

Update for Chapter 3 of the Exposure Factors Handbook *Ingestion of Water and Other Select Liquids*

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC 20460

Chapter 3—Ingestion of Water and Other Select Liquids

DISCLAIMER

This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Chapter 3—Ingestion of Water and Other Select Liquids

TABLE OF CONTENTS

LISI	OF FIGU	KES		3-1X
3.	INGE	STION O	F WATER AND OTHER SELECT LIQUIDS	3-1
	3.1.	INTRO	DDUCTION	3-1
	3.2.	RECO	MMENDATIONS	3-2
		3.2.1.	Water Ingestion from Consumption of Water as a Beverage and from Food and	
			Drink	3-2
		3.2.2.	Pregnant and Lactating Women	
		3.2.3.	Formula-Fed Infants	
		3.2.4.	Water Ingestion While Swimming or Diving	
	3.3.	DRIN	KING WATER INGESTION STUDIES	
		3.3.1.	Key Drinking Water Ingestion Study for the General Population	
			3.3.1.1. U.S. EPA Analysis of NHANES 2005–2010 Data	
		3.3.2.	Relevant Drinking Water Ingestion Studies for the General Population	
			3.3.2.1. Wolf (1958)—Body Water Content	
			3.3.2.2. National Research Council (1977)—Drinking Water and Health	
			3.3.2.3. Pennington (1983)—Revision of the Total Diet Study Food List and	
			Diets	3-15
			3.3.2.4. U.S. EPA (1984)—An Estimation of the Daily Average Food Intake by	
			Age and Sex for Use in Assessing the Radionuclide Intake of the	
			General Population	3-15
			3.3.2.5. Cantor et al. (1987)—Bladder Cancer, Drinking Water Source, and Tap	5 15
			Water Consumption	3-15
			3.3.2.6. Ershow and Cantor (1989)—Total Water and Tap Water Intake in the	5 15
			United States: Population-Based Estimates of Quantities and Sources	3_16
			3.3.2.7. Roseberry and Burmaster (1992)—Lognormal Distributions for Water	5-10
			Intake	2 16
			3.3.2.8. Levy et al. (1995)—Infant Fluoride Intake from Drinking Water Added	3-10
			to Formula, Beverages, and Food	2 17
				3-1/
			3.3.2.9. USDA (1995)—Food and Nutrient Intakes by Individuals in the United States, 1 Day, 1989–1991	2 17
				3-1/
			3.3.2.10.U.S. EPA (1996)—Descriptive Statistics from a Detailed Analysis of	2 10
			the National Human Activity Pattern Survey (NHAPS) Responses	3-18
			3.3.2.11. Heller et al. (2000)—Water Consumption and Nursing Characteristics	2 10
			of Infants by Race and Ethnicity	3-18
			3.3.2.12. Marshall et al. (2003a)—Patterns of Beverage Consumption during the	2 10
			Transition Stage of Infant Nutrition	
			3.3.2.13. Marshall et al. (2003b)—Relative Validation of a Beverage Frequency	
			Questionnaire in Children Aged 6 Months through 5 Years Using	2.20
			3-Day Food and Beverage Diaries	3-20
			3.3.2.14. Skinner et al. (2004)—Transition in Infants' and Toddlers' Beverage	• • •
			Patterns	3-20
			3.3.2.15. Barraj et al. (2009)—Within-Day Drinking Water Consumption	
			Patterns: Results from a Drinking Water Consumption Study	3-20
			3.3.2.16. Zizza et al. (2009)—Total Water Intakes of Community-Living	
			Middle-Old and Oldest-Old Adults	3-21
			3.3.2.17. Sebastian et al. (2011)—Drinking Water Intake in the United States;	
			Rosinger et al. (2016)—Daily Water Intake among U.S. Men and	
			Women. 2009–2012	3-21

Chapter 3—Ingestion of Water and Other Select Liquids

TABLE OF CONTENTS (CONTINUED)

		3.3.2.18. Kahn and Stralka (2009)—Estimated Daily Average per Capita Water	
		Ingestion by Child and Adult Age Categories Based on USDA's	
		1994–1996 and 1998 Continuing Survey of Food Intakes by	
		Individuals and Supplemental Data, Kahn (2008)	3-22
3.4.	PREGN	NANT AND LACTATING WOMEN	
	3.4.1.	Key Study on Pregnant and Lactating Women	
		3.4.1.1. EPA Analysis of Consumption Data from 2005–2010 National Health	
		and Nutrition Examination Survey	3-23
	3.4.2.	Relevant Studies on Pregnant and Lactating Women	
		3.4.2.1. Ershow et al. (1991)—Intake of Tap Water and Total Water by	
		Pregnant and Lactating Women	3-23
		3.4.2.2. Shimokura et al. (1998)—Assessment of Water Use for Estimating	
		Exposure to Tap Water Contaminants	3-24
		3.4.2.3. Zender et al. (2001)—Exposure to Tap Water during Pregnancy	
		3.4.2.4. Forssén et al. (2007)—Predictors of Use and Consumption of Public	
		Drinking Water among Pregnant Women; Forssén et al.	
		(2009)—Variability and Predictors of Changes in Water Use during	
		Pregnancy	3-24
		3.4.2.5. Kahn and Stralka (2008)—Estimates of Water Ingestion for Women in	
		Pregnant, Lactating, and Nonpregnant and Nonlactating Child-Bearing	
		Age Groups Based on USDA's 1994–1996, 1998 CSFII	3-25
3.5.	FORM	ULA-FED INFANTS	3-25
	3.5.1.	Key Study on Formula-Fed Infants	
		3.5.1.1. Kahn et al. (2013)—Estimates of Water Ingestion in Formula by	
		Infants and Children Based on USDA's 1994–1996 and 1998	
		Continuing Survey of Food Intakes by Individuals	3-25
	3.5.2.	Relevant Studies on Formula-Fed Infants	3-25
		3.5.2.1. Hilbig et al. (2002)—Measured Consumption of Tap Water in German	
		Infants and Young Children as Background for Potential Health Risk	
		Assessment: Data of the DONALD Study	3-26
		3.5.2.2. Levallois et al. (2008)—Drinking Water Intake by Infants Living in	
		Rural Quebec (Canada)	3-26
		3.5.2.3. Schier et al. (2010)—Perchlorate Exposure from Infant Formula and	
		Comparisons with the Perchlorate Reference Dose	3-26
3.6.	HIGH A	ACTIVITY LEVELS/HOT CLIMATES	3-27
	3.6.1.	Relevant Studies on High Activity Levels/Hot Climates	3-27
		3.6.1.1. McNall and Schlegel (1968)—Practical Thermal Environmental Limits	
		for Young Adult Males Working in Hot, Humid Environments	3-27
		3.6.1.2. U.S. Army (1983, 1999)—Water Consumption Planning Factors	3-27
		3.6.1.3. Sohn et al. (2001)—Fluid Consumption Related to Climate among	
		Children in the United States	3-28
		3.6.1.4. Kant et al. (2009)—Intakes of Plain Water, Moisture in Foods and	
		Beverages, and Total Water in the Adult U.S. Population—Nutritional,	
		Meal Pattern, and Body Weight Correlates: NHANES 1999-2006;	
		Kant and Graubard (2010)—Contributors of Water Intake in U.S.	
		Children and Adolescents: Associations with Dietary and Meal	
		Characteristics—National Health and Nutrition Examination Survey	
		2005–2006	3-28
		3.6.1.5. Yang and Chun (2014)—Consumptions of Plain Water, Moisture in	
		Foods and Beverages, and Total Water in Relation to Dietary	
		Micronutrient Intakes and Serum Nutrient Profiles among U.S. Adults	3-29
		3.6.1.6. Montain and Ely (2010)—Water Requirements and Soldier Hydration	
3.7.	WATE	R INGESTION WHILE SWIMMING AND DIVING	3-30

Chapter 3—Ingestion of Water and Other Select Liquids

TABLE OF	CONTENTS	(CONTINUED)
----------	----------	-------------

	3.7.1. Key Studies on Water Ingestion While Swimming	3-30
	3.7.1.1. Dufour et al. (2006)—Water Ingestion during Swimming Activities in	
	Pool: A Pilot Study; Dufour et al. (2017)—Ingestion of Swimming	
	Pool Water by Recreational Swimmers	3-30
	3.7.2. Relevant Studies on Water Ingestion While Swimming, Diving, or Engaging in	
	Recreational Water Activities	
	3.7.2.1. Schijven and de Roda Husman (2006)—A Survey of Diving Behavior	
	and Accidental Occupational and Sport Divers to Assess the Risk of	
	Infection with Waterborne Pathogenic Microorganisms	3-3]
	3.7.2.2. Schets et al. (2011)—Exposure Assessment for Swimmers in Bathing	
	Waters and Swimming Pools	3-3]
	3.7.2.3. Dorevitch et al. (2011)—Water Ingestion during Water Recreation	
	3.7.2.4. Suppes et al. (2014)—Assessment of Swimmers Behaviors on Pool	
	Water Ingestion	3-32
	3.7.2.5. Sinclair et al. (2016a)—Variability in 24-Hour Excretion of Cyanuric	
	Acid: Implications for Water Exposure Assessment	3-33
	3.7.2.6. DeFlorio-Barker et al. (2017)—Child Environmental Exposures to	
	Water and Sand at the Beach: Findings from Studies of Over 68,000	
	Subjects at 12 Beaches	3-33
3.8.	OTHER INADVERTENT WATER INGESTION	
	3.8.1. Sinclair et al. (2016b)—Measuring Water Ingestion from Spray Exposures	
3.9.	REFERENCES FOR CHAPTER 3	
APPENDIX A		Δ_1
APPENDIX B		
11 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L		

Chapter 3—Ingestion of Water and Other Select Liquids

LIST OF TABLES

Table 3-1.	Recommended Values for Drinking Water Ingestion Rates	3-4
Table 3-2.	Confidence in Recommendations for Drinking Water Ingestion Rates	3-6
Table 3-3.	Recommended Values for Water Ingestion Rates of Community Water for Pregnant and	
	Lactating Women, and Women of Child-bearing Age	3-7
Table 3-4.	Confidence in Recommendations for Water Ingestion for Pregnant/Lactating Women	
Table 3-5.	Recommended Values for Water Ingestion Rates of Community Water for Formula-Fed	
	Infants	3-9
Table 3-6.	Confidence in Recommendations for Water Ingestion for Formula-Fed Infants	
Table 3-7.	Recommended Values for Water Ingestion While Swimming	
Table 3-8.	Confidence in Recommendations for Water Ingestion While Swimming	
Table 3-9.	Two-Day Average per Capita Estimates of Combined Direct and Indirect Water Ingestion	5 12
14010 5 7.	Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010:	
	Community Water	3-38
Table 3-10.	Two-Day Average per Capita Estimates of Direct Water Ingestion Based on National	5 50
1 abic 3-10.	Health and Nutrition Examination Survey (NHANES) 2005–2010: Bottled Water	3-40
Table 3-11.	Two-Day Average per Capita Estimates of Combined Direct and Indirect Water Ingestion	5-40
1 autc 3-11.	Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010:	
	Other Sources	3-42
Table 3-12.	Two-Day Average per Capita Estimates of Combined Direct and Indirect Water Ingestion	3-42
1 aute 3-12.	Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: All	
	Sources	3-44
Table 3-13.	Two-Day Average per Capita Estimates of Combined Direct and Indirect Water Ingestion	3-44
1able 3-13.		
	Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010:	3-46
T-1-1- 2 14	Community Water	3-40
Table 3-14.	Two-Day Average per Capita Estimates of Direct Water Ingestion Based on National	2 40
T 11 2 15	Health and Nutrition Examination Survey (NHANES) 2005–2010: Bottled	3-48
Table 3-15.	Two-Day Average per Capita Estimates of Combined Direct and Indirect Water Ingestion	
	Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010:	
	Other Sources	3-50
Table 3-16.	Two-Day Average per Capita Estimates of Combined Direct and Indirect Water Ingestion	
	Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: All	
	Sources	3-52
Table 3-17.	Two-Day Average Consumer-Only Estimates of Combined Direct and Indirect Water	
	Ingestion Based on National Health and Nutrition Examination Survey (NHANES)	
	2005–2010: Community Water	3-54
Table 3-18.	Two-Day Average Consumer-Only Estimates of Direct Water Ingestion Based on	
	National Health and Nutrition Examination Survey (NHANES) 2005–2010: Bottled	
	Water	3-56
Table 3-19.	Two-Day Average Consumer-Only Estimates of Combined Direct and Indirect Water	
	Ingestion Based on National Health and Nutrition Examination Survey (NHANES)	
	2005–2010: Other Sources	3-58
Table 3-20.	Two-Day Average Consumer-Only Estimates of Combined Direct and Indirect Water	
	Ingestion Based on National Health and Nutrition Examination Survey (NHANES)	
	2005–2010: All Sources	3-60
Table 3-21.	Two-Day Average Consumer-Only Estimates of Combined Direct and Indirect Water	
	Ingestion Based on National Health and Nutrition Examination Survey (NHANES)	
	2005–2010: Community Water	3-62
Table 3-22.	Two-Day Average Consumer-Only Estimates of Direct Water Ingestion Based on	
	National Health and Nutrition Examination Survey (NHANES) 2005–2010: Bottled	
	Water	3-64
Table 3-23.	Two-Day Average Consumer-Only Estimates of Combined Direct and Indirect Water	
	Ingestion Based on National Health and Nutrition Examination Survey (NHANES)	
	2005–2010: Other Sources	3-66

Chapter 3—Ingestion of Water and Other Select Liquids

LIST OF TABLES (CONTINUED)

Table 3-24.	Two-Day Average Consumer-Only Estimates of Combined Direct and Indirect Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: All Sources	3-68
Table 3-25.	Intake Rates of Total Fluids and Total Tap Water by Age Group	
Table 3-26.	Mean and Standard Error (SE) for the Daily Intake of Beverages and Tap Water by Age	
Table 3-27.	Average Total Tap Water Intake Rate by Sex, Age, and Geographic Area	
Table 3-28.	Frequency Distribution of Total Tap Water Intake Rates	
Table 3-29.	Total Tap Water Intake (mL/day) for Both Sexes Combined	
Table 3-30.	Total Tap Water Intake (mL/kg-day) for Both Sexes Combined	
Table 3-31.	Total Tap Water Intake (as % of total water intake) by Broad Age Category	
Table 3-32.	General Dietary Sources of Tap Water for Both Sexes.	
Table 3-33.	Summary Statistics for Best-Fit Lognormal Distributions for Water Intake Rates	
Table 3-34.	Estimated Quantiles and Means for Total Tap Water Intake Rates	
Table 3-35.	Water Ingested (mL/day) from Water by Itself and Water Added to Other Beverages and	5 70
14010 5 55.	Foods	3-77
Table 3-36.	Mean per Capita Drinking Water Intake Based on U.S. Department of Agriculture (USDA), Continuing Survey of Food Intake by Individuals (CSFII) Data from	
	1989–1991	
Table 3-37.	Number of Respondents Who Consumed Tap Water at a Specified Daily Frequency	3-80
Table 3-38.	Number of Respondents Who Consumed Juice Reconstituted with Tap Water at a Specified Daily Frequency	3-81
Table 3-39.	Mean and (standard error [SE]) Water and Drink Consumption (mL/kg-day) by Race/Ethnicity	
Table 3-40.	Plain Tap Water and Total Water Consumption by Age, Sex, Region, Urbanicity, and Poverty Category	
Table 3-41.	Percentage of Subjects Consuming Beverages and Mean Daily Beverage Intakes (mL/day) for Children with Returned Questionnaires	
Table 3-42.	Mean (± standard deviation [SD]) Daily Beverage Intakes Reported on Beverage	
	Frequency Questionnaire and 3-Day Food and Beverage Diaries	3-87
Table 3-43.	Consumption of Beverages by Infants and Toddlers	
Table 3-44.	Number of Drinking Water Events Per Day, Intake Per Event (mL/event), and Daily	
T 11 2 45	Intake	
Table 3-45.	Mean (standard error [SE]) Total Daily Water Intake for Older Adults	3-90
Table 3-46.	Per Capita Estimates of Combined Direct and Indirect Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Community	2 00
T 11 2 45	Water	3-90
Table 3-47.	Per Capita Estimates of Combined Direct and Indirect Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Bottled	2 01
T 11 2 40	Water	3-91
Table 3-48.	Per Capita Estimates of Combined Direct and Indirect Water Ingestion Based on	
	1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Other	2 02
T 11 2 40	Sources	3-92
Table 3-49.	Per Capita Estimates of Combined Direct and Indirect Water Ingestion Based on	2 02
T 11 2 50	1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): All Sources	3-93
Table 3-50.	Per Capita Estimates of Combined Direct and Indirect ^b Water Ingestion Based on	
	1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Community Water	3-94
Table 3-51.	Per Capita Estimates of Combined Direct and Indirect Water Ingestion Based on	
	1994-1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Bottled	
	Water	3-95
Table 3-52.	Per Capita Estimates of Combined Direct and Indirect Water Ingestion Based on	
	1994-1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Other	
	Sources	3-96

Chapter 3—Ingestion of Water and Other Select Liquids

LIST OF TABLES (CONTINUED)

Table 3-53.	Per Capita Estimates of Combined Direct and Indirect Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): All Sources.	3-97
Table 3-54.	Consumers-Only Estimates of Combined Direct and Indirect Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Community	5 71
	Water	3-98
Table 3-55.	Consumers-Only Estimates of Combined Direct and Indirect Water Ingestion Based on	
	1994-1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Bottled	
	Water	3-99
Table 3-56.	Consumers-Only Estimates of Combined Direct and Indirect Water Ingestion Based on	
	1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Other	2 100
T 11 2 57	Sources	3-100
Table 3-57.	Consumers-Only Estimates of Combined Direct and Indirect Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): All Sources	3-101
Table 3-58.	Consumers-Only Estimates of Direct and Indirect Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Community Water	3-102
Table 3-59.	Consumers-Only Estimates of Direct and Indirect Water Ingestion Based on 1994-1996,	
T 11 2 60	1998 Continuing Survey of Food Intake by Individuals (CSFII): Bottled Water	3-103
Table 3-60.	Consumers-Only Estimates of Direct and Indirect Water Ingestion Based on 1994–1996,	2 104
T 11 2 61	1998 Continuing Survey of Food Intake by Individuals (CSFII): Other Sources	3-104
Table 3-61.	Consumers-Only Estimates of Direct and Indirect Water Ingestion Based on 1994–1996,	2 105
T.1.1. 2.62	1998 Continuing Survey of Food Intake by Individuals (CSFII): All Sources	3-105
Table 3-62.	Two-Day Average per Capita Drinking Water Intake: Pregnant and Lactating Women,	2 106
Table 2 62	and Women of Child-Bearing Age.	3-100
Table 3-63.	Two-Day Average Consumer-Only Drinking Water Intake: Pregnant and Lactating Women, and Women of Child-Bearing Age	2 109
Table 3-64.	Total Fluid Intake of Women 15 to 49 Years Old.	
Table 3-65.	Total Tap Water Intake of Women 15 to 49 Years Old	
Table 3-66.	Total Fluid (mL/Day) Derived from Various Dietary Sources by Women Aged 15 to 49	5-110
14010 5 00.	Years	3-111
Table 3-67.	Daily Water Intake for Men and Pregnant Women	
Table 3-68.	Average Daily Tap Water Consumption (L/day) by Location, Temperature, and Beverage	
	Type	3-112
Table 3-69.	Water Ingestion Rates by Pregnancy Status (L/day) and Source Location	
Table 3-70.	Principal Sources of Drinking Water at Home for Pregnant and Nonpregnant Women	
Table 3-71.	Total Tap Water and Bottled Water Intake by Pregnant Women	
Table 3-72.	Percentage of Mean Water Intake Consumed as Unfiltered and Filtered Tap Water by	
	Pregnant Women	3-118
Table 3-73.	Intake Rates at Different Times During Pregnancy	3-120
Table 3-74.	Frequency and Proportion of Women Reporting Changes in Water Intake between Early and Mid-Pregnancy	3_121
Table 3-75.	Per Capita Estimates of Direct and Indirect Water Intake from All Sources by Pregnant,	
14010 5 75.	Lactating, and Child-Bearing Age Women	3-122
Table 3-76.	Per Capita Estimates of Direct and Indirect Water Intake from All Sources by Pregnant,	5 122
14610 0 7 01	Lactating, and Child-Bearing Age Women	3-122
Table 3-77.	Per Capita Estimated Direct and Indirect Community Water Ingestion by Pregnant,	
	Lactating, and Child-Bearing Age Women	3-123
Table 3-78.	Per Capita Estimated Direct and Indirect Community Water Ingestion by Pregnant,	
	Lactating, and Child-Bearing Age Women	3-123
Table 3-79.	Consumers-Only Estimated Direct and Indirect Water Intake from All Sources by	_
	Pregnant, Lactating, and Child-Bearing Age Women	3-124
Table 3-80.	Consumers-Only Direct and Indirect Water Intake from All Sources by Pregnant,	
	Lactating, and Child-Bearing Age Women	3-124

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-81.	Consumers-Only Estimated Direct and Indirect Community Water Ingestion by Pregnant,	
	Lactating, and Child-Bearing Age Women	3-125
Table 3-82.	Consumers-Only Estimated Direct and Indirect Community Water Ingestion by Pregnant,	
	Lactating, and Child-Bearing Age Women	
Table 3-83.	Mean and 95 th Percentile Community Water Intake among Formula-Fed Infants	3-126
Table 3-84.	Tap Water Intake in Breast-Fed and Formula-Fed Infants and Mixed-Fed Young Children	
	at Different Age Points	
Table 3-85.	Water Intake for 2-Month-Old Infants	
Table 3-86.	Water Intake at Various Activity Levels	
Table 3-87.	Planning Factors for Individual Tap Water Consumption	3-130
Table 3-88.	Mean (± standard error [SE]) Fluid Intake (mL/kg-day) by Children Aged 1 to 10 Years,	
	National Health and Nutrition Examination Survey (NHANES) III, 1988–1994	3-131
Table 3-89.	Estimated Mean (± standard error [SE]) Amount of Total Fluid and Plain Water Intake	
	among Children Aged 1 to 10 Years by Age, Sex, Race/Ethnicity, Poverty:Income Ratio,	
	Region, and Urbanicity	
Table 3-90.	Daily Water Intake Based on Physical Activity Levels, Mean ± Standard Error (SE) g/day	
Table 3-91.	Pool Water Ingestion by Swimmers	3-135
Table 3-92.	Swimming Pool Water Ingestion Rates (mL/hour) by Swimmer Groups	3-135
Table 3-93.	Water Ingested while Swimming	
Table 3-94.	Arithmetic Mean (maximum) Number of Dives per Diver and Volume of Water Ingested	
Table 3-95.	Exposure Parameters for Swimmers in Swimming Pools, Fresh Water, and Seawater	
Table 3-96.	Estimated Water Ingestion during Water Recreation Activities	
Table 3-97.	Pool Water Ingestion (mL/hr) by Activity and Age Group among Videotaped Participants	
Table 3-98.	Estimated Volume of Water Ingested per Swimming Event	3-138
Table A-1.	Comparison of Community Water Intake Estimates 1994–1998 Continuing Survey of	
	Food Intake by Individuals (CFSII), National Health and Nutrition Examination Survey	
	(NHANES) 2003–2006, and NHANES 2005–2010	A-1
Table A-2.	Comparison of Bottled Water Intake Estimates 1994–1998 Continuing Survey of Food	
	Intake by Individuals (CFSII), National Health and Nutrition Examination Survey	
	(NHANES) 2003–2006, and NHANES 2005–2010	A-3
Table A-3.	Comparison of Other Sources of Water Intake Estimates 1994-1998 Continuing Survey	
	of Food Intake by Individuals (CFSII), National Health and Nutrition Examination	
	Survey (NHANES) 2003-2006, and NHANES 2005-2010	A-5
Table A-4.	Comparison of All Sources of Water Intake Estimates 1994-1998 Continuing Survey of	
	Food Intake by Individuals (CFSII), National Health and Nutrition Examination Survey	
	(NHANES) 2003–2006, and NHANES 2005–2010	A-7
Table B-1.	Terms Used in Literature Searches	B-1
	LIST OF FIGURES	
Figure A-1.	Comparison of mean per capita water ingestion (mL/day), all ages: Continuing Survey of Food Intake by Individuals (CSFII) 1994–1996, 1998; National Health and Nutrition Examination Survey (NHANES) 2003–2006, and NHANES 2005–2010.	A-9

3. INGESTION OF WATER AND OTHER SELECT LIQUIDS

3.1. INTRODUCTION

This document is an update to Chapter 3 (Ingestion of Water and Selected Liquids) of the Exposure Factors Handbook; 2011 Edition (U.S. EPA, 2011). New information that has become available since 2011 has been added, and the recommended values have been revised as needed to reflect the additional information. The recommended values for the general population in this chapter have been updated using National Health and Nutrition Examination Survey (NHANES) data for 2005-2010; the 2011 version of this chapter used NHANES data for 2003-2006 for individuals ≥3 years of age and Continuing Survey of Food Intake by Individuals (CSFII) data for 1994-1996, and 1998 for children <3 years of age. Appendix A provides a comparison of the intake rates based on NHANES 2005-2010 data to those based on NHANES 2003-2006 and CSFII 1994-96 and 1998. Data for pregnant and lactating women have also been updated using NHANES 2005-2010 data. This update also provides, for the first time, water intake data for formula-fed infants. Recent relevant studies based on data other than NHANES and CSFII are also summarized to provide additional perspective on drinking water intake.

