%          | 80.6%     | 55.4%      |
| MB  | <b>3</b> 431.8% | 423.1%   | 959.6% 9 | 941.1%  | 458.2%                   | 443.7%   | 1078.5% | 1041.9%                 | 461.9% | 451.6%   | 1055.9% | 1033.1%  | 457.1% | 448.1%   | 1077.8% | 1055.0%  | 457.4% | 450.1%   | 1077.6% | 1059.0%  | 463.2%      | 450.3%    | 1111.6% | 1074.2%  | 448.9%    | 1175.1%    | 298.8%    | 251.2%         | 449.8%    | 1437.2%    |
| M4  | 159.9%          | 155.7%   | 362.4% 3 | 851.5%  | 171.9%                   | 165.0%   | 430.7%  | 407.3%                  | 170.6% | 165.4%   | 376.7%  | 361.9%   | 171.2% | 166.9%   | 434.6%  | 419.9%   | 171.4% | 167.8%   | 434.1%  | 421.8%   | 176.4%      | 170.4%    | 499.1%  | 475.2%   | 163.9%    | 382.1%     | 138.3%    | 118.5%         | 175.8%    | 569.1%     |
| M5  | 96.4%           | 96.4%    | 75.3%    | 75.3%   | 98.7%                    | 98.7%    | 82.9%   | 82.9%                   | 97.6%  | 97.6%    | 75.8%   | 75.8%    | 98.4%  | 98.4%    | 79.6%   | 79.6%    | 98.4%  | 98.4%    | 79.6%   | 79.6%    | 98.0%       | 98.0%     | 83.3%   | 83.3%    | 110.2%    | 87.5%      | 38.3%     | 86.8%          | 93.8%     | 88.3%      |
| M   | <b>5</b> 95.8%  | 95.8%    | 88.4%    | 88.4%   | 95.7%                    | 95.7%    | 90.3%   | 90.3%                   | 101.1% | 101.1%   | 93.6%   | 93.6%    | 94.5%  | 94.5%    | 84.4%   | 84.4%    | 94.4%  | 94.4%    | 84.3%   | 84.3%    | 96.3%       | 96.3%     | 98.3%   | 98.3%    | 106.1%    | 108.9%     | 42.8%     | 90.4%          | 91.8%     | 85.7%      |
| M7  | 7 78.6%         | 78.6%    | 69.4%    | 69.4%   | 77.8%                    | 77.8%    | 69.1%   | 69.1%                   | 84.0%  | 84.0%    | 75.0%   | 75.0%    | 76.7%  | 76.7%    | 65.5%   | 65.5%    | 76.5%  | 76.5%    | 65.4%   | 65.4%    | 77.1%       | 77.1%     | 73.4%   | 73.4%    | 113.6%    | 96.9%      | 35.4%     | 71.0%          | 78.8%     | 69.7%      |
| M   | <b>3</b> 188.8% | 240.7%   | 179.7% 2 | 246.3%  | 182.8%                   | 230.4%   | 175.3%  | 234.2%                  | 89.8%  | 149.3%   | 79.5%   | 149.2%   | 191.3% | 240.8%   | 185.4%  | 246.1%   | 189.0% | 239.3%   | 183.3%  | 244.3%   | 297.9%      | 286.7%    | 809.0%  | 527.6%   | 93.0%     | 67.3%      | 221.9%    | 199.7%         | 321.0%    | 412.5%     |
| MS  | <b>9</b> 134.3% | 118.0%   | 228.4% 1 | L62.8%  | 129.2%                   | 115.8%   | 207.7%  | 150.3%                  | 124.4% | 116.3%   | 199.8%  | 152.2%   | 137.2% | 121.7%   | 258.1%  | 178.6%   | 135.4% | 120.8%   | 245.1%  | 169.4%   | 132.2%      | 116.8%    | 209.5%  | 149.6%   | 105.6%    | 142.6%     | 146.3%    | 117.4%         | 175.8%    | 445.7%     |
| M1  | 0 113.7%        | 113.2%   | 139.8% 1 | L39.0%  | 97.3%                    | 96.8%    | 86.3%   | 85.7%                   | 112.2% | 111.4%   | 133.1%  | 131.8%   | 103.1% | 102.7%   | 110.5%  | 109.7%   | 101.5% | 101.0%   | 105.1%  | 104.1%   | 93.2%       | 92.3%     | 77.5%   | 76.3%    | 98.6%     | 85.1%      | 55.5%     | 88.1%          | 107.2%    | 139.7%     |
| M1  | 1 100.0%        | 100.0%   | 99.0%    | 99.0%   | 83.7%                    | 83.7%    | 69.1%   | 69.1%                   | 97.6%  | 97.6%    | 95.2%   | 95.2%    | 86.4%  | 86.4%    | 73.7%   | 73.7%    | 85.0%  | 85.0%    | 71.7%   | 71.7%    | 76.7%       | 76.7%     | 63.7%   | 63.7%    | 103.3%    | 107.2%     | 39.3%     | 73.5%          | 100.2%    | 100.2%     |