The chapter includes a comprehensive review of the scientific literature through 2017. The new literature was identified via formal literature searches conducted by EPA library services as well as targeted internet searches conducted by the authors of this chapter. Appendix B provides a list of the key terms that were used in the literature searches. Revisions to this chapter have been made in accordance with the approved quality assurance plan for the *Exposure Factors Handbook*.

Water ingestion is a pathway of exposure to environmental chemicals. Contamination of water may occur at the water supply source (groundwater or surface water); during treatment (for example, toxic by-products may be formed during chlorination); or post-treatment (such as leaching of lead or other materials from plumbing systems). People may be exposed to contaminants in water when consuming water directly as a beverage, indirectly from foods and drinks made with water, or incidentally while swimming or engaging in other water-related activities. Estimating the magnitude of the potential dose of toxics from water ingestion requires information on the quantity of water consumed. The purpose of this section is to describe key and relevant published studies that provide information on water ingestion for various populations and to provide

recommended ingestion rate values for use in exposure assessments. As described in Chapter 1 of the Exposure Factors Handbook: 2011 Edition (U.S. EPA, 2011), key studies represent those studies that are the most up-to-date and scientifically sound for deriving recommendations for exposure factors, whereas other studies are designated "relevant." meaning applicable or pertinent, but not necessarily the most important. For example, studies that provide supporting data or information related to the factor of interest (e.g., number of drinking events per day), or have study designs or approaches that make the data less applicable to the population of interest (e.g., studies not conducted in the United States) have been designated as relevant rather than key. Key studies were selected based on the general assessment factors described in Chapter 1 of the handbook. The studies described in this section provide information on ingestion of water consumed as a beverage or in foods or beverages containing tap water, ingestion of other select liquids, and ingestion of water while swimming.

Historically, the Environmental Protection Agency (EPA) has assumed a drinking water ingestion rate of 2 L/day for adults and 1 L/day for infants and children under 10 years of age (U.S. EPA, 2000a). This rate includes water consumed in the form of juices and other beverages containing tap water. The National Research Council (NRC, 1977) estimated that daily consumption of water may vary with levels of physical activity and fluctuations in temperature and humidity. It is reasonable to assume that people engaging in physically demanding activities or living in warmer regions may have higher levels of water ingestion. However, there is limited information on the effects of activity level and climatic conditions on water ingestion.

U.S. EPA's analysis of 2005–2010 data from the NHANES was selected as the key study of drinking water ingestion for the general population and for pregnant and lactating women. NHANES 2005–2010 contains the most up-to-date information on water intake rate estimates. Kahn et al. (2013) was selected as a key study for formula-fed infants. Kahn et al. (2013) used data from U.S. Department of Agriculture's (USDA's) 1994–1996, 1998 CSFII.

The U.S. EPA analysis of NHANES data and the analyses of CSFII data by Kahn et al. (2013) generated ingestion rates for direct and indirect ingestion of water. Direct ingestion is defined as direct consumption of water as a beverage, while indirect ingestion includes water added during food or beverage preparation, but not water intrinsic to purchased foods (i.e., water that is naturally contained in foods) (Kahn and Stralka, 2008). Data for

Chapter 3—Ingestion of Water and Other Select Liquids

community water supply, bottled water, and other sources) are also presented. It is noted that the type of water people drink has changed in the last decade, as evidenced by the increase in bottled water consumption (see Appendix A). However, the majority of the U.S. population consumes water from public (i.e., community) water distribution systems; about 15% of the U.S. population obtains their water from private (i.e., household) wells, cisterns, or springs (U.S. EPA, https://www.epa.gov/privatewells/about-privatewater-wells). Regardless of the source of the water, the physiological need for water should be the same among populations using community or private water

consumption of water from various sources (i.e., the

physiological need for water should be the same among populations using community or private water systems. For the purposes of exposure assessments involving site-specific contaminated drinking water, ingestion rates based on the community supply are most appropriate. Given the assumption that bottled water, and purchased foods and beverages that contain water are widely distributed and less likely to contain source-specific water, the use of total water ingestion rates may overestimate the potential exposure to toxic substances present only in local water supplies; therefore, tap water ingestion of community water, rather than total water ingestion, is emphasized in this section.

The key studies on water ingestion for the general population and pregnant and lactating women (NHANES), and the populations of formula-fed infants (CSFII) are based on short-term survey data (2 days). Although short-term data may be suitable for obtaining mean or median ingestion values that are representative of both short- and long-term ingestion distributions, upper- and lower-percentile values may be different for short-term and long-term data. Note too that most currently available water ingestion surveys are based on respondent recall, which may be a source of uncertainty in the estimated ingestion rates because of the subjective nature of this type of survey technique. Percentile distributions for water ingestion are presented in this handbook, where sufficient data are available. Information on ingestion of water based on climate and activity level, and on incidental ingestion of water while swimming, is also provided in this chapter.

Section 3.2 provides the recommendations and confidence ratings for use in risk assessment for community water ingestion among the general population, formula-fed infants, and pregnant and lactating women, and water ingestion among swimmers. Section 3.3.1 provides the key studies for general population water ingestion rates, Section 3.4.1 provides ingestion rates for pregnant and lactating women, Section 3.5.1 provides ingestion rates for

formula-fed infants, Section 3.7 provides ingestion rates for swimmers, and Section 3.8 provides data for other inadvertent water ingestion. For water ingestion at high activity levels or hot climates, no recommendations are provided, but Section 3.6 includes relevant studies on this topic. Relevant studies on all subcategories of water ingestion are also presented to provide the reader with added perspective on the current state of knowledge pertaining to ingestion of water and select liquids.

3.2. RECOMMENDATIONS

3.2.1. Water Ingestion from Consumption of Water as a Beverage and from Food and Drink

The recommended general population water ingestion rate values for the consumption of water as a beverage (direct) and from foods and drinks (indirect) are based on U.S. EPA's analysis of NHANES data from 2005-2010. Table 3-1 presents a summary of the recommended values for direct and indirect ingestion of community water. Per capita mean and 95th percentile values range from 145 mL/day to 956 mL/day and 565 mL/day to 2,976 mL/day, respectively, depending on the age group. Consumer-only mean and 95th percentile values range from 245 mL/day to 1,419 mL/day and 658 mL/day to 3,407 mL/day, respectively, depending on the age group. Per capita intake rates represent intake that has been averaged over the entire population (including those individuals that reported no intake). In general, per capita intake rates are appropriate for use in exposure assessments for which average daily dose estimates are of interest because they represent both individuals who drank water during the survey period and individuals who may drink water at some time but did not consume it during the survey period. Consumer-only intake rates represent the quantity of water consumed only by individuals who reported water intake during the survey period. Table 3-2 presents a characterization of the overall confidence in the accuracy and appropriateness of the recommendations for drinking water intake for use in risk assessments.

3.2.2. Pregnant and Lactating Women

Based upon the results of the U.S. EPA analysis of 2005–2010 NHANES data, per capita mean and 95th percentile values for ingestion of drinking water among pregnant women were 731 mL/day and 2,859 mL/day, respectively. The per capita mean and 95th percentile values for lactating women were 1,075 mL/day and 3,061 mL/day, respectively. Table 3-3 presents a summary of the recommended

values for water ingestion rates. Table 3-4 presents the confidence ratings for these recommendations.

3.2.3. Formula-Fed Infants

The recommended values for drinking water ingestion rates for formula-fed infants are based on the results of Kahn et al. (2013). The mean total direct and indirect water intake values are 505, 627, 699, 691, and 591 mL/day for ages <1 month, 1 to <3 months, 3 to <6 months, 6 to <12 months, and 1 to <2 years, respectively. The 95th percentile total direct and indirect water intake values are 858, 1,096, 1,300, 1,350, and 1,254 for ages <1 month, 1 to <3 months, 3 to <6 months, 6 to <12 months, and 1 to <2 years, respectively. Table 3-5 presents a summary of the recommended values for formula-fed infants, and Table 3-6 presents the confidence ratings for the recommended values for formula-fed infants.

3.2.4. Water Ingestion While Swimming or Diving

Based on the data from Dufour (2017), mean swimming pool water ingestion rates were 38, 44, 33, and 28 mL/hour for ages 6 to <11, 11 to <16, 16 to <21, and 21+ years, respectively. Upper percentile (95th percentile) swimming pool water ingestion rates were 96, 152, 105, and 92 mL/hour for ages 6 to <11, 11 to <16, 16 to <21, and 21+ years, respectively. Although these estimates were derived from swimming pool experiments, Dufour et al. (2006) noted that swimming behavior of recreational pool swimmers may be similar to freshwater swimmers. Estimates may be different for saltwater swimmers and competitive swimmers. Table 3-7 presents a summary of the recommended values for water ingestion rates while swimming. Table 3-8 presents the confidence ratings for these recommendations. Data on the amount of time spent swimming can be found in Chapter 16 (see Table 16-1) of this handbook.

Chapter 3—Ingestion of Water and Other Select Liquids

	Mean 95 th Percentile				
					M 12 1 D 21
Age Group	mL/day	mL/kg-day	mL/day	mL/kg-day	Multiple Percentiles
		Per	Capita ^b		
Birth to <1 month	184	42	851°	200°	
1 to <3 months	145	25	905°	164°	
3 to <6 months	187	27	981°	141°	
6 to <12 months	269	30	988	112	
Birth to <1 year	220	29	974	137	
1 to <2 years	146	13	565	51	
2 to <3 years	205	15	778	58	
3 to <6 years	208	11	741	42	
6 to <11 years	294	10	1,071	34	
11 to <16 years	315	6	1,395	26	
16 to <21 years	436	6	1,900	28	See Tables 3-9 and 3-13
21 to <30 years	781	10	2,848	39	See Tables 3-7 and 3-13
30 to <40 years	902	11	2,967	38	
40 to <50 years	880	11	2,967	38	
50 to <60 years	956	12	2,976	37	
60 to <70 years	941	12	2,972	35	
70 to <80 years	772	10	2,273	31	
80+ years	784	11	2,122	30	
21 to <50 years	858	11	2,938	38	
50+ years	902	11	2,827	35	
All ages	711	11	2,641	37	
		Consu	mers-Only ^d		
Birth to <1 month	581	133	938°	224°	
1 to <3 months	785	136	1,224°	267°	
3 to <6 months	649	93	1,125°	158°	
to <12 months	554	62	1,104°	133°	
Birth to <1 year	595	79	1,106°	174°	
1 to <2 years	245	22	658	57	
2 to <3 years	332	24	901	67	
3 to <6 years	338	19	836	45	
6 to <11 years	455	15	1,258	41	
11 to <16 years	562	10	1,761	31	
16 to <21 years	722	10	2,214	31	See Tables 3-17 and 3-21
21 to <30 years	1,183	16	3,407	47	Sec 1401es 3-1 / 411u 3-21
				44	
30 to <40 years	1,277	16 17	3,278		
10 to <50 years	1,356	17	3,374	43	
50 to <60 years	1,419	18	3,388	42	
60 to <70 years	1,394	17	3,187	40	
70 to <80 years	1,214	16	2,641	37	
80+ years	1,087	16	2,250	33	
21 to <50 years	1,277	16	3,353	44	
50+ years	1,343	17	3,081	40	
All ages	1,096	17	2,972	44	

Chapter 3—Ingestion of Water and Other Select Liquids

		N	Mean	95 th F	Percentile	
	Age Group	mL/day	mL/kg-day	mL/day	mL/kg-day	Multiple Percentiles
			Per	Capita ^b		
b c	Ingestion rates for combined direct and indirect water from community water supply. Estimates are based on the average of 2 days of water consumption reported for each NHANES respondent. If the respondent reported zero consumption on one of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Per capita intake rates are generated by averaging consumer-only intakes over the entire population (including those individuals that reported no intake). Estimates are less statistically reliable based on guidance published in the <i>Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: NHIS/NCHS Analytical Working Group Recommendations</i> (NCHS, 1993). Consumer-only intake represents the quantity of water consumed only by individuals that reported consuming water during the survey period.					
FCID NCHS		lity Intake Databa er for Health Stati				
NHIS	= National Healt					

Chapter 3—Ingestion of Water and Other Select Liquids

General Assessment Factors	Rationale	Rating
Soundness		Medium to High
Adequacy of Approach	The survey methodology and data analysis were adequate. The surveys sampled approximately 25,000 (NHANES) individuals; sample size varied with age.	C
Minimal (or defined) Bias	No physical measurements were taken. The method relied on recent recall of standardized volumes of drinking water containers.	
Applicability and Utility Exposure Factor of Interest	The key studies were directly relevant to water ingestion.	High
Representativeness	The data were demographically representative (based on stratified random sample). Sample sizes for some age groups were limited.	
Currency	NHANES data were collected between 2005 and 2010.	
Data Collection Period	Data were collected for 2 nonconsecutive days. However, long-term variability may be small. Use of a short-term average as a chronic ingestion measure can be assumed.	
Clarity and Completeness Accessibility	NHANES data are publicly available.	High
Reproducibility	The methodology was clearly presented; enough information was included to reproduce the results.	
Quality Assurance	NHANES data collection follow strict QA/QC procedures. The FCID Calculator also underwent QA/QC.	
Variability and Uncertainty Variability in Population	Full distributions were developed.	High
Uncertainty	Except for data collection based on recall, sources of uncertainty were minimal.	
Evaluation and Review		Medium
Peer Review	NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis, was internally and externally peer reviewed.	
Number and Agreement of Studies	There was one key study for drinking water ingestion among the general population. Appendix B provides a comparison of the NHANES 2005–2010 and data sets used previously in the <i>Exposure Factors Handbook: 2011 Edition</i> (U.S. EPA, 2011) for estimating water ingestion among the general population (NHANES 2003–2006 and CSFII 1994–1996, 1998).	
Overall Rating		Medium to High, Low for footnote "c" on Table 3-1
	pter 1 of the <i>Exposure Factors Handbook: 2011 Edition</i> (U.S. EPA, 2011 tion criteria used in this table. ke Database. lity control.	l) for a detailed

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-3. Recommended Values for Water Ingestion Rates of Community Water for	
Pregnant and Lactating Women, and Women of Child-bearing Age (13 to <50 years) ^a	

Pregnant and La	actating Women, and	d Women of Child	l-bearing Age (13	to <50 years) ^a
		Per Capita ^b		
	N	lean	95	th Percentile
Group	mL/day	mL/kg-day	mL/day	mL/kg-day
Pregnant women	731	9.8	2,859	37.3
Lactating women	1,075	16.5	3,061°	47.0
Child-bearing age	683	9.8	2,634	38.2
	C	Consumers-Only ^d		
	N	lean	95	th Percentile
Group	mL/day	mL/kg-day	mL/day	mL/kg-day
Pregnant women	1,158	15.5	2,935°	37.7
Lactating women	1,495	22.9	3,061°	47.0
Child-bearing age	1,082	15.6	2,956	44.6

Ingestion rates for combined direct and indirect water from community water supply. Estimates are based on the average of 2 days of water consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption.

NCHS = National Center for Health Statistics.

NHIS = National Health Interview Survey.

Source: U.S. EPA analysis of NHANES 2005-2010 data using the FCID Consumption Calculator at http://fcid.foodrisk.org/.

Per capita intake rates are generated by averaging consumer-only intakes over the entire population (including those individuals that reported no intake). See Table 3-62.

Estimates are less statistically reliable based on guidance published in the *Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: NHIS/NCHS Analytical Working Group Recommendations* (NCHS, 1993).

d Consumer-only intake represents the quantity of water consumed only by individuals that reported consuming water during the survey period. See Table 3-63.

Chapter 3—Ingestion of Water and Other Select Liquids

The key study was directly relevant to water ingestion. Mediun Representativeness The data were demographically representative (based on stratified random sample). Currency Data were collected between 2005 and 2010. Data Collection Period Data were collected for 2 nonconsecutive days. However, long-term variability may be small. Use of a short-term average as a chronic ingestion measure can be assumed. Clarity and Completeness Accessibility The NHANES data are publicly available. Reproducibility The methodology was clearly presented; enough information was included to reproduce the results. Quality Assurance NHANES data collection follow strict QA/QC procedures. The FCID Consumption Calculator also underwent QA/QC. Variability and Uncertainty Variability in Population Full distributions were developed. Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.	General Assessment Factors	Rationale	Rating
Applicability and Utility Exposure Factor of Interest The key study was directly relevant to water ingestion. The data were demographically representative (based on stratified random sample). Currency Data were collected between 2005 and 2010. Data Collection Period Data were collected for 2 nonconsecutive days. However, long-term variability may be small. Use of a short-term average as a chronic ingestion measure can be assumed. Clarity and Completeness Accessibility The NHANES data are publicly available. Reproducibility The methodology was clearly presented; enough information was included to reproduce the results. Quality Assurance NHANES data collection follow strict QA/QC procedures. The FCID Consumption Calculator also underwent QA/QC. Variability and Uncertainty Variability in Population Full distributions were developed. Uncertainty Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.			Low
The key study was directly relevant to water ingestion. Medium Representativeness The data were demographically representative (based on stratified random sample). Currency Data were collected between 2005 and 2010. Data Collection Period Data were collected for 2 nonconsecutive days. However, long-term variability may be small. Use of a short-term average as a chronic ingestion measure can be assumed. Clarity and Completeness Accessibility The NHANES data are publicly available. Reproducibility The methodology was clearly presented; enough information was included to reproduce the results. Quality Assurance NHANES data collection follow strict QA/QC procedures. The FCID Consumption Calculator also underwent QA/QC. Variability and Uncertainty Variability in Population Full distributions were developed. Uncertainty Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.	Minimal (or defined) Bias		
The data were demographically representative (based on stratified random sample). Currency Data were collected between 2005 and 2010. Data Collection Period Data were collected for 2 nonconsecutive days. However, long-term variability may be small. Use of a short-term average as a chronic ingestion measure can be assumed. Clarity and Completeness Accessibility The NHANES data are publicly available. Reproducibility The methodology was clearly presented; enough information was included to reproduce the results. Quality Assurance NHANES data collection follow strict QA/QC procedures. The FCID Consumption Calculator also underwent QA/QC. Variability and Uncertainty Variability in Population Full distributions were developed. Low Full distributions were developed. Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.	Applicability and Utility		Low to
Currency Data were collected between 2005 and 2010. Data Collection Period Data were collected for 2 nonconsecutive days. However, long-term variability may be small. Use of a short-term average as a chronic ingestion measure can be assumed. Clarity and Completeness Accessibility The NHANES data are publicly available. Reproducibility The methodology was clearly presented; enough information was included to reproduce the results. Quality Assurance NHANES data collection follow strict QA/QC procedures. The FCID Consumption Calculator also underwent QA/QC. Variability and Uncertainty Variability in Population Full distributions were developed. Uncertainty Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.		The key study was directly relevant to water ingestion.	Medium
Data Were collected for 2 nonconsecutive days. However, long-term variability may be small. Use of a short-term average as a chronic ingestion measure can be assumed. Clarity and Completeness Accessibility The NHANES data are publicly available. Reproducibility The methodology was clearly presented; enough information was included to reproduce the results. Quality Assurance NHANES data collection follow strict QA/QC procedures. The FCID Consumption Calculator also underwent QA/QC. Variability and Uncertainty Variability in Population Full distributions were developed. Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.	Representativeness		
Variability may be small. Use of a short-term average as a chronic ingestion measure can be assumed. Clarity and Completeness Accessibility The NHANES data are publicly available. Reproducibility The methodology was clearly presented; enough information was included to reproduce the results. Quality Assurance NHANES data collection follow strict QA/QC procedures. The FCID Consumption Calculator also underwent QA/QC. Variability and Uncertainty Variability in Population Full distributions were developed. Uncertainty Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.	Currency	Data were collected between 2005 and 2010.	
Accessibility The NHANES data are publicly available. Reproducibility The methodology was clearly presented; enough information was included to reproduce the results. Quality Assurance NHANES data collection follow strict QA/QC procedures. The FCID Consumption Calculator also underwent QA/QC. Variability and Uncertainty Variability in Population Full distributions were developed. Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.	Data Collection Period	variability may be small. Use of a short-term average as a chronic	
Accessibility The NHANES data are publicly available. Reproducibility The methodology was clearly presented; enough information was included to reproduce the results. Quality Assurance NHANES data collection follow strict QA/QC procedures. The FCID Consumption Calculator also underwent QA/QC. Variability and Uncertainty Variability in Population Full distributions were developed. Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.	Clarity and Completeness		Medium
to reproduce the results. Quality Assurance NHANES data collection follow strict QA/QC procedures. The FCID Consumption Calculator also underwent QA/QC. Variability and Uncertainty Variability in Population Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.		The NHANES data are publicly available.	
Consumption Calculator also underwent QA/QC. Variability and Uncertainty Variability in Population Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.	Reproducibility		
Variability in Population Full distributions were developed. Uncertainty Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.	Quality Assurance		
Variability in Population Full distributions were developed. Uncertainty Except for data collection based on recall and the relatively small sample size, sources of uncertainty were minimal. Evaluation and Review Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.	Variability and Uncertainty		Low
Size, sources of uncertainty were minimal. Medium Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.		Full distributions were developed.	
Peer Review NHANES surveys received a high level of peer review. The U.S. EPA analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.	Uncertainty		
analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the analysis was internally and externally peer reviewed. Number and Agreement of Studies There was one key study for pregnant/lactating women water ingestion.	Evaluation and Review		Mediun
	Peer Review	analysis of NHANES has not been peer reviewed outside the Agency, but the FCID Consumption Calculator, which was used to conduct the	
Overall Rating Low	Number and Agreement of Studies	There was one key study for pregnant/lactating women water ingestion.	
O Verum Factoring	Overall Rating		Low

Chapter 3—Ingestion of Water and Other Select Liquids

1,192°

745°

136c

82c

	For	nula-Fed Infants ^a		
	In	direct in Formula ^b		
	N	l ean	95	th Percentile
Group	mL/day	mL/kg-day	mL/day	mL/kg-day
<1 month	491°	143°	856°	$240^{\rm c}$
1 to <3 months	572	124	963°	285°
3 to <6 months	645	93	1,112°	171°

Table 3-5. Recommended Values for Water Ingestion Rates of Community Water for

Total Direct and Indirect^d

65

38c

573

364

	M	Iean	95 ^t	h Percentile
Group	mL/day	mL/kg-day	mL/day	mL/kg-day
<1 month	505°	146°	858°	240°
1 to <3 months	627	136	1,096°	290°
3 to <6 months	699	101	1,300°	186°
6 to <12 months	691	78	1,350°	151°
1 to <2 years	591	60	1,254°	119°

Formula-consumers only; see Table 3-83.