| M1  | <b>2</b> 100.0% | 364.3%   | 536.0% 4 | 16.9%   | 100.0%                   | 485.2%   | 689.6%  | 509.5%                  | 100.0% | 318.3%   | 439.3%  | 394.0%   | 100.0% | 392.3%   | 534.9%  | 409.6%   | 100.0% | 404.7%   | 563.7%  | 478.9%   | 100.0%      | 339.8%    | 463.9%  | 372.4%   | 220.3%    | 240.8%     | 235.0%    | 179.0%         | 352.0%    | 685.1%     |
| M1  | <b>3</b> 152.7% | 136.4%   | 335.1% 2 | 268.5%  | 185.6%                   | 161.5%   | 334.2%  | 264.4%                  | 193.5% | 154.0%   | 395.5%  | 263.7%   | 171.6% | 142.4%   | 347.3%  | 228.6%   | 165.4% | 147.9%   | 343.1%  | 228.9%   | 137.6%      | 123.5%    | 243.5%  | 170.4%   | 109.1%    | 181.1%     | 160.7%    | 97.7%          | 133.0%    | 344.8%     |
| M1  | 4 107.0%        | 105.9%   | 108.5% 1 | 106.0%  | 106.1%                   | 104.7%   | 83.9%   | 81.2%                   | 115.4% | 112.6%   | 127.2%  | 116.0%   | 108.6% | 107.1%   | 100.6%  | 90.8%    | 107.2% | 108.2%   | 101.8%  | 90.6%    | 100.1%      | 98.5%     | 73.8%   | 64.5%    | 99.2%     | 72.6%      | 56.4%     | 83.9%          | 97.6%     | 96.2%      |
| M1  | 5 120.0%        | 109.6%   | 325.1% 2 | 289.4%  | 116.9%                   | 105.8%   | 294.2%  | 256.0%                  | 122.6% | 112.4%   | 328.0%  | 294.0%   | 124.8% | 113.8%   | 373.1%  | 328.1%   | 121.4% | 110.6%   | 341.6%  | 298.8%   | 120.8%      | 109.6%    | 325.5%  | 286.7%   | 118.2%    | 195.3%     | 152.0%    | 102.3%         | 132.8%    | 402.9%     |
| M1  | 6 131.2%        | 112.4%   | 262.9% 2 | 203.4%  | 134.0%                   | 112.6%   | 291.3%  | 212.0%                  | 133.4% | 114.7%   | 267.5%  | 205.3%   | 138.9% | 117.1%   | 345.2%  | 252.2%   | 137.2% | 116.3%   | 328.3%  | 241.1%   | 142.1%      | 119.3%    | 342.0%  | 253.8%   | 132.5%    | 181.0%     | 152.0%    | 120.6%         | 170.1%    | 429.9%     |
| M1  | <b>7</b> 127.7% | 110.7%   | 192.3% 1 | L41.9%  | 132.1%                   | 111.3%   | 241.1%  | 155.8%                  | 125.5% | 110.5%   | 202.9%  | 143.9%   | 132.9% | 112.8%   | 257.6%  | 168.2%   | 132.7% | 113.5%   | 254.8%  | 168.9%   | 141.3%      | 116.8%    | 304.9%  | 191.1%   | 118.7%    | 144.8%     | 13.3%     | 126.3%         | 185.3%    | 381.5%     |
| M1  | 8 108.2%        | 98.3%    | 198.1% 1 | L73.9%  | 111.7%                   | 99.8%    | 216.7%  | 184.0%                  | 111.9% | 101.4%   | 199.2%  | 174.2%   | 115.5% | 104.0%   | 252.4%  | 216.0%   | 113.9% | 102.9%   | 239.9%  | 206.0%   | 118.7%      | 107.0%    | 268.2%  | 233.8%   | 102.6%    | 133.9%     | 95.6%     | 99.1%          | 124.8%    | 260.2%     |
| M1  | <b>9</b> 114.5% | 97.7%    | 187.1% 1 | 139.2%  | 121.1%                   | 99.5%    | 241.4%  | 159.9%                  | 116.5% | 98.9%    | 201.8%  | 142.3%   | 122.0% | 101.4%   | 262.4%  | 176.9%   | 121.9% | 102.1%   | 258.8%  | 177.4%   | 130.6%      | 107.1%    | 310.9%  | 209.9%   | 114.1%    | 128.8%     | 118.4%    | 112.3%         | 158.9%    | 339.0%     |
| M2  | 94.8%           | 82.9%    | 112.4%   | 90.5%   | 100.3%                   | 85.5%    | 135.9%  | 103.3%                  | 98.0%  | 85.3%    | 116.1%  | 91.0%    | 103.0% | 88.8%    | 155.5%  | 120.1%   | 102.2% | 88.6%    | 151.2%  | 117.7%   | 108.3%      | 93.3%     | 178.0%  | 140.3%   | 98.4%     | 78.7%      | 62.5%     | 92.7%          | 119.7%    | 172.3%     |
| M2  | 1 100.0%        | 106.1%   | 174.0% 1 | 156.9%  | 100.0%                   | 108.7%   | 185.8%  | 164.2%                  | 100.0% | 109.2%   | 171.3%  | 154.4%   | 100.0% | 113.7%   | 221.6%  | 197.9%   | 100.0% | 112.0%   | 210.3%  | 187.9%   | 100.0%      | 114.8%    | 229.6%  | 207.0%   | 106.0%    | 125.9%     | 84.5%     | 92.6%          | 118.2%    | 227.4%     |
| M2  | <b>2</b> 107.2% | 95.0%    | 182.2% 1 | 152.1%  | 112.5%                   | 97.5%    | 212.4%  | 168.6%                  | 110.9% | 98.0%    | 184.9%  | 151.8%   | 115.7% | 101.3%   | 244.5%  | 196.7%   | 114.6% | 100.9%   | 236.0%  | 191.1%   | 120.4%      | 105.4%    | 269.1%  | 220.1%   | 109.6%    | 132.0%     | 97.0%     | 97.9%          | 131.1%    | 267.3%     |
| M2  | <b>3</b> 123.8% | 112.1%   | 164.3% 1 | 127.1%  | 128.0%                   | 112.7%   | 211.1%  | 138.8%                  | 116.9% | 110.1%   | 170.8%  | 127.1%   | 126.8% | 113.2%   | 209.1%  | 141.7%   | 127.2% | 114.0%   | 210.8%  | 144.2%   | 142.5%      | 118.8%    | 326.3%  | 184.9%   | 110.2%    | 138.5%     | 136.1%    | 127.4%         | 184.1%    | 341.6%     |
| M2  | 4 116.7%        | 89.0%    | 158.6% 1 | 108.0%  | 135.1%                   | 101.1%   | 269.6%  | 169.3%                  | 125.4% | 98.4%    | 181.1%  | 131.7%   | 121.8% | 96.2%    | 176.3%  | 127.1%   | 126.5% | 102.7%   | 185.7%  | 139.3%   | 149.6%      | 114.4%    | 357.5%  | 224.8%   | 107.6%    | 130.6%     | 137.0%    | 126.4%         | 156.2%    | 191.4%     |
| M2  | 5 51.4%         | 48.0%    | 41.1%    | 38.2%   | 51.8%                    | 47.4%    | 41.0%   | 37.2%                   | 57.2%  | 53.5%    | 52.3%   | 48.9%    | 50.7%  | 46.7%    | 40.2%   | 36.7%    | 49.3%  | 45.7%    | 38.1%   | 35.0%    | 55.3%       | 52.2%     | 54.2%   | 51.2%    | 52.5%     | 25.2%      | 18.5%     | 46.9%          | 40.7%     | 14.2%      |
| M2  | <b>6</b> 123.9% | 103.0%   | 239.5% 1 | L73.5%  | 123.0%                   | 100.1%   | 245.6%  | 163.0%                  | 125.4% | 105.1%   | 279.3%  | 200.9%   | 119.7% | 98.5%    | 245.1%  | 166.6%   | 118.2% | 98.5%    | 232.1%  | 161.2%   | 139.2%      | 112.4%    | 357.9%  | 247.1%   | 116.9%    | 173.8%     | 192.3%    | 134.2%         | 147.1%    | 184.6%     |
| M2  | 7 100.0%        | 78.6%    | 64.5%    | 46.4%   | 100.0%                   | 80.7%    | 73.4%   | 49.9%                   | 100.0% | 78.7%    | 65.3%   | 46.3%    | 100.0% | 83.2%    | 85.2%   | 58.2%    | 100.0% | 81.9%    | 81.5%   | 56.0%    | 100.0%      | 89.4%     | 107.7%  | 74.7%    | 15.6%     | 50.5%      | 53.3%     | 86.4%          | 105.8%    | 105.2%     |
| M2  | 8 83.9%         | 83.9%    | 176.5% 1 | 176.5%  | 85.5%                    | 85.5%    | 192.6%  | 192.6%                  | 90.0%  | 90.0%    | 190.7%  | 190.7%   | 82.2%  | 82.2%    | 165.6%  | 165.6%   | 82.2%  | 82.2%    | 165.6%  | 165.6%   | 87.7%       | 87.7%     | 211.8%  | 211.8%   | 101.4%    | 273.0%     | 46.2%     | 66.0%          | 59.6%     | 85.8%      |
| M2  | <b>9</b> 84.5%  | 77.7%    | 236.6% 2 | 207.5%  | 84.5%                    | 77.7%    | 111.4%  | 100.1%                  | 99.3%  | 84.7%    | 257.1%  | 201.6%   | 79.0%  | 68.6%    | 151.9%  | 116.1%   | 78.5%  | 76.5%    | 143.6%  | 109.2%   | 62.9%       | 56.5%     | 79.9%   | 58.8%    | 313.9%    | 180.9%     | 64.1%     | 56.1%          | 85.0%     | 193.8%     |