Source: Kahn et al. (2013).

6 to <12 months

1 to <2 years

b Water used to reconstitute formula.

The sample size does not meet the minimum reporting requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Ingestion rates for combined direct and indirect water from community water supply; includes water used to reconstitute formula plus all other community water ingested.

Chapter 3—Ingestion of Water and Other Select Liquids

General Assessment Factors	Rationale	Rating
Soundness		Medium
Adequacy of Approach	The survey methodology and data analysis were adequate. Data were available for approximately 700 formula-fed infants overall, but the sample sizes were small for some age ranges.	
Minimal (or defined) Bias	No physical measurements were taken. The method relied on recent recall of volumes of drinking water used to reconstitute infant formula.	
Applicability and Utility		Medium
Exposure Factor of Interest	The key study was directly relevant to water ingestion.	
Representativeness	The data were demographically representative (based on stratified random sample).	
Currency	Data were collected between 1994 and 1998.	
Data Collection Period	Data were collected for 2 nonconsecutive days. However, long-term variability may be small. Use of a short-term average as a chronic ingestion measure can be assumed.	
Clarity and Completeness		Medium
Accessibility	The CSFII data are publicly available. The Kahn et al. (2013) analysis of the CSFII 1994–1996, 1998 data was published in a peer-reviewed journal.	
Reproducibility	The methodology was clearly presented; enough information was included to reproduce the results.	
Quality Assurance	Quality assurance of the CSFII data was good; quality control of the secondary data analysis was not well described.	
Variability and Uncertainty		Medium
Variability in Population	Mean and 95 th percentile values were provided for five age groups of infants (Kahn et al., 2013).	
Uncertainty	Except for data collection based on recall, sources of uncertainty were minimal.	
Evaluation and Review		Medium
Peer Review	The USDA CSFII survey received a high level of peer review. The Kahn et al. (2013) study was published in a peer-reviewed journal.	
Number and Agreement of Studies	There was one key study for formula-fed infants.	
Overall Rating		Medium

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-7. Recommended Values for Water Ingestion While Swimming			
Mean	Upper Percentile		
mL/hour	mL/hour		
38	96		
44	152		
33	105		
28	92		
	Mean mL/hour 38 44 33		

Source: Dufour (2017); based on data provided to L. Phillips by A. Dufour by personal communication, 6/21/2017.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-6. Confidence	ce in Recommendations for Water Ingestion While Swimming ^a	
General Assessment Factors	Rationale	Rating
Soundness Adequacy of Approach	The approach appears to be appropriate given that cyanuric acid (a tracer used in treated pool water) is not metabolized. The Dufour et al. (2006, 2017) studies analyzed primary data on water ingestion during swimming.	Medium
Minimal (or defined) Bias	Swimmers were asked to swim for approximately 1 hour, but the swimming durations used in calculating the ingestion rates were based on self-reported estimates that may not accurately reflect the actual time spent swimming.	
Applicability and Utility		Low to
Exposure Factor of Interest	The key study was directly relevant to water ingestion while swimming.	Medium
Representativeness	The sample was not representative of the U.S. population. Data were provided for three broad age ranges (i.e., children, teens, adults).	
Currency	The pilot study (Dufour et al., 2006) was conducted in 2005 and the full study (Dufour et al., 2017) was conducted after the pilot study.	
Data Collection Period	Samples were collected after a swimming period of approximately 1 hour.	
Clarity and Completeness		Medium
Accessibility	The Dufour et al. (2006, 2017) studies were published in peer-reviewed journals. Dufour (2017) provided the raw data, which were analyzed to provide additional percentile values for additional age groups.	
Reproducibility	The methodology was clearly presented; enough information was included to reproduce the results.	
Quality Assurance	Quality assurance methods were not described in the study.	
Variability and Uncertainty		Low
Variability in Population	Full distributions were not available in the paper, but the data were provided by the author via personal communications (Dufour, 2017). Data were broken out by broad age groups.	
Uncertainty	The sources of uncertainty were that the sample population may not reflect swimming practices for all swimmers, and the rates were based on self-reported swimming durations.	
Evaluation and Review		Medium
Peer Review	The Dufour et al. (2006, 2017) studies were published in peer-reviewed journals.	
Number and Agreement of Studies	There were two key studies for ingestion of water when swimming (Dufour et al., 2006, 2017).	

3.3. DRINKING WATER INGESTION STUDIES

3.3.1. Key Drinking Water Ingestion Study for the General Population

This section provides a summary of the key study on water ingestion among the general population. This key study is the basis for the recommended water estimates for use in risk assessments involving the general population.

3.3.1.1. U.S. EPA Analysis of NHANES 2005–2010 Data

The U.S. EPA used the combined 2005-2006, 2007-2008, and 2009-2010 NHANES data sets to estimate water ingestion rates for the general population. The 2005-2010 data set included information on nearly 25,000 individuals. The U.S. Centers for Disease Control and Prevention surveyed households across the United States and collected food and beverage recall data for 2 nonconsecutive days as part of the NHANES. The first dietary recall interview was conducted in person in a Mobile Examination Center, and the second was collected by telephone 3 to 10 days later on a different day of the week. Each individual in the survey was assigned a sample weight based on his or her demographic data. These weights were taken into account when calculating mean and percentile water ingestion rates from various sources.

The U.S. EPA, Office of Pesticide Programs used NHANES 2005-2010 data to update the Food Commodity Intake Database (FCID) that was developed for earlier analyses of data from the USDA's CSFII (USDA, 2000; U.S. EPA, 2000a, b) and NHANES 2003-2006 (U.S. EPA, 2011). In the FCID, NHANES data on the foods people reported eating were converted to the quantities of agricultural commodities eaten, including water that was added in the preparation of foods and beverages. The updated FCID is available at: http://fcid.foodrisk.org/, along with the FCID Consumption Calculator which was used to develop the estimates provided in this chapter for various age groups of the population. This calculator may also be used to develop estimates for other age groups or population, customized to the users' needs.

U.S. EPA derived mean and percentile estimates of daily average water ingestion for the following age categories: Birth to <1 month, 1 to <3 months, 3 to <6 months, 6 to <12 months, 1 to <2 years of age, 2 to <3 years, 3 to <6 years, 6 to <11 years, 11 to <16 years, 16 to <21 years of age, adults 21 years and older in 10-year increments, and all ages. Intake estimates are also provided for some additional age ranges that may be of use to risk assessors, including ages birth to

<2 years, 2 to <16 years, 16 to <70 years, 21 to <50 years, and 50+ years.

Consumer-only and per capita water ingestion estimates were generated for four water source categories: community water, bottled water, other sources, and all sources. Consumer-only intake represents the quantity of water consumed by individuals during the survey period. These data are generated by averaging intake across only the individuals in the survey who reported consumption of water. Per capita intake rates are generated by averaging consumer-only intakes over the entire population (including those individuals that reported no intake). In general, per capita intake rates are appropriate for use in exposure assessments for which average dose estimates are of interest because they represent both individuals who drank water during the survey period and individuals who may drink water at some time but did not consume it during the survey period. "All sources" included water from all supply sources such as community water supply (i.e., tap bottled water, other sources, water), "Community missing/unknown sources. included tap water from a community or municipal water supply. "Other sources" included wells, springs, cisterns, other nonspecified sources, missing/unknown sources that the survey respondent was unable to identify. The water ingestion estimates for community water, other sources, and all sources included both water ingested directly as a beverage (direct water) and water added to foods and beverages during final preparation at home or by local food service establishments such as school cafeterias and restaurants (indirect water). Bottled water estimates include direct ingestion only. Commercial water added by a manufacturer (i.e., water contained in soda or beer) and intrinsic water in foods and liquids (i.e., milk and natural undiluted juice) were not included in the estimates. NHANES water consumption respondent data were averaged over both days of dietary data. Intake rate distributions were provided in units of mL/day and mL/kg-day. The body weights of survey participants were used in developing intake rate estimates in units of mL/kg-day.

Tables 3-9 to 3-24 present full distributions for the various water source categories (community water, bottled water, other sources, and all sources). Tables 3-9 to 3-12 provide per capita water ingestion estimates in mL/day for the various water source categories (i.e., community, bottled, other, and all sources). Tables 3-13 to 3-16 present the same information as Tables 3-9 to 3-12, but in units of mL/kg-day. Tables 3-17 to 3-20 provide consumers-only water ingestion estimates in mL/day for the various source categories. Tables 3-21 to 3-24

Chapter 3—Ingestion of Water and Other Select Liquids

present the same information as Tables 3-17 to 3-20, but in units of mL/kg-day. Estimates that do not meet the minimum sample size as described in the *Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: NHIS/NCHS Analytical Working Group Recommendations* (NCHS, 1993), are flagged in the tables. The design effect used to determine the minimum required sample size was domain specific (i.e., calculated separately for various age groups).

When indexed to body weight, the per capita ingestion rate of water from all sources combined for children under 6 months of age was more than 4 times higher than that of adults ≥21 years (see Table 3-16). Among consumers-only younger than 6 months of age, the ingestion rate for all sources combined was more than 5 times that of adults when indexed to body weight (see Table 3-24). The pattern of decreasing water ingestion per unit of body weight was also observed in per capita and consumers-only estimates of community water (see Tables 3-13 and 3-21), and other sources (see Tables 3-15 and 3-23). However, this trend was not observed in estimates of bottled water.

The advantages of U.S. EPA's analysis of the 2005–2010 NHANES surveys are (1) that the surveys were designed to obtain a statistically valid sample of the civilian noninstitutionalized U.S. population (i.e., the sampling frame was organized using 2000 U.S. population census estimates); (2) several sets of sampling weights were available for use with the intake data to facilitate proper analysis of the data; (3) the sample size was sufficient to allow categorization within narrowly defined age categories, and the large sample provided useful information on the overall distribution of ingestion by the population and should adequately reflect the range among respondent variability; (4) the survey was conducted over 2 nonconsecutive days, which improved the variance over consecutive days of consumption; and (5) the most current FCID data set was used. One limitation of the data is that the data were collected over only 2 days and do not necessarily represent "usual" intake. "Usual dietary intake" refers to the long-term average of daily intakes by an individual. Thus, water ingestion estimates based on short-term data may differ from long-term rates, especially at the tails of the distribution. There are, however, several limitations associated with these data. Water intake estimates for some age groups, particularly at the tails of the distribution, are less statistically reliable due to small sample sizes, as noted in Tables 3-9 to 3-24. In addition, NHANES does not allow for the allocation of indirect water intake in estimating bottled water consumption. Another limitation of these data is that the survey design, while being well tailored for the overall population of the United States and conducted throughout the year to account for seasonal variation, is of limited use for assessing small and potentially at-risk populations based on ethnicity, medical status, geography/climate, or other factors such as activity level.

3.3.2. Relevant Drinking Water Ingestion Studies for the General Population

The sections that follow provide summaries of studies on water ingestion among the general population that have been categorized as relevant rather than key. Studies were classified as relevant if they provided supporting water ingestion data (e.g., older studies, studies that provided information on the source of water) or information related to the factor of interest (e.g., physiologic need for water), or the study design or approach makes the data less applicable to the population of interest (e.g., small sample size, limited to certain age groups).

3.3.2.1. Wolf (1958)—Body Water Content

Wolf (1958) provided information on the water content of human bodies, stating that a newborn baby is about 77% water while an adult male is about 60% water by weight. An adult male gains and loses about 2,750 mL of water each day. Water intake in dissimilar mammals varies according to 0.88 power of body weight.

3.3.2.2. National Research Council (1977)—Drinking Water and Health

NRC (1977) calculated the average per capita water (liquid) consumption per day to be 1.63 L. This figure was based on a survey of the following literature sources: Starling (1941); Bourne and Kidder (1953); Walker et al. (1957); Wolf (1958); Guyton (1968); McNall and Schlegel (1968); Randall (1973); NRC (1974); and Pike and Brown (1975) as cited in NRC (1977). Although the calculated average intake rate was 1.63 L/day, NRC (1977) adopted a larger rate (2 L/day) to represent the intake of the majority of water consumers. This value is relatively consistent with the total tap water intakes rate estimated from the key study presented in this chapter. However, the use of the term "liquid" was not clearly defined in this study, and it is not known whether the populations surveyed are representative of the adult U.S. population. Consequently, the results of this study are of limited use in recommending total tap water intake rates, and this study is not considered a key study.

3.3.2.3. Pennington (1983)—Revision of the Total Diet Study Food List and Diets

Based on data from the U.S. Food and Drug Administration's Total Diet Study, Pennington (1983) reported average intake rates for various foods and beverages for five age groups of the population. The Total Diet Study is conducted annually to monitor the nutrient and contaminant content of the U.S. food supply and to evaluate trends in consumption. Representative diets were developed based on 24-hour recall and 2-day diary data from the 1977-1978 USDA Nationwide Food Consumption Survey (NFCS) and 24-hour recall data from the Second National Health and Nutrition Examination Survey (NHANES II). The numbers of participants in NFCS and NHANES II were approximately 30,000 and 20,000, respectively. The diets were developed to "approximate 90% or more of the weight of the foods usually consumed" (Pennington, 1983). The source of water (bottled water as distinguished from tap water) was not stated in the Pennington study. For the purposes of this report, the consumption rates for the food categories defined by Pennington (1983) were used to calculate total fluid and total water intake rates for five age groups. Total water includes water, tea, coffee, soft drinks, and soups and frozen juices that are reconstituted with water. Reconstituted soups were assumed to be composed of 50% water, and juices were assumed to contain 75% water. Total fluids include total water in addition to milk, ready-to-use infant formula, milk-based soups, carbonated soft drinks, alcoholic beverages, and canned fruit juices. Table 3-25 presents these intake rates. Based on the average intake rates for total water for the two adult age groups, 1.04 and 1.26 L/day, the average adult intake rate is about 1.15 L/day. These rates should be more representative of the amount of source-specific water consumed than are total fluid intake rates. This study, which used both USDA 1978 data and NHANES II data, was designed to measure food intake. Consequently, no systematic attempt was necessarily made to define tap water intake per se, as distinguished from bottled water. For this reason, it is not considered a key tap water study in this document.

3.3.2.4. U.S. EPA (1984)—An Estimation of the Daily Average Food Intake by Age and Sex for Use in Assessing the Radionuclide Intake of the General Population

Using data collected by USDA in the 1977–1978 NFCS, U.S. EPA (1984) determined daily food and beverage intake levels by age to be used in assessing radionuclide intake through food consumption. Tap water, water-based drinks, and soups were identified

subcategories of the total beverage category. Table 3-26 presents daily intake rates for tap water, water-based drinks, soup, and total beverages. As seen in Table 3-26, mean tap water intake for different adult age groups (age 20 years and older) ranged from 0.62 to 0.76 L/day, water-based drinks intake ranged from 0.34 to 0.69 L/day, soup intake ranged from 0.04 to 0.06 L/day, and mean total beverage intake levels ranged from 1.48 to 1.73 L/day. Total tap water intake rates were estimated by combining the average daily intakes of tap water, water-based drinks, and soups for each age group. For adults (ages 20 years and older), mean total tap water intake rates range from 1.04 to 1.47 L/day, and for children (ages <1 to 19 years), mean intake rates range from 0.19 to 0.90 L/day. The total tap water intake rates, derived by combining data on tap water, water-based drinks, and soup should be more representative of source-specific drinking water intake than the total beverage intake rates reported in this study. The chief limitation of the study is that the data were collected in 1978 and do not reflect the expected increase in the U.S. consumption of soft drinks and bottled water or changes in the diet within the last three decades. Because the data were collected for only a 3-day period, the extrapolation to chronic intake is uncertain. Also, these intake rates do not include reconstituted infant formula. For these reasons, this is not considered a key study in this document.

3.3.2.5. Cantor et al. (1987)—Bladder Cancer, Drinking Water Source, and Tap Water Consumption

The National Cancer Institute. population-based, case control study investigating the possible relationship between bladder cancer and drinking water, interviewed approximately 8,000 adult white individuals, 21 to 84 years of age (2,805 cases and 5,258 controls) in their homes, using a standardized questionnaire (Cantor et al., 1987). The cases and controls resided in one of five metropolitan areas (Atlanta, Detroit, New Orleans, San Francisco, and Seattle) and five states (Connecticut, Iowa, New Jersey, New Mexico, and Utah). The individuals interviewed were asked to recall the level of intake of tap water and other beverages in a typical week during the winter prior to the interview. Total beverage intake was divided into the following two components: (1) beverages derived from tap water (2) beverages from other sources. Tap water used in cooking foods and in ice cubes was apparently not considered. Participants also supplied information on the primary source of the water consumed (i.e., private well, community supply, bottled water, etc.). The

Chapter 3—Ingestion of Water and Other Select Liquids

control population was randomly selected from the general population and frequency matched to the bladder cancer case population in terms of age, sex, and geographic location of residence. The case population consisted of whites only and had no people under the age of 21 years; 57% were over the age of 65 years. The fluid intake rates for the bladder cancer cases were not used because their participation in the study was based on selection factors that could bias the intake estimates for the general population. Based on responses from 5,258 white controls (3,892 males; 1,366 females), average tap water intake rates for a "typical" week were compiled by sex, age group, and geographic region. Table 3-27 lists these rates. The average total fluid intake rate was 2.01 L/day for men, of which 70% (1.4 L/day) was derived from tap water, and 1.72 L/day for women, of which 79% (1.35 L/day) was derived from tap water. Table 3-28 presents frequency distribution data for the 5,228 controls, for which the authors had information on both tap water consumption and cigarette smoking habits. These data follow a lognormal distribution having an average value of 1.30 L/day and an upper 90th percentile value of approximately 2.40 L/day. These values were determined by graphically interpolating the data of Table 3-28 after plotting it on log probability graph paper. These values represent the usual level of intake for this population of adults in the winter. Limitations associated with this data set are that the population surveyed was older than the general population and consisted exclusively of whites. Also, the intake data are based on recall of behavior during the winter only. Extrapolation of the data to other seasons is difficult.

The authors presented data on person-years of residence with various types of water supply sources (municipal vs. private, chlorinated vs. nonchlorinated, and surface vs. well water). Unfortunately, these data cannot be used to draw conclusions about the national average apportionment of surface versus groundwater because a large fraction (24%) of municipal water intake in this survey could not be specifically attributed to either ground or surface water.

3.3.2.6. Ershow and Cantor (1989)—Total Water and Tap Water Intake in the United States: Population-Based Estimates of Quantities and Sources

Ershow and Cantor (1989) estimated water intake rates based on data collected by the USDA 1977–1978 NFCS. The survey was conducted through interviews and diary entries. Daily intake rates for tap water and total water were calculated for various age groups for males, females, and both sexes combined. Tap water was defined as "all water from the household tap

consumed directly as a beverage or used to prepare foods and beverages." Total water was defined as tap water plus "water intrinsic to foods and beverages" (i.e., water contained in purchased food and beverages). The authors showed that the age, sex, and racial distribution of the surveyed population closely matched the estimated 1977 U.S. population.

Table 3-29 presents daily total tap water intake rates, expressed as mL/day by age group. These data follow a lognormal distribution. Table 3-30 presents the same data, expressed as mL/kg-day. This shows that the mean and 90th percentile intake rates for adults (ages 20 to 65+) are approximately 1,410 mL/day and 2,280 mL/day, and for all ages, the mean and 90th percentile intake rates are 1,193 mL/day and 2,092 mL/day. Note that older adults have greater intakes than do adults between ages 20 and 64, an observation bearing on the interpretation of the Cantor et al. (1987) study, which surveyed a population that was older than the national average (see Section 3.3.2.8).

Ershow and Cantor (1989) also measured total water intake for the same age groups and concluded that it averaged 2,070 mL/day for all groups combined and that tap water intake (1,190 mL/day) is 55% of the total water intake. Table 3-31 presents total tap water intake as a percentage of total water intake for various age groups. Ershow and Cantor (1989) also concluded that, for all age groups combined, the proportion of tap water consumed as drinking water or used to prepare foods and beverages is 54, 10, and 36%, respectively. (Table 3-32 presents the detailed data on the proportion of tap water consumed for various age groups). Ershow and Cantor (1989) also observed that males of all age groups had higher total water and tap water consumption rates than females; the variation of each from the combined-sexes mean was about 8%.

With respect to region of the country, the Northeast had slightly lower average tap water intake (1,200 mL/day) than the three other regions (which were approximately equal at 1,400 mL/day).

This survey has an adequately large size (26,446 individuals), and it is a representative sample of the U.S. population with respect to age distribution and residential location. The data, however, are more than 20 years old and may not be entirely representative of current patterns of water intake.

3.3.2.7. Roseberry and Burmaster (1992)— Lognormal Distributions for Water Intake

Roseberry and Burmaster (1992) fit lognormal distributions to the water intake data population-wide distributions for total fluid and total tap water intake based on proportions of the population in each age group. Their publication shows the data and the fitted

lognormal distributions graphically. The mean was estimated as the zero intercept, and the standard deviation (SD) was estimated as the slope of the best-fit line for the natural logarithm of the intake rates plotted against their corresponding z-scores (Roseberry and Burmaster, 1992). Least squares techniques were used to estimate the best-fit straight lines for the transformed data. Table 3-33 presents summary statistics for the best-fit lognormal distribution. In this table, the simulated balanced population represents an adjustment to account for the difference in the age distribution of the U.S. population in 1988 from the age distribution in 1978 when Ershow and Cantor (1989) collected their data. Table 3-34 summarizes the quantiles and means of tap water intake as estimated from the best-fit distributions. The mean total tap water intake rates for the two adult populations (ages 20 to 65 years, and 65+ years) were estimated to be 1.27 and 1.34 L/day.

These intake rates were based on the data originally presented by Ershow and Cantor (1989). Consequently, the same advantages and disadvantages associated with the Ershow and Cantor (1989) study apply to this data set.

3.3.2.8. Levy et al. (1995)—Infant Fluoride Intake from Drinking Water Added to Formula, Beverages, and Food

Levy et al. (1995) conducted a study to determine fluoride intake by infants through drinking water and other beverages prepared with water and baby foods. The study was longitudinal and covered the ages from birth to 9 months old. A total of 192 mothers, recruited from the postpartum wards of two hospitals in Iowa City, completed mail questionnaires and 3-day beverage and food diaries for their infants at ages 6 weeks, and 3, 6, and 9 months (Levy et al., 1995). The questionnaire addressed feeding habits, water sources and ingestion, and the use of dietary fluoride supplements during the preceding week (Levy et al., 1995). It also collected data on the quantity of water consumed by itself or as an additive to infant formula, other beverages, or foods. In addition, the questionnaire addressed the infants' ingestion of cow's milk, breast milk, ready-to-feed (RTF) infant products (formula, juices, beverages, baby food), and table foods.