| М3  | 0 128.7%        | 111.9%   | 367.3% 2 | 287.9%  | 132.4%                   | 112.1%   | 407.7%  | 277.0%                  | 149.2% | 120.4%   | 407.7%  | 277.0%   | 123.5% | 103.0%   | 259.5%  | 175.9%   | 123.2% | 112.1%   | 248.8%  | 170.0%   | 107.2%      | 93.3%     | 162.1%  | 113.6%   | 108.9%    | 253.7%     | 142.0%    | 87.9%          | 140.8%    | 365.1%     |
| М3  | 1 123.8%        | 103.2%   | 155.8% 1 | 14.1%   | 133.8%                   | 105.7%   | 237.0%  | 139.7%                  | 120.4% | 102.9%   | 154.2%  | 115.6%   | 119.4% | 100.7%   | 166.7%  | 116.8%   | 123.5% | 104.0%   | 178.3%  | 124.3%   | 182.2%      | 131.9%    | 551.7%  | 294.4%   | 126.0%    | 150.2%     | 148.9%    | 141.5%         | 182.6%    | 212.7%     |
| M3  | <b>2</b> 76.9%  | 76.9%    | 59.5%    | 59.4%   | 83.2%                    | 83.2%    | 74.2%   | 74.2%                   | 78.2%  | 78.2%    | 58.1%   | 58.1%    | 77.4%  | 77.4%    | 57.5%   | 57.5%    | 77.4%  | 77.4%    | 57.5%   | 57.5%    | 83.4%       | 83.4%     | 73.9%   | 73.9%    | 1276.1%   | 791.0%     | 34.9%     | 78.6%          | 61.9%     | 26.4%      |
| M3  | <b>3</b> 262.1% | 225.5%   | 217.6% 1 | 165.5%  | 9875.0%                  | 3211.8%  | 522.3%  | 4410.2%                 | 618.1% | 387.9%   | 403.6%  | 225.2%   | 480.6% | 312.3%   | 307.7%  | 167.4%   | 524.1% | 549.7%   | 329.1%  | 266.0%   | 232.7%      | 206.3%    | 151.3%  | 106.8%   | 2805.3%   | 1837.2%    | 98.5%     | 139.9%         | 259.0%    | 218.1%     |
| M3  | 4 73.9%         | 92.9%    | 56.8%    | 73.6%   | 75.7%                    | 89.5%    | 68.0%   | 75.7%                   | 39.4%  | 60.1%    | 29.2%   | 46.6%    | 76.2%  | 92.9%    | 61.9%   | 74.1%    | 75.4%  | 92.1%    | 61.9%   | 73.7%    | 166.5%      | 145.2%    | 650.2%  | 439.2%   | 161.2%    | 12.8%      | 83.5%     | 97.0%          | 129.9%    | 129.3%     |
| AVC | G 120.8%        | 124.4%   | 203.7% 1 | 177.7%  | 412.5%                   | 217.8%   | 240.1%  | 310.6%                  | 136.1% | 128.1%   | 216.2%  | 180.7%   | 135.1% | 129.7%   | 228.4%  | 185.3%   | 137.0% | 138.3%   | 228.7%  | 189.0%   | 135.4%      | 129.3%    | 281.9%  | 214.4%   | 259.4%    | 259.4%     | 325.1%    | 108.4%         | 108.4%    | 112.1%     |

|     | Priors 1a |          |        |          | Pric   | Priors 1b (diffuse Hill) |        |          |       | Priors 1c (all diffuse) |        |          |        | Priors 2 Priors |      |          | Priors 3 Priors 4 (B |          |          |         | mperical) |         | BN       | 1DS | BAY       | ES NP      | SHAO MA (MAKS) |            |       |         |        |
|-----|-----------|----------|--------|----------|--------|--------------------------|--------|----------|-------|-------------------------|--------|----------|--------|-----------------|------|----------|----------------------|----------|----------|---------|-----------|---------|----------|-----|-----------|------------|----------------|------------|-------|---------|--------|
|     | BN        | 1R 0.1   | BMR    | 0.01     | BM     | R 0.1                    | BMR    | 0.01     | BMF   | R 0.1                   | BMR    | 0.01     | BM     | R 0.1           | BMI  | R 0.01   | BN                   | IR 0.1   | BMR 0.0  | )1      | BMR       | 0.1     | BMR 0.0  | 1   | BMR = 0.1 | BMR = 0.01 | BMR = 0.1      | BMR = 0.01 | BMR = | 0.1 BMR | = 0.01 |
|     | Even      | QL = 0.5 | Even C | QL = 0.5 | Even ( | QL = 0.5                 | Even C | QL = 0.5 | Even  | QL = 0.5                | Even C | QL = 0.5 | Even ( | QL = 0.5        | Even | QL = 0.5 | Even                 | QL = 0.5 | Even QL= | = 0.5 H | Even Q    | L = 0.5 | Even QL= | 0.5 |           |            |                |            |       |         |        |
| M1  | 1.5       | 1.4      | 1.5    | 1.4      | 2.9    | 1.7                      | 8.0    | 2.7      | 21.9  | 1.6                     | 21.9   | 1.6      | 3.3    | 1.7             | 3.3  | 1.7      | 4.2                  | 2.0      | 4.2      | 2.0     | 4.0       | 1.8     | 8.5      | 2.6 | 1.6       | 1.4        | 1.1            | 1.1        | L     | 3.1     | 6.5    |
| M2  | 1.4       | 1.4      | 1.4    | 1.4      | 1.4    | 1.4                      | 2.4    | 2.4      | 1.3   | 1.3                     | 1.3    | 1.3      | 1.3    | 1.3             | 1.3  | 1.3      | 1.3                  | 1.3      | 1.3      | 1.3     | 1.3       | 1.3     | 2.2      | 2.3 | 1.3       | 2.3        | 1.5            | 1.5        | 5     | 2.3     | 6.2    |
| M3  | 1.6       | 1.6      | 1.6    | 1.6      | 1.3    | 1.3                      | 1.8    | 1.8      | 1.4   | 1.4                     | 1.4    | 1.4      | 1.6    | 1.6             | 1.6  | 1.6      | 1.6                  | 1.6      | 1.6      | 1.6     | 1.4       | 1.4     | 2.2      | 2.3 | 1.4       | 1.9        | 1.4            | 1.4        | 1     | 1.8     | 4.5    |
| M4  | 1.6       | 1.7      | 1.6    | 1.7      | 1.4    | 1.4                      | 2.2    | 2.3      | 1.4   | 1.5                     | 1.4    | 1.5      | 1.7    | 1.7             | 1.7  | 1.7      | 1.7                  | 1.7      | 1.7      | 1.7     | 1.4       | 1.5     | 2.4      | 2.6 | 1.5       | 2.6        | 1.6            | 1.6        | 5     | 1.9     | 4.8    |
| M5  | 1.3       | 1.3      | 1.3    | 1.3      | 1.3    | 1.3                      | 2.2    | 2.2      | 1.3   | 1.3                     | 1.3    | 1.3      | 1.2    | 1.2             | 1.2  | 1.2      | 1.2                  | 1.2      | 1.2      | 1.2     | 1.3       | 1.3     | 2.1      | 2.1 | 1.2       | 1.8        | 1.5            | 2.7        | 7     | 1.4     | 2.7    |
| M6  | 1.1       | 1.1      | 1.1    | 1.1      | 1.1    | 1.1                      | 1.2    | 1.2      | 1.2   | 1.2                     | 1.2    | 1.2      | 1.1    | 1.1             | 1.1  | 1.1      | 1.1                  | 1.1      | 1.1      | 1.1     | 1.1       | 1.1     | 1.3      | 1.3 | 1.1       | 1.2        | 1.1            | 3.5        | 5     | 1.3     | 2.0    |
| M7  | 1.1       | 1.1      | 1.1    | 1.1      | 1.1    | 1.1                      | 1.2    | 1.2      | 1.2   | 1.2                     | 1.2    | 1.2      | 1.1    | 1.1             | 1.1  | 1.1      | 1.1                  | 1.1      | 1.1      | 1.1     | 1.1       | 1.1     | 1.3      | 1.3 | 1.4       | 1.7        | 1.1            | 3.4        | 1     | 1.3     | 2.1    |
| M8  | 5.4       | 2.6      | 5.4    | 2.6      | 1.6    | 1.3                      | 3.5    | 1.5      | 319.2 | 196.9                   | 319.2  | 196.9    | 4.4    | 2.6             | 4.4  | 2.6      | 4.5                  | 2.8      | 4.5      | 2.8     | 4.3       | 3.0     | 20.1     | 7.7 | 812.6     | 1257443.0  | 1.3            | 1.3        | 3     | 1.5     | 1.7    |