Mothers were contacted for any clarifications of missing data and discrepancies (Levy et al., 1995). Levy et al. (1995) assessed nonresponse bias and found no significant differences in the reported number of adults or children in the family, water sources, or family income at 3, 6, or 9 months. Table 3-35 provides the range of water ingestion from

water by itself and from addition to selected foods and beverages. The percentage of infants ingesting water by itself increased from 28% at 6 weeks to 66% at 9 months, respectively, and the mean intake increased slightly over this time frame. During this time frame, the largest proportion of the infants' water ingestion (i.e., 36% at 9 months to 48% at 6 months) came from the addition of water to formula. Levy et al. (1995) noted that 32% of the infants at age 6 weeks and 23% of the infants at age 3 months did not receive any water from any of the sources studied. Levy et al. (1995) also noted that the proportion of children ingesting some water from all sources gradually increased with age.

The advantages of this study are that it provides information on water ingestion of infants starting at 6 weeks old, and the data are for water only and for water added to beverages and foods. The limitations of the study are that the sample size was small for each age group, it captured information from a select geographical location, and data were collected through self-reporting. The authors noted, however, that the 3-day diary has been shown to be a valid assessment tool. Levy et al. (1995) also stated that (1) for each time period, the ages of the infants varied by a few days to a few weeks, and are, therefore, not exact and could, at early ages, have an effect on age-specific intake patterns; and (2) the same number of infants were not available at each of the four time periods.

3.3.2.9. USDA (1995)—Food and Nutrient Intakes by Individuals in the United States, 1 Day, 1989–1991

USDA (1995) collected data on the quantity of "plain drinking water" and various other beverages consumed by individuals in 1 day during 1989 through 1991. The data were collected as part of USDA's CSFII. The data used to estimate mean per capita intake rates combined 1-day dietary recall data from 3 survey years, 1989, 1990, and 1991, during which 15,128 individuals supplied 1-day intake data. from all income levels in the Individuals 48 conterminous states and Washington D.C. were included in the sample. A complex three-stage sampling design was employed, and the overall response rate for the study was 58%. To minimize the biasing effects of the low response rate and adjust for the seasonality, a series of weighting factors was incorporated into the data analysis. Table 3-36 presents the intake rates based on this study. Table 3-36 includes data for (1) "plain drinking water," which might be assumed to mean tap water directly consumed rather than bottled water; (2) coffee and tea, which might be assumed to be constituted from tap water; (3) fruit drinks and ades, which might

Chapter 3—Ingestion of Water and Other Select Liquids

be assumed to be reconstituted from tap water rather than canned products; and (4) the total of the three sources. With these assumptions, the mean per capita total intake of water is estimated to be 1,416 mL/day for adult males (i.e., 20 years of age and older), 1,288 mL/day for adult females (i.e., 20 years of age and older), and 1,150 mL/day for all ages and both sexes combined. Although these assumptions appear reasonable, a close reading of the definitions used by USDA (1995) reveals that the word "tap water" does not occur, and this uncertainty prevents the use of this study as a key study of tap water intake.

The advantages of using these data are that (1) the survey had a large sample size and (2) the authors attempted to represent the general U.S. population by oversampling low-income groups and by weighting the data to compensate for low response rates. The disadvantages are that (1) the word "tap water" was not defined, and the assumptions that must be used to compare the data with the other tap water studies might not be valid; (2) the data collection period reflects only a 1-day intake period and may not reflect long-term drinking water intake patterns; (3) data on the percentiles of the distribution of intakes were not given; and (4) the data are almost 20 years old and may not be entirely representative of current intake patterns.

3.3.2.10.U.S. EPA (1996)—Descriptive Statistics from a Detailed Analysis of the National Human Activity Pattern Survey (NHAPS) Responses

The U.S. EPA collected information on the number of glasses of drinking water and juice reconstituted with tap water consumed by the general population as part of the National Human Activity Pattern Survey (NHAPS) (U.S. EPA, 1996). NHAPS was conducted between October 1992 and September 1994. Over 9,000 individuals in the 48 contiguous United States provided data on the duration and frequency of selected activities and the time spent in selected microenvironments via 24-hour diaries. Over 4,000 NHAPS respondents also provided information on the number of 8-ounce glasses of water and the number of 8-ounce glasses of juice reconstituted with water that they drank during the 24-hour survey period (see Tables 3-37 and 3-38). The median number of glasses of tap water consumed was 1-2, and the median number of glasses of juice with tap water consumed was 1-2.

For both individuals who drank tap water and individuals who drank juices reconstituted with tap water, the number of glasses consumed in a day ranged from 1 to 20 glasses. The highest percentage of the

population (37.1%) who drank tap water, consumed in the range of 3-5 glasses a day, and the highest percentage of the population (51.5%) who consumed juice reconstituted with tap water consumed 1-2 glasses in a day. Based on the assumption that each glass contained 8 ounces of water (226.4 mL), the total volume of tap water and juice with tap water consumed would range from 0.23 L/day (1 glass) to 4.5 L/day (20 glasses) for respondents who drank tap water. Using the same assumption, the volume of tap water consumed for the population who consumed 3-5 glasses would be 0.68 L/day to 1.13 L/day, and the volume of juice with tap water consumed for the population who consumed 1-2 glasses would be 0.23-0.46 L/day. Assuming the average individual consumes 3-5 glasses of tap water plus 1-2 glasses of juice with tap water, the range of total tap water intake for this individual would range from 0.9 L/day to 1.64 L/day. These values are consistent with the average intake rates observed in other studies.

The advantages of NHAPS are that the data were collected for a large number of individuals and that the data are representative of the U.S. population. However, evaluation of drinking water intake rates was not the primary purpose of the study, and the data do not reflect the total volume of tap water consumed. In addition, using the assumptions described above, the estimated drinking water intake rates from this study are within the same ranges observed for other drinking water studies.

3.3.2.11.Heller et al. (2000)—Water Consumption and Nursing Characteristics of Infants by Race and Ethnicity

Heller et al. (2000) analyzed data from the 1994-1996 CSFII to evaluate racial/ethnic differences in the ingestion rates of water in children younger than 2 years old. Using data from 946 children in this age group, the mean amounts of water consumed from eight sources were determined for various racial/ethnic groups, including black non-Hispanic, white non-Hispanic, Hispanic, and "other" (Asian, Pacific Islander, American Indian, Alaskan Native, and other nonspecified racial/ethnic groups). The sources analyzed included (1) plain tap water, (2) milk and milk drinks, (3) reconstituted powdered or liquid infant formula made from drinking (4) ready-to-feed and other infant formula, (5) baby food, (6) carbonated beverages, (7) fruit and vegetable juices and other noncarbonated drinks, and (8) other foods and beverages. In addition, Heller et al. (2000) calculated mean plain water and total water ingestion rates for children by age, sex, region, urbanicity, and poverty category. Ages were defined as less than

12 months and 12 to 24 months. Regions were categorized as Northeast, Midwest, South, and West. Heller et al. (2000) did not report the states represented by each of these regions, but it is likely that they defined these regions in the same way Sohn et al. (2001) did. See Section 3.6.1.3 for a discussion on the Sohn et al. (2001) study. Urbanicity of the residence was defined as urban (i.e., being in a metropolitan statistical area [MSA], suburban [outside of an MSA], or rural [being in a non-MSA]). Poverty category was derived from the poverty income ratio. In this study, a poverty income ratio was calculated by dividing the family's annual income by the federal poverty threshold for that size household. The poverty categories used were 0 -1.30, 1.31-3.50, and greater than 3.50 times the federal poverty level (Heller et al., 2000).

Table 3-39 provides water ingestion estimates for the eight water sources evaluated, for each of the race/ethnic groups. Heller et al. (2000) reported that black non-Hispanic children had the highest mean plain tap water intake (21 mL/kg-day), and white non-Hispanic children had the lowest mean plain tap water intake (13 mL/kg-day). The only statistically significant difference between the racial/ethnic groups was found to be in plain tap water consumption and total water consumption. Reconstituted baby formula made up the highest proportion of total water intake for all race/ethnic groups. Table 3-40 presents tap water and total water ingestion by age, sex, region, urbanicity, and poverty category. On average, children younger than 12 months of age consumed less plain tap water (11 mL/kg-day) than children aged 12-24 months (18 mL/kg-day). There were no significant differences in plain tap water consumption by sex, region, or urbanicity. Heller et al. (2000) reported a significant association between higher income and lower plain tap water consumption. For total water consumption, ingestion per kg body weight was lower for the 12- to 24-month-old children than for those younger than 12 months of age. Urban children consumed more plain tap water and total water than suburban and rural children. In addition, plain tap water and total water ingestion was found to decrease with increasing poverty category (i.e., higher wealth).

A major strength of the Heller et al. (2000) study is that it provides information on tap water and total water consumption by race, age, sex, region, urbanicity, and family income. A weakness in the CSFII data set is that is that it includes data collected over only 2 days that may not be entirely representative of long-term intake.

3.3.2.12.Marshall et al. (2003a)—Patterns of Beverage Consumption during the Transition Stage of Infant Nutrition

Marshall et al. (2003a) investigated beverage ingestion during the transition stage of infant nutrition. Mean ingestion of infant formula, cow's milk, combined juice and juice drinks, water, and other beverages was estimated using a frequency questionnaire. A total of 701 children, aged 6 months through 24 months, participated in the Iowa Fluoride Study (IFS). Mothers of newborns were recruited from 1992 through 1995. The parents were sent questionnaires when the children were 6, 9, 12, 16, 20, and 24 months old. Of the 701 children, 470 returned all six questionnaires, 162 returned five, 58 returned four, and 11 returned three, with the minimum criteria being three questionnaires to be included in the data set (Marshall et al., 2003a). The questionnaire was designed to assess the type and quantity of the beverages consumed during the previous week. The validity of the questionnaire was assessed using a 3-day food diary for reference (Marshall et al., 2003a). Table 3-41 presents the percentage of subjects consuming beverages and mean daily beverage ingestion for children with returned questionnaires. Human milk ingestion was not quantified, but the percent of children consuming human milk was provided at each age category (see Table 3-41). Juice (100%) and juice drinks were not distinguished separately but categorized as juice and juice drinks. Water used to dilute beverages beyond normal dilution and water consumed alone were combined. Based on Table 3-41, 97% of the children consumed human milk, formula, or cow's milk throughout the study period, and the percentage of infants consuming human milk decreased with age, while the percent consuming water increased (Marshall et al., 2003a). Marshall et al. (2003a) observed that, in general, lower incomes were associated with less breast-feeding and increased ingestion of other beverages.

The advantage of this study is that it provides mean ingestion data for various beverages. Limitations of the study are that it is based on samples gathered in one geographical area and may not be reflective of the general population. The authors also noted the following limitations: the parents were not asked to differentiate between 100% juice and juice drinks; the data are parent-reported and could reflect perceptions of appropriate ingestion instead of actual ingestion, and a substantial number of the infants from well-educated, economically secure households dropped out during the initial phase.

Chapter 3—Ingestion of Water and Other Select Liquids

3.3.2.13.Marshall et al. (2003b)—Relative Validation of a Beverage Frequency Questionnaire in Children Aged 6 Months through 5 Years Using 3-Day Food and Beverage Diaries

Marshall et al. (2003b) conducted a study based on data taken from 700 children in the IFS. This study compared estimated beverage ingestion rates reported in questionnaires for the preceding week and diaries for the following week. Packets were sent periodically (every 4 to 6 months) to parents of children aged 6 weeks through 5 years of age. This study analyzed data from children, aged 6 and 12 months, and 2 and 5 years of age. Beverages were categorized as human milk, infant formula, cow's milk, juice and juice drinks, carbonated and rehydration beverages, prepared drinks (from powder), and water. The beverage questionnaire was completed by parents and summarized the average amount of each beverage consumed per day by their children. The data collection for the diaries maintained by parents included 1 weekend day and 2 weekdays and included detailed information about beverages consumed. Table 3-42 presents the mean ingestion rates of all beverages for children aged 6 and 12 months and 3 and 5 years. Marshall et al. (2003b) concluded that estimates of beverage ingestion derived from quantitative questionnaires are similar to those derived from diaries. They found that it is particularly useful to estimate ingestion of beverages consumed frequently using quantitative questionnaires.

The advantage of this study is that the survey was conducted in two different forms (questionnaire and diary) and that diaries for recording beverage ingestion were maintained by parents for 3 days. The main limitation is the lack of information on whether the diaries were populated on consecutive or nonconsecutive days. The IFS survey participants may not be representative of the general population of the United States because participants were primarily white, and from affluent and well-educated families in one geographic region of the country.

3.3.2.14.Skinner et al. (2004)—Transition in Infants' and Toddlers' Beverage Patterns

Skinner et al. (2004) investigated the pattern of beverage consumption by infants and children participating in the Feeding Infant and Toddlers Study (FITS) sponsored by Gerber Products Company. The FITS is a cross-sectional study designed to collect and analyze data on feeding practices, food consumption, and usual nutrient intake of U.S. infants and toddlers (Devaney et al., 2004). It included a stratified random sample of 3,022 infants and toddlers between 4 and

24 months of age. Parents or primary caregivers of sampled infants and toddlers completed a single 24-hour dietary recall of all foods and beverages consumed by the child on the previous day by telephone interview. All recalls were completed between March and July 2002. Detailed information on data collection, coding, and analyses related to FITS is provided in Devaney et al. (2004).

Beverages consumed by FITS participants were identified as total milks (i.e., human milk, infant formulas, cow's milk, soy milk, goat's milk), 100% juices, fruit drinks, carbonated beverages, water, and "other" drinks (i.e., tea, cocoa, dry milk mixtures, and electrolyte replacement beverages). There were six age groupings in the FITS study: 4 to 6, 7 to 8, 9 to 11, 12 to 14, 15 to 18, and 19 to 24 months. Skinner et al. (2004) calculated the percentage of children in each age group consuming any amount in a beverage category and the mean amounts consumed. Table 3-43 provides the mean beverage consumption rates in mL/day for the six age categories. Skinner et al. (2004) found that some form of milk beverage was consumed by almost all children at each age; however, total milk ingestion decreased with increasing age. Water consumption also doubled with age, from 163 mL/day in children aged 4 to 6 months old to 337 mL/day in children aged 19 to 24 months old. The percentages of children consuming water increased from 34% at 4 to 6 months of age to 77% at 19 to 24 months of age.

A major strength of the Skinner et al. (2004) study is the large sample size (3,022 children). However, beverage ingestion estimates are based on 1 day of dietary recall data and human milk quantity derived from studies that weighed infants before and after each feeding to determine the quantity of human milk consumed (Devaney et al., 2004); therefore, estimates of total milk ingestion may not be accurate.

3.3.2.15. Barraj et al. (2009)—Within-Day Drinking Water Consumption Patterns: Results from a Drinking Water Consumption Study

In 2000/2001, Barraj et al. (2009) conducted a Drinking Water Consumption Survey (DWCS), funded by Bayer Crop Science, to generate data that could be used to assess acute effects of exposures lasting less than 24 hours. The objective of the study was to determine how often and how much water participants ingested during the day. Data for a nationally representative sample of the U.S. population were collected over 7-day periods during both summer (August) and winter (March) months. The study participants were selected from households within Bayer's Home Testing Institute consumer panel, and diaries were delivered to 3,000 randomly

selected households in summer, and 3,650 households in winter. The response rates were 33 and 36%, respectively, for the summer and winter surveys, with 994 households completing the summer survey, and 1,320 households completing the winter survey. After excluding diaries with missing or incorrect data, the final data set represented 4,198 individuals (1,740 in summer) and 2,458 in winter). The vast majority of participants were white (90.2% for summer and winter combined), and males and females above the age of 50 years accounted for the largest portion of participants (34.5%). Teenage males and females accounted for the smallest percentage of participants (6.7%), and children accounted for approximately 13% of the survey population. Each survey participant was asked to complete a diary to provide details about their water consumption patterns over a 7-day period. Using the diary data for a randomly selected day for each survey participant, the average number of drinking occasions per day, the average amount consumed per drinking occasion, and the average amount of water consumed per day was determined for each sex and age group for each season (see Table 3-44).

For all sex and age groups combined, there were slightly more daily drinking occasions reported for summer (mean of 4.4) than winter (mean of 4.1), and the average amount consumed per drinking occasion was slightly higher in the summer (266 mL/event) compared to the winter (248 mL/event). Based on one randomly selected day for each survey participant, mean daily water intake was higher for summer (1.141 mL/day: N = 1.740than for (1,023 mL/day; N = 2,458). Based on all survey days and all participants (N = 27,192 person-days), the mean drinking water intake rate for both seasons combined, was 1,118 mL/day, and the 95th percentile was 2,957 mL/day. The mean and 95th percentile intakes rates were 1,200 and 3,194 mL/day, respectively, for summer (N = 11,318 person-days), and 1,056 and 2,780 mL/day, respectively, for winter (N = 15,874 person-days).

This study was based on a large, nationally representative sample of the U.S. population, and provided data by season. Also, it provided information on the amount of water consumed per event within a 24-hour period, and data were provided by sex and age. The limitations of this study are that hourly time increments and 2-ounce amount increments were used in collecting the diary data. These factors may contribute to uncertainties regarding the exact consumption times and the exact amounts consumed.

3.3.2.16.Zizza et al. (2009)—Total Water Intakes of Community-Living Middle-Old and Oldest-Old Adults

Zizza et al. (2009) used data from NHANES 1999-2002 to estimate total water intake among older Americans, defined as respondents 65 years of age or older (N = 2,054). Intake was estimated as g/day and as g/body weight/day. Total water was defined as "the sum of the amount of drinking water consumed and the amount of water consumed from food and beverage sources." The relative contributions of total water intake that was derived from plain drinking water, beverages, and food were also calculated. Total water intake was estimated for three age groups of older survey respondents: young-old (65 to <75 years), middle-old (75 to <85 years), and oldest-old (85+ years). Table 3-45 provides the estimates of total water intake for these three age groups. Zizza et al. (2009) reported that total water intake rates for the middle-old and oldest-old groups were significantly lower than for the young-old group. Plain drinking water accounted for 38.1, 39.4, and 39.5% of total water intake for the voung-old, middle-old, and oldest-old age groups respectively. Beverages accounted for 40.8, 38.3, and 36.4% of total water intake and food accounted for 21.1, 22.2, and 24.2% of total water intake for the same three age groups respectively.

This study provides information for a nationally representative population of older Americans. However, the water categories are somewhat different from those used elsewhere in this chapter. For example, plain water category appears to include both tap water and bottled water. Likewise, water from beverages may include both water that is intrinsic to purchased beverages (i.e., widely distributed drinks such as carbonated soft drinks) as well as beverages that are prepared with community tap water.

3.3.2.17. Sebastian et al. (2011)—Drinking Water Intake in the United States; Rosinger et al. (2016)—Daily Water Intake among U.S. Men and Women, 2009–2012

Sebastian et al. (2011) investigated "plain water" intake using data from NHANES 2005–2008. "Plain water" was defined as "tap water and noncarbonated bottled water without sweeteners or other additions. [It] does not include water naturally present in or added as an ingredient to other beverages or foods." The study authors observed that plain water accounted for approximately one-third of the total water consumed (i.e., total water was defined as plain water plus water contained in foods and beverages). Approximately 69% of plain water was consumed at home and 31% was consumed away from home.

Chapter 3—Ingestion of Water and Other Select Liquids

Sebastian et al. (2011) also found that tap water consumed at home accounted for 46% of the plain water consumed; 16% of plain water was tap water consumed away from home. Bottled water consumed at home accounted for 23% of plain water intake, and bottled water consumed away from home accounted for 16% of plain water intake. Using NHANES 2009–2012, Rosinger et al. (2016) estimated that plain water accounted for 30% of total water intake for mean and 34% of total intake for women.

These studies provide general information about plain and total water intake in the United States. The Sebastian et al. (2011) data are provided in units of cups/day. The Rosinger et al. (2016) study provides data in units of L/day, but for mean total water only, not distributions.

3.3.2.18. Kahn and Stralka (2009)—Estimated Daily Average per Capita Water Ingestion by Child and Adult Age Categories Based on USDA's 1994–1996 and 1998 Continuing Survey of Food Intakes by Individuals and Supplemental Data, Kahn (2008)

Kahn and Stralka (2009) analyzed the combined 1994-1996 and 1998 CSFII data sets to examine water ingestion rates of more than 20.000 individuals surveyed, including approximately 10,000 under age 21 and 9,000 under age 11. Previous CSFII analyses conducted using the 1994-1996 data sets were reported in U.S. EPA (2000b). USDA surveyed households in the United States and District of Columbia and collected food and beverage recall data as part of the CSFII (USDA, 1998). Data were collected by an in-home interviewer. The Day 2 interview was conducted 3 to 10 days later and on a different day of the week. Each individual in the survey was assigned a sample weight based on his or her demographic data. These weights were taken into account when calculating mean and percentile water ingestion rates from various sources. Kahn and Stralka (2009) derived mean and percentile estimates of daily average water ingestion for the following age categories: <1 month, 1 to <3 months, 3 to <6 months, 6 to <12 months, 1 to <2 years of age, 2 to <3 years, 3 to <6 years, 6 to <11 years, 11 to <16 years, 16 to <18 years, 18 to <21 years of age, 21 years and older, 65 years and older, and all ages. The increased sample size for children younger than 11 years of age (from 4,339 in the initial 1994-1996 survey to 9,643 children in the combined 1994-1996, 1998 survey) enabled water ingestion estimates to be categorized into the finer age categories recommended by U.S. EPA (2005). Consumer-only and per capita water ingestion estimates were reported in the Kahn

and Stralka (2009) study for two water source categories: all sources and community water. "All sources" included water from all supply sources such as community water supply (i.e., tap water), bottled water, other sources, and missing sources. "Community water" included tap water from a community or municipal water supply. Other sources included wells, springs, and cisterns; missing sources represented water sources that the survey respondent was unable to identify. The water ingestion estimates included both water ingested directly as a beverage (direct water) and water added to foods and beverages during final preparation at home or by local food service establishments such as school cafeterias and restaurants (indirect water). Commercial water added by a manufacturer (i.e., water contained in soda or beer) and intrinsic water in foods and liquids (i.e., milk and natural undiluted juice) were not included in the estimates. Kahn and Stralka (2009) only reported the mean and 90th and 95th percentile estimates of per capita and consumers-only ingestion. The full distributions of ingestion estimates were provided by the author (Kahn, 2008). Tables 3-46 to 3-61 present full distributions of direct and indirect water intake for the various water source categories (community water, bottled water, other sources, and all sources). Tables 3-46 to 3-49 provide per capita ingestion estimates of total water (combined direct and indirect water) in mL/day for the various water source categories (i.e., community, bottled, other, and all sources). Tables 3-50 to 3-53 present the same information as Tables 3-46 to 3-49, but in units of mL/kg-day. Tables 3-54 to 3-57 consumers-only combined direct and indirect water ingestion estimates in mL/day for the various source categories. Tables 3-58 to 3-61 present the same information as Tables 3-54 to 3-57 but in units of mL/kg-day. Estimates that do not meet the minimum sample size requirements as described in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: NHIS/NCHS Analytical Working Group Recommendations (NCHS, 1993) are flagged in the tables.

The CSFII 1994–1996, 1998 data have both strengths and limitations in regard to estimating water ingestion. These are discussed in detail in U.S. EPA (2004) and Kahn and Stralka (2009). The principal advantages of this survey are that (1) it was designed to be representative of the U.S. population, including children and low-income groups; (2) sample weights were provided that facilitated proper analysis of the data and accounted for nonresponse; and (3) the number of individuals sampled (more than 20,000) is sufficient to allow categorization within narrowly

defined age categories. Another advantage is that bottled water estimates include both direct and indirect intake, whereas the bottled water estimates using NHANES 2005–2010 data (see Section 3.3.1.1) include only bottled water consumed directly as a beverage; they do not include bottled water used in the preparation of foods. One limitation of this survey is that data were collected for only 2 days. As discussed in Section 3.3.1.1 in regard to U.S. EPA's analysis of NHANES data, short-term data may not accurately reflect long-term intake patterns, especially at the extremes (i.e., tails) of the distribution of water intake. This study is considered relevant because more recent data are available from NHANES 2005–2010.

3.4. PREGNANT AND LACTATING WOMEN

3.4.1. Key Study on Pregnant and Lactating Women

The section that follows provides a summary of the key study on water ingestion among pregnant and lactating women.

3.4.1.1. EPA Analysis of Consumption Data from 2005–2010 National Health and Nutrition Examination Survey

EPA estimated water intake rates for pregnant, lactating, and all women of child-bearing age (13 to <50 years) using data from the NHANES for the years 2005 to 2010 and the FCID Consumption Calculator available at http://fcid.foodrisk.org/, as described in Section 3.3.1.1. NHANES 2005-2010 collected data on dietary recall of food and water consumed over the previous 24-hour period on 2 nonconsecutive days. Two-day data were available for 426 pregnant women, 101 lactating women, and 5,543 women of child-bearing age. In the FCID, NHANES data on the foods people reported eating were converted to the quantities of agricultural commodities eaten, including water that was added in the preparation of foods and beverages. Two-day average intake rates were calculated for each survey respondent for community water, bottled water, other water, and all water sources. Summary statistics were calculated for the populations of pregnant, lactating, and females of child-bearing age (i.e., 13 to <50 years) on both a consumer-only and on a per capita basis. Table 3-62 provides summary statistics for per capita intake of water, and Table 3-63 provides the same data on a consumer-only basis.

As indicated in Section 3.3.1.1, an advantage of using the EPA's analysis of NHANES data is it was designed to be representative of the U.S. population. The data set used in this analysis used 6 years of intake data combined. However, the sample sizes for

pregnant and lactating women were relatively small and short-term dietary data may not accurately reflect long-term eating or drinking patterns and may under-represent infrequent consumers of a given food. This is particularly true for the tails (extremes) of the food-intake distribution.

3.4.2. Relevant Studies on Pregnant and Lactating Women

The sections that follow provide summaries of relevant studies on water ingestion among pregnant and lactating women.

3.4.2.1. Ershow et al. (1991)—Intake of Tap Water and Total Water by Pregnant and Lactating Women

Ershow et al. (1991) used data from the 1977–1978 USDA NFCS to estimate total fluid and total tap water intake among pregnant and lactating women (ages 15-49 years). Data for 188 pregnant women, 77 lactating women, and 6,201 nonpregnant, nonlactating control women were evaluated. The participants were interviewed based on 24-hour recall and then asked to record a food diary for the next 2 days. "Tap water" included tap water consumed directly as a beverage and tap water used to prepare food and tap water-based beverages. "Total water" was defined as all water from tap water and nontap water sources, including water contained in food. Tables 3-64 and 3-65 present estimated total fluid and total tap water intake rates for the three groups, respectively. Lactating women had the highest mean total fluid intake rate (2.24 L/day) compared with both pregnant women (2.08 L/day) and control women (1.94 L/day). Lactating women also had a higher mean total tap water intake rate (1.31 L/day) than pregnant women (1.19 L/day) and control women (1.16 L/day). The tap water distributions are neither normal nor lognormal, but lactating women had a higher mean tap water intake than controls and pregnant women. Ershow et al. (1991) also reported that rural women (N = 1.885) consumed more total water (1.99 L/day) and tap water (1.24 L/day) than urban/suburban women (N = 4,581, 1.93 and 1.13 L/day, respectively). Total water and tap water intake rates were lowest in the northeastern region of the United States (1.82 and 1.03 L/day) and highest in the western region of the United States (2.06 L/day and 1.21 L/day). Mean intake per unit body weight was highest among lactating women for both total fluid and total tap water intake. Total tap water intake accounted for over 50% of mean total fluid in all three groups of women (see Table 3-65). Drinking water accounted for the largest single proportion of the total fluid intake for

Chapter 3—Ingestion of Water and Other Select Liquids

control (30%), pregnant (34%), and lactating women (30%) (see Table 3-66). All other beverages combined accounted for approximately 46, 43, and 45% of the total water intake for control, pregnant, and lactating women, respectively. Food accounted for the remaining portion of total water intake.

The same advantages and limitations associated with the Ershow and Cantor (1989) data also apply to these data sets (see Section 3.3.2.6). A further advantage of this study is that it provides information on estimates of total water and tap water intake rates for pregnant and lactating women. This topic has rarely been addressed in the literature.

3.4.2.2. Shimokura et al. (1998)—Assessment of Water Use for Estimating Exposure to Tap Water Contaminants

Shimokura et al. (1998) evaluated water use among 34 pregnant women and 33 of their male partners living in North Carolina. The women were up to 30 weeks pregnant at the time that the survey was conducted. Most of the women were in their twenties and thirties, were expecting their first child, and were in their second trimester of pregnancy. Approximately three quarters of the women were white and the remainder were of African American and Asian. ethnicities They tended to be highly educated and nonsmokers. Each of the participants completed a daily diary for 3 days, including one nonworking or weekend day, and an interview about their daily water consumption. Information was collected on the volume of all beverages consumed, which was defined as total water, and the volume of drinking water and beverages made with tap water, which was defined as tap water. The temperature of the beverage (i.e., cold or hot), as well as the location where the beverage was consumed, was also recorded. Table 3-67 provides summary statistics for the participants' daily water intake. Daily consumption of total water and tap water were similar for pregnant women and men, but differences based on employment status were observed for daily intake of cold tap water at home. Table 3-68 provides mean intake rates for pregnant women and men according to location, beverage type, and temperature.

This study provides useful information on daily tap water intake for pregnant women. However, the definition of total water differs from that used elsewhere in this chapter (i.e., the water content of foods is not included). Also, the study population is relatively small and may not be entirely representative of the U.S. population.

3.4.2.3. Zender et al. (2001)—Exposure to Tap Water during Pregnancy

Zender et al. (2001) conducted a study in Colorado in 1996 and 1997 to compare tap water intake among pregnant and nonpregnant women. A total of 71 pregnant and 43 nonpregnant women were recruited from Women, Infant, and Children (WIC) clinics. Nearly one-half of the pregnant women were in their second trimester, and one-quarter were in each of the first and third trimesters. Approximately one-half of the women worked outside the home, and nearly all the women had a municipal water source at their home. The women were interviewed in person or by phone and responded to questions about the amount of tap water intake in a day—including the amount consumed at home and at work. Total tap water intake included tap water consumed directly as a beverage and tap water-based cold and hot beverages. Information on the sources of the water consumed (e.g., tap water, bottled water, or filtered water) were also collected. Total tap water intake was slightly higher for pregnant women (3.4 L/day) than nonpregnant women (3.0 L/day) (see Table 3-69). Table 3-70 shows the principal source of drinking water for pregnant and for nonpregnant women. Tap water accounted for 72–75% of total water intake.

The advantage of this study is that it investigated tap water consumption based on location (i.e., at home and at work) and by source (i.e., bottled, filtered, or tap water). However, the sample size was small and the study population may not be representative of the entire United States.

3.4.2.4. Forssén et al. (2007)—Predictors of Use and Consumption of Public Drinking Water among Pregnant Women; Forssén et al. (2009)—Variability and Predictors of Changes in Water Use during Pregnancy

Forssén et al. (2007) evaluated the demographic and behavioral characteristics that would be important in predicting water consumption among pregnant women in the United States. Data were collected through telephone interviews with 2,297 pregnant women in three geographical areas in the southern United States. Women 18 years old and ≤12 weeks pregnant were recruited from the local communities and from both private and public prenatal care facilities. Variables studied included demographic characteristics, health status and history (e.g., diabetes, pregnancy history), behavioral patterns (e.g., exercise, smoking, caffeine consumption), and physiological characteristics (e.g., prepregnancy weight). Daily amount of water ingestion was estimated based on cup sizes defined in the interview.

Water consumption was reported as cold tap water (filtered and unfiltered) and bottled water. Other behavioral information on water use such as showering and bathing habits, use of swimming pools, hot tubs, and Jacuzzis was also collected. The overall mean cold tap water ingested was 1.7 L/day (percentiles: $25^{th} = 0.5$ L/day, $50^{th} = 1.4$ L/day, $75^{th} = 2.4$ L/day, and $90^{th} = 3.8$ L/day). The overall mean bottled water ingested was 0.6 L/day (percentiles: $25^{th} = 0.1$ L/day, $50^{th} = 0.2$ L/day, $75^{th} = 0.6$ L/day, and $90^{th} = 1.8$ L/day). Table 3-71 presents water ingestion by the different variables studied, and Table 3-72 presents the percentage of ingested tap water that is filtered and unfiltered by various variables.

Forssén et al. (2009) studied changes in water use over the course of pregnancy based on data for 1,990 women that were still pregnant during a second interview. Mean cold tap water intake increased from prepregnancy (1.5 L/day) though early pregnancy (1.7 L/day) mid-pregnancy (1.8)to L/day) (see Table 3-73). Mean hot tap water intake decreased slightly from prepregnancy (0.18 L/day) to early and mid-pregnancy (0.16 L/day). Bottled water intake was essentially the same during early and mid-pregnancy (0.57 and 0.59 L/day, respectively). The greatest changes in water consumption were reported for cold tap water where 80% of the women reported either increases or decreases in consumption; 33% reported changes (increases or decreases) equal to or greater than 1.0 L/day (see Table 3-74).

The advantage of these studies is that they investigated water consumption in relation to multiple variables, and over the course of pregnancy. However, the study population was not random and may not be representative of the entire United States. There may also be limitations associated with recall bias.

3.4.2.5. Kahn and Stralka (2008)—Estimates of Water Ingestion for Women in Pregnant, Lactating, and Nonpregnant and Nonlactating Child-Bearing Age Groups Based on USDA's 1994–1996, 1998 CSFII

The combined 1994–1996 and 1998 CSFII data sets were analyzed to examine the ingestion of water by various segments of the U.S. population as described in Section 3.3.1.1. Kahn and Stralka (2008) provided water intake data for pregnant, lactating, and child-bearing age women. Mean and upper percentile distribution data were provided. Lactating women had an estimated per capita mean community water ingestion of 1.38 L/day, the highest water ingestion rates of any among the population evaluated. The mean consumer-only rate was 1.67 L/day. Tables 3-75

through 3-82 provide estimated drinking water intakes for pregnant and lactating women, and nonpregnant, nonlactating women aged 15–44 years old. The same advantages and limitations discussed in Section 3.3.1.1 apply to these data. An additional limitation of this analysis is that the sample size was relatively small (i.e., 70 pregnant and 41 lactating women). This study is considered relevant, but not key because more recent data are available for pregnant and lactating women.

3.5. FORMULA-FED INFANTS

3.5.1. Key Study on Formula-Fed Infants

The section that follows provides a summary of the key study on water ingestion among formula-fed infants.

3.5.1.1. Kahn et al. (2013)—Estimates of Water Ingestion in Formula by Infants and Children Based on USDA's 1994–1996 and 1998 Continuing Survey of Food Intakes by Individuals

Kahn et al. (2013) used data from the 1994-1996 and 1998 CSFII to estimate water ingestion among formula-fed infants, ages <1 month, 1 to <3 months. 3 to <6 months, 6 to <12 months, and 1 to <2 years. The same methodology was used as in Kahn and Stralka (2009), as described in Section 3.3.2.18. Indirect water ingestion among "formula-consumers only" was based on the estimated amount of community water used to reconstitute or dilute infant formula. Total indirect and direct water intake among formula-fed infants represented both water used to reconstitute or dilute baby formula and water consumed directly as a beverage. Mean and 95th percentile indirect, and total indirect and direct water ingestion rates for formula-consuming infants are provided in Table 3-83. On a mL/day basis, mean intake rates increased between <1 month and 3 to <6 months and then declined; on a mL/kg-day basis, mean intake declined from <1 month to 1 to <2 years.

The same advantages and disadvantages discussed in Section 3.3.2.18 apply to these data. In addition, as suggested by Kahn et al. (2013), while the more recent data may be available (e.g., NHANES) for this type of analysis, the amount of water ingested by formula-fed infants would not be expected to change significantly because the nutritional needs of infants would not be expected to have varied over time.

3.5.2. Relevant Studies on Formula-Fed Infants

The section that follows provides summaries of the relevant studies on water ingestion among formula-fed infants. Sections 3.3.2.8 (Levy et al., 1995), 3.3.2.11

Chapter 3—Ingestion of Water and Other Select Liquids

(Heller et al., 2000), and 3.3.2.12 (Marshall et al., 2003a) also provide some relevant information on ingestion of water used in reconstituting infant formula.

3.5.2.1. Hilbig et al. (2002)—Measured Consumption of Tap Water in German Infants and Young Children as Background for Potential Health Risk Assessment: Data of the DONALD Study

Hilbig et al. (2002) estimated tap water ingestion rates based on 3-day dietary records of 504 German children aged 3, 6, 9, 12, 18, 24, and 36 months. The data were collected between 1990 and 1998 as part of the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) study. The DONALD study was a cohort study that collected data on diet, metabolism, growth, and development from healthy subjects between infancy and adulthood (Sichert-Hellert et al., 2001). Beginning in 1985, approximately 40 to 50 infants were enrolled in the study annually. Mothers of the participants were recruited in hospital maternity wards. Tap water ingestion rates were calculated for three subgroups of children: (1) breast-fed infants <12 months of age (exclusive and partial breast-fed infants). (2) formula-fed infants ≤12 months of age (no human milk, but including weaning food), and (3) mixed-fed young children aged 18 to 36 months. Hilbig et al. (2002) defined "total tap water from household" as water from the tap consumed as a beverage or used in preparation. "Tap water manufacturing" was defined as water used in industrial production of foods, and "Total Tap Water" was defined as tap water consumed from both the household and that used in manufacturing.

Table 3-84 summarizes total tap water ingestion (in mL/day and mL/kg-day) and tap water ingestion from household and manufacturing sources (in mL/kg-day) for breast-fed, formula-fed, and mixed-fed children. Mean total tap water intake during the 1st year of life was higher in formula-fed infants (53 mL/kg-day) than in breast-fed infants (17 mL/kg-day) and mixed-fed young children (19 mL/kg-day). Tap water from household sources constituted 66 to 97% of total tap water ingestion in the different age groups.

The major limitation of this study is that the study sample consists of families from an upper social background in Germany (Hilbig et al., 2002). Because the study was conducted in Germany, the data may not be directly applicable to the U.S. population. However, this study was included in this chapter

because similar data for a U.S. population of infants are limited.

3.5.2.2. Levallois et al. (2008)—Drinking Water Intake by Infants Living in Rural Quebec (Canada)

Levallois et al. (2008) conducted a survey on a population of 2-month-old infants residing in seven agricultural areas of Canada. Eligible newborns were born in this rural area of Quebec between January and April 2002. Infants who were less than 34 weeks of gestation at birth, families who did not speak French, or those served by surface water supplies were excluded from the study. Families who were eligible for participation were sent a letter explaining the survey followed by a phone interview with the infant's mother. There were 642 mothers who participated in the survey, which was conducted when the infants were 8–9 weeks old. Questions asked during the phone interview included those on feeding practices such as the quantity and number of feedings each day and the specific type and volume of water used for preparing formula, juices, or cereals. Of the 642 participating infants, 38.3% were exclusively breast-fed and, therefore, had no drinking water intake. Almost half of the participating infants (47.5%) were fed either ready-to-use formula or dry formula mixed with water. and 14.2% received mixed breast and formula feedings. Infants who consumed some water comprised 61.2% of the participants, and among these 59, 34, and 7% consumed mostly tap water, bottled water, or both tap and bottled water, respectively. For consumers, mean tap water intake was 564 mL/day (105 mL/kg-day) and mean bottled water intake was 504 mL/day (94 mL/kg/day) (see Table 3-85).

This study provides quantitative estimates of drinking water consumption by a population of 2-month-old infants according to their feeding practices. Limitations of the study include the fact that drinking water intake was not measured, but was provided by the infants' mothers during telephone interviews. Although the participants resided in rural areas of Canada, which may not be entirely representative of the U.S. population, it is assumed that drinking water intake for formula-fed infants would be similar to that of those in the United States. Therefore, Levallois et al. (2008) was included here as a relevant study.

3.5.2.3. Schier et al. (2010)—Perchlorate Exposure from Infant Formula and Comparisons with the Perchlorate Reference Dose

Schier et al. (2010) estimated perchlorate exposures among 1- and 6-month-old infants consuming reconstituted powdered infant formula,

using measured concentrations of perchlorate in the formula and estimated formula intake rates. Infant formula ingestion rates were estimated as the product of average infant energy intakes in kcal/kg-day and estimated infant body weights, divided by the estimated number of calories in the infant formula in kcal/L formula. The estimated 50th percentile formula intake rate was estimated to be 0.7 L/day for 1-month-old infants and 1.0 L/day for 6-month-old infants. The estimated 90th percentile formula intake rate was estimated to be 1.0 L/day for 1-month-old infants and 1.4 L/day for 6-month-old infants. This study provides an indirect estimate of water intake among formula-fed infants.

3.6. HIGH ACTIVITY LEVELS/HOT CLIMATES

3.6.1. Relevant Studies on High Activity Levels/Hot Climates

The following sections provide summaries of relevant studies on water ingestion associated with various activity levels and climates.

3.6.1.1. McNall and Schlegel (1968)—Practical Thermal Environmental Limits for Young Adult Males Working in Hot, Humid Environments

McNall and Schlegel (1968) conducted a study that evaluated the physiological tolerance of adult males working under varying degrees of physical activity. Subjects were required to operate pedal-driven propeller fans for 8-hour work cycles under varying environmental conditions. The activity pattern for each individual was cycled as 15 minutes of pedaling and 15 minutes of rest for each 8-hour period. Two groups of eight subjects each were used. Work rates were divided into three categories as follows: high activity level (0.15 horsepower [hp] per person), medium activity level (0.1 hp per person), and low activity level (0.05 hp per person). Evidence of physical stress (i.e., increased body temperature, blood pressure, etc.) was recorded, and individuals were eliminated from further testing if certain stress criteria were met. The amount of water consumed by the test subjects during the work cycles was also recorded. Water was provided to the individuals on request.

Table 3-86 presents the water intake rates obtained at the three different activity levels and the various environmental temperatures. The data presented are for test subjects with continuous data only (i.e., those test subjects who were not eliminated at any stage of the study due to stress conditions). Water intake was the highest at all activity levels when environmental temperatures were increased. The highest intake rate

was observed at the low activity level at 100°F (0.65 L/hour); however, there were no data for higher activity levels at 100°F. It should be noted that this study estimated intake on an hourly basis during various levels of physical activity. These hourly intake rates cannot be converted to daily intake rates by multiplying by 24 hours/day because they are only representative of intake during the specified activity levels, and the intake rates for the rest of the day are not known. Therefore, comparison of intake rate values from this study cannot be made with values from the previously described studies on drinking water intake.

3.6.1.2. U.S. Army (1983, 1999)—Water Consumption Planning Factors

The U.S. Army has developed water consumption planning factors to enable it to transport an adequate amount of water to soldiers in the field under various conditions (U.S. Army, 1983, 1999). Both climate and activity levels were used to determine the appropriate water consumption needs. Consumption factors have been established for the following uses: (1) drinking, treatment, (3) personal hygiene, heat (4) centralized hygiene, (5) food preparation and sanitation, (6) laundry, (7) medical treatment, (8) vehicle and aircraft maintenance, (9) graves registration, and (10) construction. Only personal drinking water consumption factors are described here. Drinking water consumption planning factors are based on the estimated amount of water needed to replace fluids lost by urination, perspiration, and respiration. It assumes that water lost to urinary output averages 1 quart/day (0.9 L/day), and perspiration losses range from almost nothing in a controlled environment to 1.5 quarts/day (1.4 L/day) in a very hot climate where individuals are performing strenuous work. Water losses to respiration are typically very low except in extreme cold where water losses can range from 1 to 3 quarts/day (0.9 to 2.8 L/day). This occurs when the humidity of inhaled air is near zero, but expired air is 98% saturated at body temperature (U.S. Army, 1983).

Drinking water is defined by the U.S. Army (1983, 1999) as "all fluids consumed by individuals to satisfy body needs for internal water." This includes soups, hot and cold drinks, and tap water. Planning factors have been established for hot, temperate, and cold climates based on the following mixture of activities among the workforce: 15% of the force performing light work, 65% of the force performing medium work, and 20% of the force performing heavy work. Hot climates are defined as tropical and arid areas where the temperature is greater than 80°F. Temperate

Chapter 3—Ingestion of Water and Other Select Liquids

climates are defined as areas where the mean daily temperature ranges from 32 to 80°F. Cold regions are areas where the mean daily temperature is less than 32°F. Table 3-87 presents drinking water consumption factors for these three climates. These factors are based on research on individuals and small unit training exercises. The estimates are assumed to be conservative because they are rounded up to account for the subjective nature of the activity mix and minor water losses that are not considered (U.S. Army, 1983, 1999).

The advantage of using these data is that they provide conservative estimates of drinking water intake among individuals performing at various levels of physical activity in hot, temperate, and cold climates. However, the planning factors described here are based on assumptions about water loss from urination, perspiration, and respiration, and are not based on survey data or actual measurements.

3.6.1.3. Sohn et al. (2001)—Fluid Consumption Related to Climate among Children in the United States

Sohn et al. (2001) investigated the relationship between fluid consumption among children aged 1 to 10 years and local climate using data from the NHANES III (1988-1994). Children who completed the 24-hour dietary interview (or proxy interview for the younger children) during the NHANES III survey were selected for the analysis. Breast-fed children were excluded from the analysis. Among 8,613 children who were surveyed, 688 (18%) were excluded due to incomplete data. A total of 7,925 eligible children remained. Because data for climatic conditions were not collected in the NHANES III survey, the mean daily maximum temperature from 1961 to 1990, averaged for the month during which the NHANES III survey was conducted, was obtained for each survey location from the U.S. Local Climate Historical Database. Of the 7,925 eligible children with complete dietary data, temperature information was derived for only 3,869 children (48.8%) because detailed information on survey location, in terms of county and state, was released only for counties with a population of more than a half million.

Sohn et al. (2001) calculated the total amount of fluid intake for each child by adding the fluid intake from plain drinking water and the fluid intake from foods and beverages other than plain drinking water provided by NHANES III. Sohn et al. (2001) identified major fluid sources as milk (and milk drinks), juice (fruit and vegetable juices and other noncarbonated drinks), carbonated drinks, and plain water. Fluid intake from sources other than these

major sources was grouped into other foods and beverages. Other foods and beverages included bottled water, coffee, tea, baby food, soup, water-based beverages, and water used for diluting food.

Table 3-88 presents mean fluid ingestion rates of selected fluids for the total sample population and for the subsets of the sample population with and without temperature information. The estimated mean total fluid and plain water ingestion rates for the 3,869 children for whom temperature information was obtained are presented in Table 3-89 according to age (years), sex, race/ethnicity, poverty:income ratio, region, and urbanicity. Poverty:income ratio was defined as the ratio of the reported family income to the federal poverty level. The following categories assigned: socioeconomic were low (SES) = 0.000 to 1.300 times the poverty:income ratio; medium SES = 1.301 to 3.500 times the poverty/income level; and high SES = 3.501 or greater times the poverty/income level. Regions were Northeast, Midwest, South, and West, as defined by the U.S. Census Bureau (see Table 3-89). Sohn et al. (2001) did not find a significant association between mean daily maximum temperature and total fluid or plain water ingestion, either before or after controlling for sex, age, SES, and race or ethnicity. However, significant associations between fluid ingestion and age, sex, socioeconomic status, and race and ethnicity were reported.