| M9  | 1.6       | 1.4      | 1.6    | 1.4      | 1.4    | 1.3                      | 1.9    | 1.4      | 1.9   | 1.4                     | 1.9    | 1.4      | 1.6    | 1.4             | 1.6  | 1.4      | 1.6                  | 1.4      | 1.6      | 1.4     | 1.6       | 1.4     | 2.7      | 1.5 | 1.6       | 11.6       | 1.6            | 1.9        | Ð     | 1.8     | 4.3    |
| M10 | 1.4       | 1.4      | 1.4    | 1.4      | 1.3    | 1.3                      | 2.1    | 2.2      | 1.4   | 1.4                     | 1.4    | 1.4      | 1.3    | 1.3             | 1.3  | 1.3      | 1.3                  | 1.3      | 1.3      | 1.3     | 1.3       | 1.3     | 2.1      | 2.2 | 1.2       | 1.7        | 1.4            | 3.5        | 5     | 1.5     | 3.6    |
| M11 | 1.2       | 1.2      | 1.2    | 1.2      | 1.2    | 1.2                      | 2.1    | 2.1      | 1.2   | 1.2                     | 1.2    | 1.2      | 1.2    | 1.2             | 1.2  | 1.2      | 1.2                  | 1.2      | 1.2      | 1.2     | 1.2       | 1.2     | 1.8      | 1.8 | 1.3       | 1.8        | 1.1            | 3.5        | 5     | 1.5     | 2.7    |
| M12 | 2.4       | 1.6      | 2.4    | 1.6      | 1.5    | 1.4                      | 1.7    | 1.5      | 1.0   | 18.6                    | 18.6   | 3.8      | 1.0    | 2.0             | 1.0  | 2.0      | 2.0                  | 1.5      | 1.0      | 2.0     | 2.4       | 1.6     | 9.0      | 2.2 | 1.8       | 23.2       | 1.6            | 1.7        | 7     | 1.8     | 2.8    |
| M13 | 1.7       | 1.6      | 1.7    | 1.6      | 1.6    | 1.5                      | 2.6    | 1.9      | 1.8   | 1.6                     | 1.8    | 1.6      | 1.6    | 1.6             | 1.6  | 1.6      | 1.6                  | 1.6      | 1.6      | 1.6     | 1.7       | 1.6     | 3.4      | 2.7 | 1.5       | 13.9       | 1.8            | 2.7        | 7     | 1.6     | 3.9    |
| M14 | 1.3       | 1.3      | 1.3    | 1.3      | 1.3    | 1.4                      | 2.2    | 3.2      | 1.3   | 1.4                     | 1.3    | 1.4      | 1.3    | 1.3             | 1.3  | 1.3      | 1.3                  | 1.3      | 1.3      | 1.3     | 1.3       | 1.3     | 2.2      | 2.8 | 1.3       | 1.8        | 1.4            | 3.4        | 1     | 1.4     | 4.5    |
| M15 | 1.7       | 1.8      | 1.7    | 1.8      | 1.5    | 1.8                      | 3.3    | 3.9      | 1.8   | 1.8                     | 1.8    | 1.8      | 1.7    | 1.8             | 1.7  | 1.8      | 1.7                  | 1.8      | 1.7      | 1.8     | 1.7       | 1.8     | 3.5      | 3.7 | 1.2       | 1.4        | 1.8            | 2.6        | 5     | 1.8     | 4.7    |
| M16 | 1.7       | 1.5      | 1.7    | 1.5      | 1.8    | 1.5                      | 3.4    | 2.5      | 1.8   | 1.5                     | 1.8    | 1.5      | 1.8    | 1.5             | 1.8  | 1.5      | 1.8                  | 1.5      | 1.8      | 1.5     | 1.8       | 1.5     | 3.4      | 2.3 | 1.2       | 1.3        | 1.7            | 1.9        | Э     | 1.9     | 4.4    |
| M17 | 1.5       | 1.3      | 1.5    | 1.3      | 1.6    | 1.3                      | 2.9    | 1.6      | 1.8   | 1.3                     | 1.8    | 1.3      | 1.6    | 1.3             | 1.6  | 1.3      | 1.6                  | 1.3      | 1.6      | 1.3     | 1.6       | 1.3     | 2.7      | 1.5 | 1.2       | 1.2        | 1.5            | 1.6        | 5     | 1.9     | 3.7    |