The main strength of the Sohn et al. (2001) study is the evaluation of water intake as it relates to weather data. The main limitations of this study were that northeastern and western regions were over-represented because temperature data were only available for counties with populations over one-half million. In addition, whites were under-represented compared to other racial or ethnic groups. Other limitations include lack of data for children from extremely cold or hot weather conditions.

3.6.1.4. Kant et al. (2009)—Intakes of Plain Water, Moisture in Foods and Beverages, and Total Water in the Adult U.S. Population—Nutritional, Meal Pattern, and **Body** Weight Correlates: **NHANES** 1999-2006; Kant and Graubard (2010)—Contributors of Water Intake in U.S. Children and Adolescents: Associations with Dietary and Meal Characteristics—National Health and Nutrition Examination Survey 2005-2006

Using data from NHANES 1999-2004, Kant et al. (2009) estimated water intake for adults, ages \geq 20 years (N = 4,112), based on their reported activity

levels. Intake was for plain water (i.e., including tap water, water from a cooler or drinking fountain, spring water, and noncarbonated bottled water), water in beverages and food, and total water (i.e., the sum of plain water and moisture in beverages and food). Beverages included "all types of liquid milk, shakes, fruit or vegetable juices, juice drinks, carbonated and noncarbonated sweetened or unsweetened drinks, coffee, tea, hot chocolate, all alcoholic drinks, and carbonated water." Multiple linear regression was used to compute adjusted mean water intake based on covariates such as sex, age, race/ethnicity, body mass index, income, education, smoking status, chronic illness, survey wave, survey day, and leisure-time physical activity. Leisure-time physical activity was categorized as having any leisure-time activity lasting ≥10 minutes over the previous month, and according to the average activity level on a given day (i.e., mostly sitting, mostly standing, carry light loads or climb hills, or heavy work or carry heavy loads). Table 3-90 provides a summary of water intake for adults according to these activity categories. Higher intake rates of plain and total water were associated with participation in any leisure-time activity. Higher intake of moisture from beverages and total water were associated with higher average activity levels on a usual day (see Table 3-90).

Kant and Graubard (2010) used a similar approach with data from NHANES 2005-2006 to estimate water intake for children ages 2-19 years of age (N = 3,978). However, the activity level definitions differed from those used for adults in Kant and Graubard (2009). Kant and Graubard (2010) classified activity levels for 2- to 11-year-old children based on the number of times per week the child was reported to have played or exercised hard enough to induce sweat. The categories were: 0 times = none, 1-2 = alittle, 3-4 = some, and $\ge 5 = a$ lot. For children 12-19 years of age, activity levels were based on three questions about whether participants had any leisure-time activity lasting ≥10 minutes. The three questions pertained to vigorous, moderate, or muscle strengthening activities. The categories were no to all three questions = none, yes to 1 question = a little, yes to 2 questions = some, and yes to all three questions = a lot. Table 3-90 provides water intake estimates based on these activity levels. Kant and Graubard noted that the physical activity level was only weakly associated with plain water intake, but not with the moisture content of beverages or foods, or with total water.

These studies provide information on water intake based on physical activity. However, the water categories are somewhat different from those used elsewhere in this chapter. For example, plain water category appears to include both tap water and bottled water. Likewise, beverage moisture may include both water that is intrinsic to purchased drinks (i.e., widely distributed beverages such as carbonated soft drinks) as well as beverages that may be prepared with community tap water (e.g., coffee).

3.6.1.5. Yang and Chun (2014)—Consumptions of Plain Water, Moisture in Foods and Beverages, and Total Water in Relation to Dietary Micronutrient Intakes and Serum Nutrient Profiles among U.S. Adults

Yang and Chun (2014) conducted a study similar to Kant et al. (2009). They estimated water intake among adults, ages 20 years of age and older, based on activity levels. NHANES 2005-2006 data were used to estimate intake of plain water, water from beverages and food, and total water. The definitions of these water categories were the same as those in Kant et al. (2009), but the levels of physical activity were defined differently. Yang and Chun (2014) based the activity levels on "the metabolic equivalent (MET) score calculated by combining the intensity level of the leisure-time activities reported, mean duration and frequency." Water intake was evaluated for four activity levels: no activity (0) and three tertiles of the MET score (T1, T2, and T3). The mean daily total water intake for adults was 3,066 g (see Table 3-90). Yang and Chun (2014) reported that the contributions to total water were 46% from beverages, 32% from plain water, and 22% from food, and higher activity was associated with higher total water intake.

Like the Kant et al. (2009) study, this study provides information on total water intake based on activity levels. However, the water categories differ from those used elsewhere in this chapter.

3.6.1.6. Montain and Ely (2010)—Water Requirements and Soldier Hydration

Montain and Ely (2010) provided an overview of factors that affect soldiers' hydration and water balance, including environment, physical activity and load, and body size and gender. For example, increasing temperature and relative humidity increase sweating and the need for water replacement. The type of clothing worn and the load being carried can also affect the rate of perspiration and need for water replacement. Factors affecting water needs in cold climates include: cold-induced diuresis (increased urine loss), respiratory water loss from breathing cold dry air, clothing insulation that induces sweating, and the metabolic cost of movement in cold terrain. High altitude hypoxia can also contribute to water loss. Because sweat losses are dependent on exercise

Chapter 3—Ingestion of Water and Other Select Liquids

intensity and duration, water needs increase as energy expenditure increases (Montain and Ely, 2010). Energy expenditure and the need for water replacement also increases with carrying increasingly heavy loads. Montain and Ely (2010) suggested that activity-related caloric costs increase with increasing body size; thus, larger individuals may require larger amounts of water. Likewise, men may require more water than women because they "are heavier and sweat more profusely than women." Montain and Ely (2010) stated that "an individual soldier's daily water requirements to sustain hydration can range from 2 L/day to an excess of 12 L/day, depending on weather conditions, physical activity, and physical size.

This report provides useful information on the factors influencing water losses during military operations. The values presented here are consistent with the recommended planning factors summarized in U.S. Army (1983, 1999) and Section 3.6.1.2.

3.7. WATER INGESTION WHILE SWIMMING AND DIVING

3.7.1. Key Studies on Water Ingestion While Swimming

The section that follows provides a summary of the key study on water ingestion that may occur while swimming.

3.7.1.1. Dufour et al. (2006)—Water Ingestion during Swimming Activities in a Pool: A Pilot Study; Dufour et al. (2017)—Ingestion of Swimming Pool Water by Recreational Swimmers

Dufour et al. (2006) estimated the amount of water ingested while swimming, using cyanuric acid as an indicator of pool water ingestion exposure. Cyanuric acid is a breakdown product of chloroisocyanates, which are commonly used as disinfectant stabilizers in recreational water treatment. Because ingested cyanuric acid passes through the body unmetabolized (Allen et al., 1982), the volume of water ingested can be estimated based on the amount of cyanuric acid measured in the pool water and in the urine of swimmers, as follows:

$$V_{\text{pool water ingested}} = V_{\text{urine}} \times (CA_{\text{urine}} \div CA_{\text{pool}})$$
(Eqn. 3-1)

where:

 $V_{\text{pool water ingested}} = \text{volume of pool water ingested}$ (mL),

$V_{ m urine}$	=	volume of urine collected over a
		24-hour period (mL),
CA_{urine}	=	concentration of cyanuric acid in
		urine (mg/L), and
CA_{pool}	=	concentration of cyanuric acid in
		pool water (mg/L).

The assumption that ingested evanuric acid passes through the body unmetabolized is based on a study by Allen et al. (1982) in which two volunteers ingested known amounts of cyanuric acid and collected their own urine for 24 hours thereafter. Allen et al. (1982) estimated the recovery of ingested cyanuric acid to be 98%. Also, according to Dufour et al. (2006), dermal absorption of cyanuric acid has been shown to be negligible. Thus, the concentration in urine was assumed to represent the amount ingested. Dufour et al. (2006) estimated pool water intake among 53 swimmers that participated in a pilot study at an outdoor swimming pool treated with chloroisocyanate. This pilot study population included 12 adults (4 males and 8 females) and 41 children under 18 years of age (20 males and 21 females). The study participants were asked not to swim for 24 hours before or after a 45-minute period of active swimming in the pool. Pool water samples were collected prior to the start of swimming activities, and swimmers' urine was collected for 24 hours after the swimming event ended. The pool water and urine sample were analyzed for cyanuric acid.

Table 3-91 presents the results of this pilot study. The mean volumes of water ingested over a 45-minute period were 16 mL (16/mL/0.75 hr = 21 mL/hr) for adults and 37 mL (37 mL/0.75 hr = 49 mL/hr) for children. The maximum volume of water ingested by adults was 53 mL/0.75 hr (71 mL/hr) and by children, was 154 mL/0.75 hr (205 mL/hr). The 97^{th} percentile volume of water ingested by children was approximately 90 mL/0.75 hr (120 mL/hr).

This study is one of the first attempts to measure water ingested while swimming. However, the number of study participants was low, and data cannot be broken out by the recommended age categories (U.S. EPA, 2005).

Using the same approach as in the pilot study reported in Dufour et al. (2006), Dufour et al. (2017) investigated the ingestion of swimming pool water among a study population of 549 individuals at nine public swimming pools in the Columbus, Ohio area that had been disinfected with chloroisocyanurate. The study participants included both males and females in approximately equal numbers. The participants represented three age groups: children 6-10 years old (N=66), teens 11-15 years old (N=121), and adults,

defined as individuals 16 years and older (N = 362). Study participants were asked to perform normal swimming activities for approximately one hour and collect their own urine over the following 24 hours.

For all swimmers, the arithmetic mean pool water volume ingested was 32 mL/event and the geometric mean was 14 mL/event (Dufour et al., 2017). Table 3-92 provides the ingestion rates in units of mL/hour by age and sex, as reported by Dufour et al. (2017). Children 6-10 years old ingested more water per swimming event and spent nearly twice as much time in the water as older children and adults. The estimated geometric mean ingestion rate for children 6-10 years, and teens 11-15 years was 24 mL/hour. The estimated geometric mean ingestion rate for adults (ages 16 years and older) was 12 mL/hour, but adult males ingested water at a higher rate (16 mL/hour) than adult females (9 mL/hour). The 95th percentile ingestion rates were 96 mL/hour for children, 152 mL/hour for teens, and 105 mL/hour for adults (Dufour and Wymer, 2017).

Using data obtained from the authors (Dufour, 2017), arithmetic mean ingestion rates and additional percentiles of the distributions were estimated for additional age groups of children as shown in Table 3-93. The arithmetic mean ingestion rates were 38, 44, 33, and 28 mL/hour for ages 6 to <11, 11 to <16, 16 to <21, and 21+ years, respectively. The 95th percentile ingestion rates were 96, 152, 105, and 92 mL/hour for ages 6 to <11, 11 to <16, 16 to <21, and 21+ years, respectively.

This study provides estimated swimming pool water ingestion rates based on a large sample population, and the volumes of water ingested per event are relatively consistent with those of the pilot study. According to Dufour et al. (2017) "Caution must be taken in interpreting these derived numbers [i.e., ingestion rates] too strictly, given they are based on self-reported data (minutes in the water); thus, they could be less reliable because of the anecdotal propensity of children, and even adults, to under- or over-estimate how much time is spent in the water." As noted by Dufour et al. (2006), swimming behavior of pool swimmers may be similar to freshwater swimmers, but may differ from saltwater swimmers.

3.7.2. Relevant Studies on Water Ingestion While Swimming, Diving, or Engaging in Recreational Water Activities

The sections that follows provide summaries of the relevant studies on water ingestion while engaging in recreational water activities.

3.7.2.1. Schijven and de Roda Husman (2006)—A Survey of Diving Behavior and Accidental Occupational and Sport Divers to Assess the Risk of Infection with Waterborne Pathogenic Microorganisms

Schijven and de Roda Husman (2006) estimated the amount of water ingested by occupational and sports divers in the Netherlands. Questionnaires were used to obtain information on the number of dives for various types of water bodies, and the approximate volume of water ingested per dive. Estimates of the amount of water ingested were made by comparing intake to common volumes (i.e., a few shot glass = 25 mL; coffee drops = 2.75 mL; cup = 100 mL; soda glass = 190 mL). The study was conducted among occupational divers in 2002 and among sports divers in 2003 and included responses from more than 500 divers. Table 3-94 provides the results of this study. On average, occupational divers ingested 9.8 mL/dive in marine water and 5.7 mL/dive in fresh water. Sports divers wearing an ordinary diving mask ingested 9.0 mL/dive marine water and 13 mL/dive fresh recreational water. Sports divers who wore full face masks ingested less water. The main limitation of this study is that no measurements were taken. It relies on estimates of the perceived amount of water ingested by the divers. Although these data are from the Netherlands, it is assumed that water ingestion among divers in the United States would be similar, and studies involving U.S. divers were not identified.

3.7.2.2. Schets et al. (2011)—Exposure Assessment for Swimmers in Bathing Waters and Swimming Pools

Schets et al. (2011) collected exposure data for swimmers in fresh water, seawater, and swimming pools in 2007 and 2009. Information on the frequency, duration, and amount of water swallowed were collected via questionnaires administered to nearly 10,000 people in the Netherlands. Individuals 15 years of age and older were considered adults and answered questions for themselves, and a parent answered the questions for their eldest child under 15 years of age. Survey participants estimated the amount of water that they swallowed while swimming by responding in one of four ways: (1) none or only a few drops; (2) one or two mouthfuls; (3) three to five mouthfuls; or (4) six to eight mouthfuls. Schets et al. (2011) conducted a series of experiments to measure the amount of water that corresponded to a mouthful of water and converted the data in the four response categories to volumes of water ingested. Monte Carlo analyses were used to combine the distribution of volume

Chapter 3—Ingestion of Water and Other Select Liquids

(i.e., mouthful) measurements with the distribution of responses in the four response categories to generate distributions of the amount of water swallowed per event for adult men and women, and children less than 15 year of age. Table 3-95 presents the means and 95% confidence intervals for the duration of swimming and amount of water ingested during swimming. Frequency data were also provided by Schets et al. (2011), but these data are not presented here because they are for the population of the Netherlands and may not be representative of swimming frequency in the United States. According to Schets et al. (2011), the mean volume of water ingested by children (<15 years) during an average swimming pool event lasting 81 minutes was 51 mL or 0.63 mL/min (38 mL/hour). The values for children were slightly lower for swimming in fresh water and seawater. For adults, the mean volume of water ingested ranged from 18 to 34 mL over swimming events lasting 41 to 68 minutes (see Table 3-95).

The advantages of this study are that it is based on a relatively large sample size and that data are provided for various types of swimming environments (i.e., pools, fresh water, and seawater). Although these data are from the Netherlands, and based primarily on self-reported estimates, the mean values reported in this study are similar to those based on measurements of cyanuric acid in the urine of U.S. swimmers as reported by Dufour et al. (2006).

3.7.2.3. Dorevitch et al. (2011)—Water Ingestion during Water Recreation

Dorevitch et al. (2011) estimated the volumes of water ingested during "limited contact water recreation activities." These activities included canoeing, fishing, kayaking, motor boating, rowing, wading and splashing, and walking. Full contact scenarios (i.e., swimming and immersion) were also evaluated. Dorevitch et al. (2011) estimated water intake among individuals greater than 6 years of age using two different methods in studies conducted in 2009. In the first surface water study, self-reported estimates of ingestion were obtained via interview of 2,705 individuals after they had engaged in recreation activities in Chicago area surface waters. A total of 2,705 participants reported whether they swallowed no water, a drop or two, a teaspoon, or one or more mouthfuls of water during one of the five limited contact recreational activities (i.e., canoeing, fishing, kayaking, motor boating, and rowing). A second study was conducted in swimming pools 662 participants engaged in limited contact scenarios (i.e., canoeing, simulated fishing, kayaking, motor boating, rowing, wading/splashing, and walking), as

well as full contact activities such as swimming and immersion. Participants were interviewed after performing their water activity and reported on their estimated water ingestion. In addition, 24-hour urine samples were collected for analysis of cyanuric acid, a tracer of swimming pool water. Translation factors for each of the reported categories of ingestion (e.g., none. drop/teaspoon, mouthful) were developed using the results of the urine analyses. These translation factors were used to estimate the volume of water ingested for the various water activities evaluated in this study (Dorevitch et al., 2011). Table 3-96 presents the estimated volumes of water ingested for the limited and full contact scenarios. Swimmers had the highest estimated water intake (mean = 10 mL/hr; 95% upper confidence limit = 35 mL/hr) among the activities evaluated.

The advantage of this study is that it provides information on the estimated volume of water ingested during both limited and full contact recreational activities. However, the data are based on self-reporting, and data are not provided for individual age groups of the population.

3.7.2.4. Suppes et al. (2014)—Assessment of Swimmers Behaviors on Pool Water Ingestion

Suppes et al. (2014) conducted a study at four swimming pools in Tucson, AZ in 2012. Pool water ingestion was estimated based on the concentration of cyanuric acid in the urine as in the Dufour et al. (2006, 2017) studies. Environmental sensors videography techniques were also used to identify activities that might lead to increased water ingestion (e.g., head submersion, splashes of water to the face, duration of swimming activities). Questionnaires were used to collect information on age, gender, and type of swimming activity that participants engaged in (e.g., playing, diving, sitting, lap swimming). A total of 64 swimmers, ages 5 to 52 years old, participated in the study, and 35 of those who were videotaped also submitted useable 24-hour urine samples after swimming for a 45-minute period. The mean pool water ingestion rates for these 35 swimmers was reported to be 13.7 mL/hr (see Table 3-97). The age-group-specific ingestion rates were 3.5 mL/hr for adults (>18 years of age, N = 19) and 25.7 mL/hr for children (≤ 18 years of age, N = 16). The mean ingestion rate for children in this study was similar to the geometric mean ingestion rate for children (6 to 15 years of age) observed by Dufour et al. (2017). Leisure swimmers were more likely to ingest pool water than lap swimmers, and splashes of the water to the face, were associated with higher ingestion rates.

Associations between the number and duration of head submersions, as estimated by videography, and pool water ingestion rates were not observed. The environmental sensors were found to be less accurate for assessing the number and duration of head submersions when compared to use of videography. This study provides additional evidence of pool water ingestion among swimmers, but is based on a relatively small sample; the data for children were not provided according to age categories, and upper percentile (e.g., 90th or 95th percentile) values were not provided.

3.7.2.5. Sinclair et al. (2016a)—Variability in 24-Hour Excretion of Cyanuric Acid: Implications for Water Exposure Assessment

Sinclair et al. (2016a) tested the assumption that the cyanuric acid ingested while swimming is completed excreted within 24 hours. In the Sinclair et al. (2016a) study, 26 volunteers (20–56 years of age; mostly male) drank a solution containing 1 mg of cyanuric acid and collected their own urine for 24 hours thereafter. The urine samples were then analyzed for cyanuric acid to estimate the amount that was excreted over the 24 hours post ingestion. The recovery of cyanuric acid over 24 hours varied among the 26 participants. The mean value was 85.3%, and the median was 94.5%, with 16 of the 26 individuals having excretion values ranging from 89 to 105%.

This study provides information on the excretion of cyanuric acid. The information is relevant to studies that use cyanuric acid levels in urine to estimate swimming pool water ingestion. The study was conducted in Australia, but excretion of cyanuric acid among that population would not be expected to differ from U.S. populations.

3.7.2.6. DeFlorio-Barker et al. (2017)—Child Environmental Exposures to Water and Sand at the Beach: Findings from Studies of Over 68,000 Subjects at 12 Beaches

DeFlorio-Barker et al. (2017) estimated the amount of water ingested per beach water contact event by conducting simulations based on self-reported time spent in the water and the amount of water swallowed per minute. Data for the time spent in the water were based on data from interviews conducted in 2003–2009 at temperate beaches in the contiguous United States. (DeFlorio-Barker et al., 2017; Arnold et al., 2016). The survey data represented a total of 68,685 beachgoers; 21,015 at 4 freshwater beaches and 47,670 at 8 marine beaches. At both freshwater and marine beaches, approximately

67% of beachgoers had some form of contact with the water (e.g., wading, swimming, playing); 13,568 had water contact at freshwater beaches and 31,685 had water contact at marine beaches. Data on the amount of water swallowed per minute were based on swimming pool studies conducted by Dufour et al. (2017) using cyanuric acid as a biomarker of exposure, as described in Section 3.7.1.1.

Table 3-98 presents age-specific estimates of the amount of water swallowed per water contact event for freshwater, marine, and all types of beach locations combined based on these simulations. Children were found to ingest more water per event than adults, males were found to ingest more than females, and ingestion by individuals recreating at marine beaches tended to be higher than for those at freshwater beaches.

The advantage of this study is that it provides estimates of the volume of water ingested while recreating at freshwater and marine beaches. The estimates are based on the time spent in the water, and represent the amount swallowed per event in units of mL/event. These data may not be applicable to other types of water contact activities (e.g., water skiing or diving, swimming in a pool) where the time spent in the water may differ from that of beachgoers. Also, any uncertainties associated with recall data on the time spent in the water would also be applicable to these estimates.

3.8. OTHER INADVERTENT WATER INGESTION

3.8.1. Sinclair et al. (2016b)—Measuring Water Ingestion from Spray Exposures

Sinclair et al. (2016b) estimated the volume of water ingested from spray exposures. Twenty-six study participants, aged 18 to 25 years, engaged in a 10-minute simulated car wash activity using a high-pressure spray device and water treated with cyanuric acid. Study participants were asked not to swim in a cyanuric acid-treated swimming pool for 48 hours prior to the simulation and provided presimulation urine samples for a subset of the participants to verify the absence of cyanuric acid in the urine. All participants wore protective coveralls, gloves, waterproof footwear, and safety glasses during the simulation. After the simulations, 24-hour urine samples were collected and analyzed for cyanuric acid. Among the 26 participants, 18 had quantifiable levels of cyanuric acid in their urine after engaging in the simulation exercise; 6 had trace levels, and 2 had no detectable levels. As in the Dufour et al. (2006, 2017) studies, it was assumed that 100% of the cyanuric acid that was ingested was excreted in the urine (see Section 3.7.1.1). The maximum volume of

water ingested was estimated to be 3.79 mL, and the 10th, 50th, and 90th percentiles were 0.019, 0.175, and 1.84 mL, respectively. When the data were adjusted for potential variability in excretion among individuals, based on data from Sinclair et al. (2016a; see Section 3.7.2.5), the mean and 95th percentile volumes of water ingested were estimated to be 0.438 (SD 1.24) and 1.93 mL, respectively.

This study is based on a relatively small sample, but provides data for a scenario in which water may be inadvertently ingested. As noted by Sinclair et al. (2016b), while it is assumed that this exposure scenario represents ingestion alone, inhalation may have accounted for a portion of the exposures that occurred during the simulation. Thus, the ingestion estimates provided in Sinclair et al. (2016b) would be conservative estimates of ingestion exposures.