| M18 | 1.7       | 1.8      | 1.7    | 1.8      | 1.6    | 1.8                      | 3.7    | 4.0      | 1.8   | 1.7                     | 1.8    | 1.7      | 1.8    | 1.8             | 1.8  | 1.8      | 1.8                  | 1.8      | 1.8      | 1.8     | 1.7       | 1.8     | 3.6      | 3.6 | 1.2       | 1.5        | 1.7            | 2.3        | 3     | 1.8     | 4.4    |
| M19 | 1.6       | 1.4      | 1.6    | 1.4      | 1.8    | 1.4                      | 3.6    | 2.2      | 1.8   | 1.4                     | 1.8    | 1.4      | 1.8    | 1.4             | 1.8  | 1.4      | 1.8                  | 1.4      | 1.8      | 1.4     | 1.7       | 1.4     | 3.3      | 1.9 | 1.2       | 1.2        | 1.6            | 1.7        | 7     | 1.9     | 4.1    |
| M20 | 1.7       | 1.6      | 1.7    | 1.6      | 1.8    | 1.7                      | 4.0    | 3.6      | 1.8   | 1.6                     | 1.8    | 1.6      | 1.9    | 1.7             | 1.9  | 1.7      | 1.9                  | 1.7      | 1.9      | 1.7     | 1.8       | 1.7     | 3.8      | 3.1 | 1.2       | 1.3        | 1.7            | 1.9        | Ð     | 1.9     | 4.5    |
| M21 | 1.7       | 1.8      | 1.7    | 1.8      | 1.5    | 1.8                      | 1.5    | 1.8      | 1.0   | 1.6                     | 1.6    | 1.8      | 1.0    | 1.7             | 1.0  | 1.7      | 1.7                  | 1.8      | 1.0      | 1.7     | 1.6       | 1.8     | 1.6      | 1.8 | 1.2       | 2.2        | 1.7            | 2.3        | 3     | 1.7     | 4.3    |
| M22 | 1.7       | 1.7      | 1.7    | 1.7      | 1.7    | 1.7                      | 3.9    | 3.7      | 1.8   | 1.7                     | 1.8    | 1.7      | 1.9    | 1.7             | 1.9  | 1.7      | 1.9                  | 1.7      | 1.9      | 1.7     | 1.8       | 1.7     | 3.7      | 3.2 | 1.2       | 1.4        | 1.7            | 2.0        | )     | 1.9     | 4.4    |
| M23 | 1.4       | 1.3      | 1.4    | 1.3      | 1.5    | 1.3                      | 2.6    | 1.5      | 1.9   | 1.3                     | 1.9    | 1.3      | 1.5    | 1.3             | 1.5  | 1.3      | 1.5                  | 1.3      | 1.5      | 1.3     | 1.5       | 1.3     | 2.4      | 1.4 | 1.2       | 1.2        | 1.4            | 1.5        | 5     | 1.8     | 3.2    |
| M24 | 1.9       | 1.4      | 1.9    | 1.4      | 2.3    | 1.9                      | 4.9    | 3.3      | 2.3   | 1.5                     | 2.3    | 1.5      | 1.9    | 1.6             | 1.9  | 1.6      | 2.0                  | 1.7      | 2.0      | 1.7     | 2.1       | 1.6     | 3.8      | 2.1 | 1.3       | 1.3        | 1.3            | 1.3        | 3     | 2.4     | 2.9    |
| M25 | 1.9       | 2.1      | 1.9    | 2.1      | 1.9    | 2.2                      | 5.7    | 7.2      | 2.0   | 2.1                     | 2.0    | 2.1      | 2.0    | 2.1             | 2.0  | 2.1      | 2.0                  | 2.1      | 2.0      | 2.1     | 2.0       | 2.1     | 5.3      | 6.2 | 1.4       | 1.3        | 2.1            | 3.5        | 5     | 1.8     | 2.8    |
| M26 | 1.8       | 1.5      | 1.8    | 1.5      | 1.9    | 1.6                      | 3.8    | 2.4      | 2.0   | 1.5                     | 2.0    | 1.5      | 1.9    | 1.4             | 1.9  | 1.4      | 1.9                  | 1.5      | 1.9      | 1.5     | 1.9       | 1.5     | 3.4      | 1.8 | 1.2       | 1.3        | 1.9            | 2.6        | 5     | 1.9     | 2.5    |
| M27 | 1.7       | 1.5      | 1.7    | 1.5      | 1.8    | 1.5                      | 4.1    | 2.7      | 1.0   | 1.9                     | 1.9    | 1.5      | 1.0    | 1.8             | 1.0  | 1.8      | 1.8                  | 1.5      | 1.0      | 1.8     | 1.8       | 1.5     | 3.6      | 2.2 | 1.2       | 1.3        | 1.8            | 2.4        | 1     | 2.0     | 4.5    |
| M28 | 1.3       | 1.3      | 1.3    | 1.3      | 1.1    | 1.1                      | 1.3    | 1.3      | 1.2   | 1.2                     | 1.2    | 1.2      | 1.2    | 1.2             | 1.2  | 1.2      | 1.2                  | 1.2      | 1.2      | 1.2     | 1.2       | 1.2     | 1.7      | 1.7 | 1.1       | 1.3        | 2.0            | 4.4        | 1     | 2.0     | 7.2    |
| M29 | 1.9       | 2.0      | 1.9    | 2.0      | 1.7    | 1.7                      | 3.6    | 3.1      | 2.2   | 2.1                     | 2.2    | 2.1      | 1.8    | 1.9             | 1.8  | 1.9      | 1.8                  | 1.8      | 1.8      | 1.8     | 2.0       | 1.9     | 4.6      | 4.5 | 1.9       | 5.8        | 2.2            | 4.4        | 1     | 2.3     | 9.4    |
| M30 | 1.9       | 1.9      | 1.9    | 1.9      | 1.7    | 1.7                      | 3.0    | 2.3      | 2.3   | 1.9                     | 2.3    | 1.9      | 1.8    | 1.7             | 1.8  | 1.7      | 1.8                  | 1.7      | 1.8      | 1.7     | 1.8       | 1.7     | 4.2      | 3.4 | 1.9       | 14.4       | 2.1            | 3.8        | 3     | 2.3     | 6.9    |
| M31 | 1.6       | 1.3      | 1.6    | 1.3      | 2.2    | 1.6                      | 5.5    | 2.9      | 2.0   | 1.3                     | 2.0    | 1.3      | 1.7    | 1.3             | 1.7  | 1.3      | 1.7                  | 1.4      | 1.7      | 1.4     | 1.8       | 1.4     | 3.1      | 1.6 | 1.2       | 1.2        | 1.4            | 1.4        | 1     | 2.2     | 2.7    |
| M32 | 1.5       | 1.5      | 1.5    | 1.5      | 1.6    | 1.6                      | 4.5    | 4.5      | 1.5   | 1.5                     | 1.5    | 1.5      | 1.4    | 1.4             | 1.4  | 1.4      | 1.4                  | 1.4      | 1.4      | 1.4     | 1.5       | 1.5     | 3.8      | 3.8 | 1.5       | 1.9        | 1.7            | 3.9        | Ð     | 1.5     | 2.8    |
| M33 | 2.1       | 1.9      | 2.1    | 1.9      | 1.8    | 1.7                      | 2.6    | 2.0      | 5.2   | 2.2                     | 5.2    | 2.2      | 2.0    | 1.8             | 2.0  | 1.8      | 2.1                  | 1.8      | 2.1      | 1.8     | 2.5       | 1.8     | 5.2      | 3.0 | 1.9       | 2.0        | 2.2            | 3.3        | 3     | 2.3     | 4.4    |
| M34 | 4.9       | 2.7      | 4.9    | 2.7      | 1.8    | 1.5                      | 6.3    | 4.2      | 162.4 | 89.4                    | 162.4  | 89.4     | 4.1    | 2.7             | 4.1  | 2.7      | 4.2                  | 2.9      | 4.2      | 2.9     | 3.9       | 3.1     | 15.7     | 7.8 | 201.7     | 36023.5    | 1.4            | 1.4        | 1     | 1.5     | 1.7    |
| AVG | 1.8       | 1.6      | 1.8    | 1.6      | 1.6    | 1.5                      | 3.2    | 2.6      | 16.4  | 10.4                    | 16.9   | 9.9      | 1.8    | 1.6             | 1.8  | 1.6      | 1.9                  | 1.6      | 1.8      | 1.6     | 1.9       | 1.6     | 4.2      | 2.8 | 31.1      | 38046.4    | 1.6            | 2.4        | 1     | 1.9     | 4.0    |