3.9. REFERENCES FOR CHAPTER 3

- Allen, LM; Briggle, TV; Pfaffenberger, CD. (1982) Absorption and excretion of cyanuric acid in long-distance swimmers. Drug Metab Rev 3(3):499–516.
- Arnold, BF; Wade, TJ; Benjamin-Chung, J; Schiff, KC; Griffith, JF; Dufour, AP; Weisberg, SB; Colford, JM. (2016) Acute gastroenteritis and recreational water: Highest burden among young US children. Am J Public Health 106(9):1690–1697. doi:10.2105/AJPH.2016.303279).
- Barraj, L; Scrafford, C; Lantz, J; Daniels, C; Mihlan, G. (2009) Within-day drinking water consumption patterns: Results from a drinking water consumption survey. J Expo Sci Environ Epidemiol 19(4):382–395.
- Bourne, GH; Kidder, GW; eds. (1953) Biochemistry and physiology of nutrition. Vol. 1. New York, NY: Academic Press.
- Cantor, KP; Hoover, R; Hartge, P; Mason, TJ; Silverman, DT; Altman, R; Austin, DF; Child, MA; Key, CR, Marrett, LD. (1987) Bladder cancer, drinking water source, and tap water consumption: A case-control study. J Natl Cancer Inst 79(6):1269–1279.
- DeFlorio-Barker, S; Arnold, BF; Sams, EA; Dufour, AP; Colford; JM; Weisberg, SB; Schiff, KC; Wade, TJ. (2017) Child environmental exposures to water and sand at the beach: findings from studies of over 68,000 subjects at 12 beaches. J Expos Sci Environ Epid 28(2):93–100.

- Devaney, B; Kalb, L; Briefel, R; Zavitsky-Novak, T; Clusen, N; Ziegler, P. (2004) Feeding Infants and Toddlers Study: Overview of the study design. J Am Diet Assoc 104(Suppl 1):S8–S13.
- Dorevitch, S; Panthi, S; Huang, Y; Li, H; Michalek, AM; Pratap, P; Wroblewski, M; Lui, L; Scheff, PA; Li, A. (2011) Water ingestion during water recreation. Water Res 45(5):2020–2028.
- Dufour, A. (2017) Email from Alfred Dufour to Linda Phillips, U.S. EPA providing data on swimming pool ingestion rates (June 21, 2017).
- Dufour, A; Wymer, L. (2017) Email from Alfred Dufour to Linda Phillips, U.S. EPA, providing 95th percentile swimming pool ingestion values by age groups, as calculated by Larry Wymer. (May 4, 2017).
- Dufour, AP; Evans, O; Behymer, TD, Cantú, R. (2006) Water ingestion during swimming activities in a pool: a pilot study. J Water Health 4(4):425–430.
- Dufour, AP; Behymer, TD; Cantú, R; Magnusen, M; Wymer, LJ. (2017) Ingestion of swimming pool water by recreational swimmers. J Water Health 15(3):429–437. DOI: 10.2166/wh.2017.255. http://jwh.iwaponline.com/content/ppiwajwh/early/2017/03/13/wh.2017.255.full.pdf.
- Ershow, AG; Cantor, KP. (1989) Total water and tap water intake in the United States: population-based estimates of quantities and sources. Hyattsville, MD: Life Sciences Research Office, Federation of American Societies for Experimental Biology.
- Ershow, AG; Brown, LM; Cantor, KP. (1991) Intake of tapwater and total water by pregnant and lactating women. Amer J Pub Health 81(3):328–334.
- Forssén, UM; Herring, AH; Savitz, DA; Nieuwenhuijsen, MJ; Murphy, PA; Singer, PC; Wright, JM. (2007) Predictors of use and consumption of public drinking water among pregnant woman. J Exp Sci Environ Epidemiol 2(17):159–169.
- Forssén, UM; Wright, JM; Herring, AH; Savitz, DA; Nieuwenhuijsen, MJ; Murphy, PA. (2009) Variability and predictors of changes in water use during pregnancy. J Exp Sci Environ Epidemiol 19:593–602.
- Guyton, AC. (1968) Textbook of medical physiology, 3rd ed. Philadelphia, PA: W.B. Saunders Co.

- Heller, KE; Sohn, W; Burt, BA; Feigal, RJ. (2000)
 Water consumption and nursing characteristics of infants by race and ethnicity. J Public Health Dent 60(3):140–146.
- Hilbig, A; Kersting, M; Sichert-Hellert, W. (2002)
 Measured consumption of tap water in
 German infants and young children as
 background for potential health risk
 assessment: data of the DONALD study.
 Food Addit Contam 19(9):829–836.
- Kahn, H. (2008) Letter from Henry Kahn to Jacqueline Moya, U.S. EPA, providing supplemental data to "Estimated daily average per capita water ingestion by child and adult age categories based on USDA's 1994–96 and 1998 continuing survey of food intakes by individuals" (September 18, 2008).
- Kahn, H; Stralka, K. (2008) Estimates of water ingestion for women in pregnant, lactating, and non-pregnant and non-lactating child-bearing age groups based on USDA's 1994–96, 1998 continuing survey of food intake by individuals. Hum Ecol Risk Assess 14(6):1273–1290.
- Kahn, HD; Stralka, K. (2009) Estimated daily average per capita water ingestion by child and adult age categories based on USDA's 1994–1996 and 1998 continuing survey of food intakes by individuals. J Expo Sci Environ Epidemiol 19(4):396–404.
- Kahn, H; Stralka, K; White, P. (2013) Estimates of water ingestion in formula by infants and children based on USDA's 1994–1996 and 1998 Continuing Survey of Food Intakes by Individuals. Hum Ecol Risk Assess. Hum Ecol Risk Assess 19:4:888–899.
- Kant, AK; Graubard, BI. (2010) Contributors of water intake in US children and adolescents: associations with dietary and meal characteristics—National Health and Nutrition Examination Survey 2005–2006. Am J Clin Nutr 92(4):887–96.
- Kant, AK; Graubard, BI; Atchison, EA. (2009) Intakes of plain water, moisture in foods and beverages, and total water in the adult US population—nutritional, meal pattern, and body weight correlates: National Health and Nutrition Examination Surveys 1999–2006. Am J Clin Nutr 90(3):655–663.

- Levallois, P; Gingras, S; Caron, M; Phaneuf, D. (2008)
 Drinking water intake by infants living in rural Quebec (Canada). Sci Tot Environ 397(1–3):82–85.
- Levy, SM; Kohout, FJ; Guha-Chowdhury, N; Kiritsy, MC; Heilman, JR; Wefel, JS. (1995) Infants' fluoride intake from drinking water alone, and from water added to formula, beverages, and food. J Dent Res 74(7):1399–1407.
- LSRO (Life Sciences Research Office). (1995) Third report on nutrition monitoring in the United States: Volume 1. Prepared by Federation of American Societies for Experimental Biology for the Interagency Board for Nutrition Monitoring and Related Research. Washington, DC: U.S. Government Printing Office.
- Marshall, TA; Levy, SM; Broffitt, B; Eichenberger-Gilmore, JM; Stumbo, P. (2003a) Patterns of beverage consumption during the transition stage of infant nutrition. J Amer Diet Assoc 103(10):1350–1353.
- Marshall, TA; Eichenberger Gilmore, JM; Broffitt, B; Levy, SM; Stumbo, PJ. (2003b) Relative validation of a beverage frequency questionnaire in children ages 6 months through 5 years using 3-day food and beverage diaries. J Amer Diet Assoc 103(6):714–720.
- McNall, PE; Schlegel, JC. (1968) Practical thermal environmental limits for young adult males working in hot, humid environments. ASHRAE Trans 74:225–235.
- Montain, S; Ely, M. (2010) Water requirements and soldier hydration. Santee, WR; Friedl, KE; eds. Borden Institute Monograph Series. Available online at https://ke.army.mil/bordeninstitute/other_pu b/HydrationPDF.pdf.
- NCHS (National Center for Health Statistics). (1993)
 Joint policy on variance estimation and statistical reporting standards on NHANES
 III and CSFII reports: HNIS/NCHS analytic working group recommendations. Human Nutrition Information Service (HNIS)/Analytic Working Group. Available from: Agricultural Research Service, Survey Systems/Food Consumption Laboratory, 4700 River Road, Unit 83, Riverdale, MD.
- NRC (National Research Council). (1974) Recommended dietary allowances, 8th ed. Washington, DC: National Academies Press.
- NRC (National Research Council). (1977) Drinking water and health. Vol. 1. Washington, DC: National Academies Press.

Chapter 3—Ingestion of Water and Other Select Liquids

- Pennington, JA. (1983) Revision of the total diet study food list and diets. J Amer Diet Assoc 82(2):166–173.
- Pike, RL; Brown, M. (1975) Minerals and water in nutrition—an integrated approach, 2nd ed. New York, NY: John Wiley and Sons.
- Randall, HT. (1973) Water, electrolytes and acid base balance. In: Goodhart, RS; Shils, ME, eds. Modern nutrition in health and disease. Philadelphia, PA: Lea and Febiger.
- Roseberry, AM; Burmaster, DE. (1992) Lognormal distribution for water intake by children and adults. Risk Anal 12:99–104.
- Rosinger, A, Herrick, K. (2016) Daily water intake among U.S. men and women, 2009–2012. NCHS data brief, no 242. Hyattsville, MD: National Center for Health Statistics. Available online at https://www.cdc.gov/nchs/products/databriefs/db242.htm.
- Schets, FM; Schijven, JF; de Roda Husman, AM. (2011) Exposure assessment for swimmers in bathing waters and swimming pools. Water Res 45(7):2392–2400.
- Schier, JG; Wolkin, AF; Valentin-Blasini, L; Belson, MG; Kieszak, SM; Rubin, CS; Blount, BC. (2010) Perchlorate exposure from infant formula and comparisons with the perchlorate reference dose. J Expo Sci Environ Epidemiol 20(3):281–287. http://dx.doi.org/10.1038/jes.2009.18.
- Schijven, J; de Roda Husman, AM. (2006) A survey of diving behavior and accidental water ingestion among Dutch occupational and sport divers to assess the risk of infection with waterborne pathogenic microorganisms. Environ Health Perspect 114(5):712–717.
- Sebastian, RS; Enns, CW; Goldman, JD. (2011)
 Drinking water intake in the U.S.: What we eat in America, NHANES 2005-2008. Food Surveys Research Group Dietary Data Brief No. 7. September 2011. Available online at https://www.ars.usda.gov/ARSUserFiles/8040530/pdf/DBrief/7_water_intakes_0508.pdf.
- Shimokura, GH; Savitz, DA; Symanski, E. (1998)
 Assessment of water use for estimating exposure to tap water contaminants. Environ Health Perspect 106(2):55–59.
- Sichert-Hellert, W; Kersting, M; Manz, F. (2001)
 Fifteen-year trends in water intake in German children and adolescents: Results of the DONALD study. Acta Paediatr 90(7):732–737.

- Sinclair, M; Roddick, F; Grist, S; Nguyen, T; O'Toole, J; Leder, K. (2016a). Variability in 24 hour excretion of cyanuric acid: implications for water exposure assessment. J Water and Health 14(2):192–198. http://dx.doi.org/10.2166/wh.2015.230.
- Sinclair, M; Roddick, F; Nguyen, T; O'Toole, J; Leder, K. (2016b) Measuring water ingestion from spray exposures. Water Res 99:1–6. http://dx.doi.org/10.1016/j.watres.2016.04.0
 34.
- Skinner, JD; Ziegler, P; Ponza, M. (2004) Transition in infants' and toddlers' beverage patterns. J Amer Diet Assoc 104(Suppl 1):S45–S50.
- Sohn, W; Heller, KE; Burt, BA. (2001) Fluid consumption related to climate among children in the United States. J Public Health Dent 61(2):99–106.
- Starling, EH. (1941) Principles of human physiology, 8th ed. Evans, CL; Ed. Philadelphia, PA: Lea and Febiger
- Suppes, LM; Abrell, L; DuFour, AP; Reynolds, KA. (2014) Assessment of swimmer behaviors on pool water ingestion. J Water and Health. 12(2):269–279. DOI: 10.2166/wh.2013.123.
- U.S. Army. (1983) Water consumption planning factors study. Directorate of Combat Developments, United States Army Ouartermaster School, Fort Lee, VA.
- U.S. Army. (1999) Study report: water consumption planning factors. Directorate of Combat Developments (Quartermaster). United States Army Combined Arms Support Command, Fort Lee, VA. Available online at https://www.hsdl.org/?view&did=453205.
- USDA (Department of Agriculture). (1995) Food and nutrient intakes by individuals in the United States, 1 day, 1989–91. United States Department of Agriculture, Agricultural Research Service, Beltsville, MD. NFS Report No. 91–2. Available online at https://www.ars.usda.gov/ARSUserFiles/8040530/pdf/csfii8991 rep 91-2.pdf.
- USDA (Department of Agriculture). (1998)
 Continuing survey of food intakes by individuals: 1994–96, 1998. U.S.
 Department of Agriculture, Agricultural Research Service, Beltsville, MD.
- USDA (Department of Agriculture). (2000) 1994–96, 1998 Continuing survey of food intakes by individuals (CSFII) CD–ROM. Agricultural Research Service, Human Nutrition Research Center, Beltsville, MD. Available from the National Technical Information Service, Springfield, VA; PB-2000-500027.

- U.S. EPA (Environmental Protection Agency). (1984)
 An estimation of the daily average food intake by age and sex for use in assessing the radionuclide intake of individuals in the general population. Office of Radiation Programs, Washington, DC; EPA-520/1-84/021. Available online at https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100I3U0.TXT.
- U.S. EPA (Environmental Protection Agency). (1996)

 Descriptive statistics from a detailed analysis of the National Human Activity Pattern Survey (NHAPS) responses. Office of Research and Development, Washington, DC; EPA/600/R-96/148. Available online at https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30003IAZ.TXT.
- U.S. EPA (Environmental Protection Agency). (2000a) Methodology for deriving ambient water quality criteria for the protection of human health (2000). Office of Water, Washington, DC; EPA/822-00/004.
- U.S. EPA (Environmental Protection Agency).

 (2000b) Estimated per capita water ingestion in the United States based on data collected by the United States Department of Agriculture's 1994-1996 Continuing Survey of Food Intakes by Individuals. Office of Water, Washington, DC; EPA/822-R-00/008. Available online at https://nepis.epa.gov/Exe/ZyPDF.cgi/20003
 HPM.PDF?Dockey=20003HPM.PDF.
- U.S. EPA (Environmental Protection Agency). (2002)

 Drinking water from household wells. Office of Water, Washington, DC; EPA/816/K-02/003. Available online at https://www.epa.gov/sites/production/files/2015-05/documents/epa816k02003.pdf.
- U.S. EPA (Environmental Protection Agency). (2004)
 Estimated per capita water ingestion and body weight in the United States—an update based on data collected by the United States Department of Agriculture's 1994–96 and 1998. Continuing Survey of Food Intakes by Individuals. Office of Water, Washington, DC; EPA-822-R-00-001.

- U.S. EPA (Environmental Protection Agency). (2005)
 Guidance on selecting age groups for monitoring and assessing childhood exposures to environmental contaminants.
 Office of Research and Development, Washington, DC; EPA/630/P-03/003F.
 Available online at https://www.epa.gov/risk/guidance-selecting-age-groups-monitoring-and-assessing-childhood-exposures-environmental.
- U.S. EPA (Environmental Protection Agency). (2011)
 Exposure factors handbook: 2011 Edition.
 Office of Research and Development,
 Washington, DC. EPA/600//R-09/052F.
 Available online at
 https://cfpub.epa.gov/si/si_public_record_re
 port.cfm?direntryid=236252.
- Walker, BS; Boyd, WC; Asimov, I. (1957) Biochemistry and human metabolism, 2nd ed. Baltimore, MD: Williams and Wilkins Co.
- Wolf, AV. (1958) Body water content. Sci Am 199(5):125–126.
- Yang, M; Chun, OK. (2014) Consumptions of plain water, moisture in foods and beverages, and total water in relation to dietary micronutrient intakes and serum nutrient profiles among US adults. Public Health Nutr 18(7):1180–1186.
- Zender, R; Bachand, AM; Reif, JS. (2001) Exposure to tap water during pregnancy. J Expo Anal Environ Epidemiol 11(3):224–230.
- Zizza, CA; Ellison, KJ; Wernette, CM. (2009) Total water intakes of community-living middle-old and oldest-old adults. J Gerontol A Biol Sci Med Sci 64(4):481–486.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-9. Two-Day Average^a per Capita^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Community Water (mL/day)

Size 4,673	Percent Consuming ^d	Mean							Percentile	25			
Size	_	Mean							CICCIIIII	5 5			
4,673			SE	1 st	5 th	10 th	25 th	50 th	75 th	90 th	95 th	99 th	Max
,	65	711	27	0	0	0	0	338	1,107	1,994	2,641	4,066	8,634e
87	32	184	59	0^{e}	0^{e}	0^{e}	0	0	87	781e	851e	$1,037^{e}$	$1,037^{e}$
233	19	145	32	0^{e}	0^{e}	0	0	0	0	734	905e	1,224e	1,403e
282	29	187	32	0^{e}	0^{e}	0	0	0	180	780	981e	1,288e	$1,390^{e}$
588	48	269	29	0^{e}	0	0	0	0	552	876	988	1,168e	$1,797^{e}$
1,190	37	220	22	0^{e}	0	0	0	0	399	839	974	1,177e	1,797e
728	59	146	13	0^{e}	0	0	0	48	240	378	565	813e	2,619e
751	62	205	14	0^{e}	0	0	0	94	299	630	778	1,121e	2,861e
1,418	61	208	14	0^{e}	0	0	0	111	333	588	741	$1,074^{e}$	2,179e
	65	294	18	0	0	0	0	161	445	765	1,071	1,909	4,048e
	56	315		0	0	0	0	71	427	932			5,120e
	60	436	24	0	0	0	0	137	613	1.340			7,184e
		781	45	0	0		0	364		,	,	/	7,504e
	71	902		0	0	0	0	580					7,402e
	65	880		0	0	0	0	546					7,041e
							0			,		/	6,554e
										,		,	8,634e
,									/	,	,	,	4,975e
,										/		/	5,334e
													2,619e
				-			-	-					5,120°
						-	-						8,633e
							-						7,504 ^e
							-						8,634e
0,010	07	J02		Ů	Ü	Ü	v	00)	1,120	2,237	2,027	1,000	0,051
5 787	55	433	32	0	0	0	0	87	593	1 297	1 867	3 397	7,504e
,										/	,		7,402 ^e
													8,634 ^e
									/	/			7,184 ^e
										,		,	7,184 7,018 ^e
	1,190 728 751	1,190 37 728 59 751 62 1,418 61 2,292 65 2,551 56 2,191 60 2,082 66 2,282 71 2,378 65 2,103 67 2,214 68 1,578 64 915 72 1,918 48 7,012 61 3,250 67 6,742 67 6,810 67 5,787 55 5,337 66 0,294 66 2,082 62	1,190 37 220 728 59 146 751 62 205 1,418 61 208 2,292 65 294 2,551 56 315 2,191 60 436 2,082 66 781 2,282 71 902 2,378 65 880 2,103 67 956 2,214 68 941 1,578 64 772 915 72 784 1,918 48 185 7,012 61 278 3,250 67 845 6,742 67 858 6,810 67 902 5,787 55 433 5,337 66 516 0,294 66 796 2,082 62 566	1,190 37 220 22 728 59 146 13 751 62 205 14 1,418 61 208 14 2,292 65 294 18 2,551 56 315 28 2,191 60 436 24 2,082 66 781 45 2,282 71 902 43 2,378 65 880 48 2,103 67 956 44 2,214 68 941 58 1,578 64 772 47 915 72 784 46 1,918 48 185 15 7,012 61 278 16 3,250 67 845 33 6,742 67 858 36 6,810 67 902 42 5,787 55 433 32 5,337 66 516 24 0,294 66 796 36 2,082 62 566 43	1,190 37 220 22 0e 728 59 146 13 0e 751 62 205 14 0e 1,418 61 208 14 0e 2,292 65 294 18 0 2,551 56 315 28 0 2,191 60 436 24 0 2,082 66 781 45 0 2,282 71 902 43 0 2,378 65 880 48 0 2,103 67 956 44 0 2,214 68 941 58 0 1,578 64 772 47 0e 915 72 784 46 0e 1,918 48 185 15 0e 7,012 61 278 16 0 3,250 67 845 33 0 6,742 67 858 36 0 6,810 67 902 42 0 5,787 55 433 32 0 5,337 66 516 24	1,190 37 220 22 0° 0 728 59 146 13 0° 0 751 62 205 14 0° 0 1,418 61 208 14 0° 0 2,292 65 294 18 0 0 2,551 56 315 28 0 0 2,191 60 436 24 0 0 2,082 66 781 45 0 0 2,282 71 902 43 0 0 2,378 65 880 48 0 0 2,378 65 880 48 0 0 2,103 67 956 44 0 0 2,214 68 941 58 0 0 1,578 64 772 47 0° 0 915 72 784 46 0° 0 3,250 67 845 33 0 <td>1,190 37 220 22 0e 0 0 728 59 146 13 0e 0 0 751 62 205 14 0e 0 0 1,418 61 208 14 0e 0 0 2,292 65 294 18 0 0 0 2,295 15 56 315 28 0 0 0 2,551 56 315 28 0 0 0 0 2,191 60 436 24 0 0 0 0 2,191 60 436 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</td--><td>1,190 37 220 22 0° 0 0 728 59 146 13 0° 0 0 0 751 62 205 14 0° 0 0 0 1,418 61 208 14 0° 0 0 0 2,292 65 294 18 0 0 0 0 2,292 65 294 18 0 0 0 0 2,551 56 315 28 0 0 0 0 2,191 60 436 24 0 0 0 0 2,191 60 436 24 0 0 0 0 2,282 71 902 43 0 0 0 0 2,282 71 902 43 0 0 0 0 2,103 67 956 44 0 0 0 0 2,214 68 941 58</td><td>1,190 37 220 22 0° 0 0 0 728 59 146 13 0° 0 0 0 48 751 62 205 14 0° 0 0 0 94 1,418 61 208 14 0° 0 0 0 111 2,292 65 294 18 0 0 0 0 161 2,551 56 315 28 0 0 0 0 71 2,191 60 436 24 0 0 0 0 137 2,082 66 781 45 0 0 0 364 2,282 71 902 43 0 0 0 580 2,378 65 880 48 0 0 0 580 2,103 67 956 44 0 0 0 698 2,214 68 941 58 0 0</td><td>1,190 37 220 22 0° 0 0 0 399 728 59 146 13 0° 0 0 0 48 240 751 62 205 14 0° 0 0 0 94 299 1,418 61 208 14 0° 0 0 0 111 333 2,292 65 294 18 0 0 0 0 161 445 2,551 56 315 28 0 0 0 0 71 427 2,191 60 436 24 0 0 0 0 137 613 2,082 66 781 45 0 0 0 364 1,191 2,282 71 902 43 0 0 0 580 1,391 2,378 65 880 48 0 0 0 546 1,389 2,103 67 956 44</td><td>1,190 37 220 22 0° 0 0 0 399 839 728 59 146 13 0° 0 0 0 48 240 378 751 62 205 14 0° 0 0 0 94 299 630 1,418 61 208 14 0° 0 0 0 111 333 588 2,292 65 294 18 0 0 0 161 445 765 2,551 56 315 28 0 0 0 171 427 932 2,191 60 436 24 0 0 0 137 613 1,340 2,082 66 781 45 0 0 0 364 1,191 2,127 2,282 71 902 43 0 0 0 580 1,391 2,409 2,378 65 880 48 0 0 0 586<</td><td>1,190 37 220 22 0° 0 0 0 399 839 974 728 59 146 13 0° 0 0 0 48 240 378 565 751 62 205 14 0° 0 0 94 299 630 778 1,418 61 208 14 0° 0 0 0 111 333 588 741 2,292 65 294 18 0 0 0 161 445 765 1,071 2,551 56 315 28 0 0 0 1161 445 765 1,071 2,551 56 315 28 0 0 0 137 613 1,340 1,900 2,082 66 781 45 0 0 0 364 1,191 2,127 2,848 2,282 71 902 43 0 0 0 580 1,391 2,409 2,967<</td><td>1,190 37 220 22 0° 0 0 0 399 839 974 1,177° 728 59 146 13 0° 0 0 0 48 240 378 565 813° 751 62 205 14 0° 0 0 0 94 299 630 778 1,121° 1,418 61 208 14 0° 0 0 0 111 333 588 741 1,074° 2,292 65 294 18 0 0 0 161 445 765 1,071 1,909 2,551 56 315 28 0 0 0 137 613 1,340 1,900 3,095 2,191 60 436 24 0 0 0 137 613 1,340 1,900 3,095 2,082 66 781 45 0 0 0 364 1,191 2,127 2,848 5,009 2,2378</td></td>	1,190 37 220 22 0e 0 0 728 59 146 13 0e 0 0 751 62 205 14 0e 0 0 1,418 61 208 14 0e 0 0 2,292 65 294 18 0 0 0 2,295 15 56 315 28 0 0 0 2,551 56 315 28 0 0 0 0 2,191 60 436 24 0 0 0 0 2,191 60 436 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>1,190 37 220 22 0° 0 0 728 59 146 13 0° 0 0 0 751 62 205 14 0° 0 0 0 1,418 61 208 14 0° 0 0 0 2,292 65 294 18 0 0 0 0 2,292 65 294 18 0 0 0 0 2,551 56 315 28 0 0 0 0 2,191 60 436 24 0 0 0 0 2,191 60 436 24 0 0 0 0 2,282 71 902 43 0 0 0 0 2,282 71 902 43 0 0 0 0 2,103 67 956 44 0 0 0 0 2,214 68 941 58</td> <td>1,190 37 220 22 0° 0 0 0 728 59 146 13 0° 0 0 0 48 751 62 205 14 0° 0 0 0 94 1,418 61 208 14 0° 0 0 0 111 2,292 65 294 18 0 0 0 0 161 2,551 56 315 28 0 0 0 0 71 2,191 60 436 24 0 0 0 0 137 2,082 66 781 45 0 0 0 364 2,282 71 902 43 0 0 0 580 2,378 65 880 48 0 0 0 580 2,103 67 956 44 0 0 0 698 2,214 68 941 58 0 0</td> <td>1,190 37 220 22 0° 0 0 0 399 728 59 146 13 0° 0 0 0 48 240 751 62 205 14 0° 0 0 0 94 299 1,418 61 208 14 0° 0 0 0 111 333 2,292 65 294 18 0 0 0 0 161 445 2,551 56 315 28 0 0 0 0 71 427 2,191 60 436 24 0 0 0 0 137 613 2,082 66 781 45 0 0 0 364 1,191 2,282 71 902 43 0 0 0 580 1,391 2,378 65 880 48 0 0 0 546 1,389 2,103 67 956 44</td> <td>1,190 37 220 22 0° 0 0 0 399 839 728 59 146 13 0° 0 0 0 48 240 378 751 62 205 14 0° 0 0 0 94 299 630 1,418 61 208 14 0° 0 0 0 111 333 588 2,292 65 294 18 0 0 0 161 445 765 2,551 56 315 28 0 0 0 171 427 932 2,191 60 436 24 0 0 0 137 613 1,340 2,082 66 781 45 0 0 0 364 1,191 2,127 2,282 71 902 43 0 0 0 580 1,391 2,409 2,378 65 880 48 0 0 0 586<</td> <td>1,190 37 220 22 0° 0 0 0 399 839 974 728 59 146 13 0° 0 0 0 48 240 378 565 751 62 205 14 0° 0 0 94 299 630 778 1,418 61 208 14 0° 0 0 0 111 333 588 741 2,292 65 294 18 0 0 0 161 445 765 1,071 2,551 56 315 28 0 0 0 1161 445 765 1,071 2,551 56 315 28 0 0 0 137 613 1,340 1,900 2,082 66 781 45 0 0 0 364 1,191 2,127 2,848 2,282 71 902 43 0 0 0 580 1,391 2,409 2,967<</td> <td>1,190 37 220 22 0° 0 0 0 399 839 974 1,177° 728 59 146 13 0° 0 0 0 48 240 378 565 813° 751 62 205 14 0° 0 0 0 94 299 630 778 1,121° 1,418 61 208 14 0° 0 0 0 111 333 588 741 1,074° 2,292 65 294 18 0 0 0 161 445 765 1,071 1,909 2,551 56 315 28 0 0 0 137 613 1,340 1,900 3,095 2,191 60 436 24 0 0 0 137 613 1,340 1,900 3,095 2,082 66 781 45 0 0 0 364 1,191 2,127 2,848 5,009 2,2378</td>	1,190 37 220 22 0° 0 0 728 59 146 13 0° 0 0 0 751 62 205 14 0° 0 0 0 1,418 61 208 14 0° 0 0 0 2,292 65 294 18 0 0 0 0 2,292 65 294 18 0 0 0 0 2,551 56 315 28 0 0 0 0 2,191 60 436 24 0 0 0 0 2,191 60 436 24 0 0 0 0 2,282 71 902 43 0 0 0 0 2,282 71 902 43 0 0 0 0 2,103 67 956 44 0 0 0 0 2,214 68 941 58	1,190 37 220 22 0° 0 0 0 728 59 146 13 0° 0 0 0 48 751 62 205 14 0° 0 0 0 94 1,418 61 208 14 0° 0 0 0 111 2,292 65 294 18 0 0 0 0 161 2,551 56 315 28 0 0 0 0 71 2,191 60 436 24 0 0 0 0 137 2,082 66 781 45 0 0 0 364 2,282 71 902 43 0 0 0 580 2,378 65 880 48 0 0 0 580 2,103 67 956 44 0 0 0 698 2,214 68 941 58 0 0	1,190 37 220 22 0° 0 0 0 399 728 59 146 13 0° 0 0 0 48 240 751 62 205 14 0° 0 0 0 94 299 1,418 61 208 14 0° 0 0 0 111 333 2,292 65 294 18 0 0 0 0 161 445 2,551 56 315 28 0 0 0 0 71 427 2,191 60 436 24 0 0 0 0 137 613 2,082 66 781 45 0 0 0 364 1,191 2,282 71 902 43 0 0 0 580 1,391 2,378 65 880 48 0 0 0 546 1,389 2,103 67 956 44	1,190 37 220 22 0° 0 0 0 399 839 728 59 146 13 0° 0 0 0 48 240 378 751 62 205 14 0° 0 0 0 94 299 630 1,418 61 208 14 0° 0 0 0 111 333 588 2,292 65 294 18 0 0 0 161 445 765 2,551 56 315 28 0 0 0 171 427 932 2,191 60 436 24 0 0 0 137 613 1,340 2,082 66 781 45 0 0 0 364 1,191 2,127 2,282 71 902 43 0 0 0 580 1,391 2,409 2,378 65 880 48 0 0 0 586<	1,190 37 220 22 0° 0 0 0 399 839 974 728 59 146 13 0° 0 0 0 48 240 378 565 751 62 205 14 0° 0 0 94 299 630 778 1,418 61 208 14 0° 0 0 0 111 333 588 741 2,292 65 294 18 0 0 0 161 445 765 1,071 2,551 56 315 28 0 0 0 1161 445 765 1,071 2,551 56 315 28 0 0 0 137 613 1,340 1,900 2,082 66 781 45 0 0 0 364 1,191 2,127 2,848 2,282 71 902 43 0 0 0 580 1,391 2,409 2,967<	1,190 37 220 22 0° 0 0 0 399 839 974 1,177° 728 59 146 13 0° 0 0 0 48 240 378 565 813° 751 62 205 14 0° 0 0 0 94 299 630 778 1,121° 1,418 61 208 14 0° 0 0 0 111 333 588 741 1,074° 2,292 65 294 18 0 0 0 161 445 765 1,071 1,909 2,551 56 315 28 0 0 0 137 613 1,340 1,900 3,095 2,191 60 436 24 0 0 0 137 613 1,340 1,900 3,095 2,082 66 781 45 0 0 0 364 1,191 2,127 2,848 5,009 2,2378

Table 3-9. Two-Day Average^a per Capita^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Community Water (mL/day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- Includes all participants whether or not they ingested any water from the source during survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.
- Represents the percentage of individuals consuming at least once over the 2-day survey period.
- Estimates are less statistically reliable based on guidance published in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-10. Two-Day Average^a per Capita^b Estimates of Direct^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Bottled Water (mL/day)

		nination Survey	(-,					(3)				
	Sample	Percent								Percen	tiles			
Population Group	Size	Consuming ^d	Mean	SE	1 st	5 th	10^{th}	25 th	50 th	75 th	90 th	95 th	99 th	Max
All ages	24,673	44	326	13	0	0	0	0	0	428	1,066	1,570	2,666	8,834e
Age group														
Birth to <1 month	87	19	7	3	0^{e}	0^{e}	0^{e}	0	0	0	15e	44 ^e	155e	296e
1 to <3 months	233	12	8	3	0^{e}	0^{e}	0	0	0	0	15	44e	192e	192e
3 to <6 months	282	18	11	2	0^{e}	0^{e}	0	0	0	0	44	89e	133e	178e
6 to <12 months	588	31	34	4	0^{e}	0	0	0	0	30	119	178	333e	680e
Birth to <1 year	1,190	23	22	2	0^{e}	0	0	0	0	0	82	133	281e	$680^{\rm e}$
1 to <2 years	728	38	71	7	0^{e}	0	0	0	0	89	241	356	633e	790e
2 to <3 years	751	39	105	12	0^{e}	0	0	0	0	119	333	533	1,133e	$4,205^{e}$
3 to <6 years	1,418	40	121	10	0^{e}	0	0	0	0	148	389	578	1,092e	$1,762^{e}$
6 to <11 years	2,292	42	156	10	0	0	0	0	0	237	474	731	1,252	4,717e
11 to <16 years	2,551	45	235	16	0	0	0	0	0	296	689	1,095	1,874	4,322e
16 to <21 years	2,191	50	380	26	0	0	0	0	96	563	1,125	1,500	2,678	5,810e
21 to <30 years	2,082	52	459	28	0	0	0	0	119	724	1,460	1,888	2,930	$7,673^{e}$
30 to <40 years	2,282	52	468	29	0	0	0	0	96	711	1,422	1,965	3,237	6,636e
40 to <50 years	2,378	50	427	21	0	0	0	0	0	595	1,303	1,896	3,018	8,834e
50 to <60 years	2,103	42	342	23	0	0	0	0	0	474	1,166	1,751	2,666	4,513e
60 to <70 years	2,214	39	278	19	0	0	0	0	0	355	970	1,461	2,266	$5,024^{e}$
70 to <80 years	1,578	30	190	16	0^{e}	0	0	0	0	156	711	1,093	2,184e	3,228e
80+ years	915	19	108	15	0^{e}	0	0	0	0	0	370	737	1,639e	6,213e
Birth to <2 years	1,918	30	45	4	0^{e}	0	0	0	0	40	156	267	578e	790e
2 to <16 years	7,012	43	174	9	0	0	0	0	0	250	533	778	1,642	4,717e
16 to <70 years	13,250	48	400	17	0	0	0	0	0	592	1,259	1,784	2,948	8,834e
21 to <50 years	6,742	51	451	20	0	0	0	0	74	674	1,400	1,925	3,184	8,834e
50+ years	6,810	37	273	14	0	0	0	0	0	296	947	1,462	2,370	6,213e
Race	,												,	,
Mexican American	5,787	60	428	26	0	0	0	0	167	615	1,275	1,746	2,784	6,213e
Non-Hispanic black	5,337	52	391	20	0	0	0	0	74	533	1,199	1,711	3,018	6,634e
Non-Hispanic white	10,294	40	290	13	0	0	0	0	0	326	963	1,483	2,503	8,834e
Other Hispanic	2,082	55	432	34	0	0	0	Ö	118	580	1,303	1,974	2,910	7,673 ^e
Other race—including multiple	1,173	49	351	30	0e	0	0	0	0	501	1,076	1,583	2,714e	4,717 ^e

Table 3-10. Two-Day Average^a per Capita^b Estimates of Direct^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Bottled Water (mL/day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- Includes all participants whether or not they ingested any water from the source during survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water, defined as water added in the preparation of food or beverages, was not accounted for in the estimation of bottled water intake.
- Represents the percentage of individuals consuming at least once over the 2-day survey period.
- Estimates are less statistically reliable based on guidance published in the *Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III* and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-11. Two-Day Average^a per Capita^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Other Sources (mL/day)

	~ .	-			•		•		•	Percent	iles		•	
Population Group	Sample Size	Percent Consuming ^d	Mean	SE	1 st	5 th	10 th	25 th	50 th	75 th	90 th	95 th	99 th	Max
All ages	24,673	33	272	24	0	0	0	0	0	200	948	1,571	3,117	8,398e
Age group														
Birth to <1 month	87	45	273	51	0^{e}	0^{e}	0^{e}	0	0	590	745 ^e	860e	936e	1,011e
1 to <3 months	233	50	351	39	0^{e}	0^{e}	0	0	0	710	911	1,055e	1,154 ^e	1,489e
3 to <6 months	282	53	355	39	0^{e}	0^{e}	0	0	15	758	971	1,154 ^e	1,391e	1,424e
6 to <12 months	588	49	274	24	0^{e}	0	0	0	0	581	852	1,023	1,359e	1,486e
Birth to <1 year	1,190	50	307	21	0^{e}	0	0	0	0	665	878	1,048	1,315e	1,489e
1 to <2 years	728	37	77	11	0^{e}	0	0	0	0	94	280	356	725e	1,485e
2 to <3 years	751	35	93	13	0^{e}	0	0	0	0	88	326	524	914 ^e	$2,284^{e}$
3 to <6 years	1,418	36	84	8	0^{e}	0	0	0	0	89	269	481	889e	4,698e
6 to <11 years	2,292	32	105	12	0	0	0	0	0	82	387	614	1,100	2,437e
11 to <16 years	2,551	39	198	18	0	0	0	0	0	202	703	1,078	2,252	3,911e
16 to <21 years	2,191	34	217	34	0	0	0	0	0	153	707	1,221	2,682	7,815e
21 to <30 years	2,082	30	194	29	0	0	0	0	0	92	614	1,005	2,800	8,127e
30 to <40 years	2,282	28	262	38	0	0	0	0	0	97	867	1,798	3,304	7,459e
40 to <50 years	2,378	33	372	40	0	0	0	0	0	389	1,324	2,065	3,843	8,398e
50 to <60 years	2,103	32	401	40	0	0	0	0	0	423	1,407	2,178	4,113	$7,600^{\rm e}$
60 to <70 years	2,214	32	332	40	0	0	0	0	0	404	1,223	1,766	2,989	7,447e
70 to <80 years	1,578	36	397	39	0^{e}	0	0	0	0	582	1,495	1,938	2,754e	5,316e
80+ years	915	28	250	33	0^{e}	0	0	0	0	282	936	1,334	1,952e	3,917e
Birth to <2 years	1,918	44	198	14	0^{e}	0	0	0	0	289	741	903	1,232e	1,489e
2 to <16 years	7,012	36	135	9	0	0	0	0	0	115	457	737	1,456	4,698e
16 to <70 years	13,250	31	304	29	0	0	0	0	0	225	1,066	1,779	3,456	8,398e
21 to <50 years	6,742	31	281	32	0	0	0	0	0	173	963	1,725	3,383	8,398e
50+ years	6,810	32	365	33	0	0	0	0	0	431	1,323	1,918	3,574	$7,600^{e}$
Race	ŕ										ĺ		,	
Mexican American	5,787	45	202	12	0	0	0	0	0	249	631	938	2,186	5,036e
Non-Hispanic black	5,337	29	128	10	0	0	0	0	0	59	462	721	1,569	4,911e
Non-Hispanic white	10,294	32	317	32	0	0	0	0	0	229	1,147	1,824	3,402	8,398e
Other Hispanic	2,082	40	166	15	0	0	0	0	0	181	610	832	1,446	3,680e
Other race—including multiple	1,173	34	251	31	0e	0	0	0	0	267	811	1,324	3,004e	4,562e

Table 3-11. Two-Day Average^a per Capita^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Other Sources (mL/day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- Includes all participants whether or not they ingested any water from the source during survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.
- Represents the percentage of individuals consuming at least once over the 2-day survey period.
- Estimates are less statistically reliable based on guidance published in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-12. Two-Day Average^a per Capita^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: All Sources (mL/day)

		Nutrition Ex			uz / cj	(2.124141	.22) =0		n o	ces (m				
	Sample	Percent								Percentiles	3			
Population Group	Size	Consuming ^d	Mean	SE	1 st	5 th	10^{th}	25 th	50 th	75 th	90 th	95 th	99 th	Max
All ages	24,673	99	1,309	19	0	105	221	527	1,061	1,827	2,698	3,292	4,767	10,280e
Age group														
Birth to <1 month	87	78	464	53	0^{e}	0^{e}	0^{e}	40	580	745	860e	945e	$1,037^{e}$	1,234e
1 to <3 months	233	78	505	30	0^{e}	0^{e}	0	0	603	847	1,030	1,124e	1,265e	1,489e
3 to <6 months	282	83	552	30	0^{e}	0^{e}	0	105	634	844	1,065	$1,207^{e}$	1,391e	1,456e
6 to <12 months	588	98	576	21	0^{e}	19	66	265	603	829	1,024	1,168	1,383e	1,797e
Birth to <1 year	1,190	87	549	16	0^{e}	0	0	169	598	829	1,030	1,159	1,388°	1,797e
1 to <2 years	728	98	293	12	0^{e}	15	50	144	248	369	614	768	934e	$2,619^{e}$
2 to <3 years	751	99	403	16	0^{e}	43	75	165	327	561	831	1,001	1,317e	4,205e
3 to <6 years	1,418	99	413	11	3e	45	88	184	339	566	816	980	1,495 ^e	$4,698^{e}$
6 to <11 years	2,292	98	555	17	0	42	105	237	469	754	1,106	1,389	2,305	5,473e
11 to <16 years	2,551	98	748	30	0	34	89	296	573	999	1,556	2,242	3,402	5,120e
16 to <21 years	2,191	97	1,033	36	0	24	125	356	883	1,447	2,201	2,741	3,742	7,815e
21 to <30 years	2,082	98	1,435	49	0	121	274	614	1,202	1,947	2,867	3,600	5,259	8,325e
30 to <40 years	2,282	99	1,632	39	22	233	383	792	1,401	2,252	3,149	3,857	5,135	7,459e
40 to <50 years	2,378	99	1,680	46	23	246	441	859	1,471	2,272	3,144	3,821	5,091	10,280e
50 to <60 years	2,103	100	1,698	38	54	254	485	915	1,498	2,245	3,065	3,925	5,349	$7,600^{e}$
60 to <70 years	2,214	100	1,551	37	106	365	527	889	1,363	2,082	2,746	3,205	4,160	8,634e
70 to <80 years	1,578	99	1,359	28	88e	357	486	841	1,272	1,728	2,366	2,748	$3,619^{e}$	5,316e
80+ years	915	100	1,142	26	170e	317	429	698	1,007	1,493	1,953	2,296	$3,236^{e}$	$7,054^{e}$
Birth to <2 years	1,918	92	428	13	0^{e}	0	15	149	320	704	903	1,058	1,359e	2,619e
2 to <16 years	7,012	98	587	15	0	39	89	227	456	767	1,205	1,571	2,769	5,473e
16 to <70 years	13,250	99	1,549	25	4	185	354	758	1,336	2,112	2,968	3,633	5,135	10,280e
21 to <50 years	6,742	99	1,590	33	7	194	363	758	1,369	2,170	3,082	3,760	5,167	10,280e
50+ years	6,810	100	1,540	25	72	310	487	853	1,354	2,016	2,796	3,363	4,650	8,634e
Race														
Mexican American	5,787	99	1,064	27	7	97	185	392	807	1,453	2,248	2,872	4,490	$7,504^{e}$
Non-Hispanic black	5,337	98	1,035	25	0	69	170	398	795	1,391	2,246	2,800	4,393	7,519e
Non-Hispanic white	10,294	99	1,403	26	0	112	247	597	1,191	1,962	2,820	3,410	4,851	10,280e
Other Hispanic	2,082	99	1,164	44	0	97	185	426	888	1,589	2,532	3,307	4,584	8,325e
Other race—including multiple	1,173	99	1,323	48	20^{e}	163	274	571	1,115	1,815	2,656	3,278	4,397e	7,018e

Table 3-12. Two-Day Average^a per Capita^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: All Sources (mL/day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- Includes all participants whether or not they ingested any water from the source during survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages. Does not include indirect consumption of bottled water.
- Represents the percentage of individuals consuming at least once over the 2-day survey period.
- Estimates are less statistically reliable based on guidance published in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-13. Two-Day Average^a per Capita^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Community Water (mL/kg-day)

										Domo oc. 4	100			
	Sample	Percent		_						Percenti	les			
Population Group	Size	Consuming ^d	Mean	SE	1^{st}	5 th	10^{th}	25^{th}	50^{th}	75 th	90^{th}	95 th	99 th	Max
All ages	24,673	65	10.7	0.4	0	0	0	0	5.8	16.3	28.6	37.1	64.1	267.5°
Age group														
Birth to <1 month	87	32	42.0	13.6	0^{e}	0^{e}	0^{e}	0	0	20.8	191.5e	199.6e	253.0^{e}	253.0e
1 to <3 months	233	19	25.3	5.4	0^{e}	0^{e}	0	0	0	0	128.4	163.7e	267.2e	267.5e
3 to <6 months	282	29	26.7	5.1	0^{e}	0^{e}	0	0	0	24.8	102.1	140.6e	187.6e	252.6e
6 to <12 months	588	48	30.2	3.3	0^{e}	0	0	0	0	60.7	98.6	112.1	139.9e	213.9e
Birth to <1 year	1,190	37	29.2	3.1	0^{e}	0	0	0	0	48.4	108.2	136.7	192.2e	267.5e
1 to <2 years	728	59	13.1	1.1	0^{e}	0	0	0	4.3	21.0	34.4	50.8	75.6e	216.4e
2 to <3 years	751	62	14.8	1.0	0^{e}	0	0	0	7.0	21.6	44.1	58.1	78.2^{e}	227.1e
3 to <6 years	1,418	61	11.5	0.8	0^{e}	0	0	0	6.1	18.4	32.6	42.1	55.7e	126.6e
6 to <11 years	2,292	65	9.9	0.6	0	0	0	0	5.2	15.0	26.2	33.9	58.2	157.4e
11 to <16 years	2,551	56	5.8	0.5	0	0	0	0	1.2	8.1	16.7	25.7	51.4	81.9e
16 to <21 years	2,191	60	6.2	0.3	0	0	0	0	2.0	8.9	18.7	27.6	41.0	82.0e
21 to <30 years	2,082	66	10.5	0.6	0	0	0	0	4.9	16.3	28.7	38.9	64.1	99.9e
30 to <40 years	2,282	71	11.2	0.6	0	0	0	0	7.3	16.9	29.5	37.8	56.5	91.9e
40 to <50 years	2,378	65	11.1	0.6	0	0	0	0	6.7	17.6	30.4	38.3	61.2	110.1e
50 to <60 years	2,103	67	11.9	0.6	0	0	0	0	8.6	18.3	30.6	37.0	58.0	103.4e
60 to <70 years	2,214	68	11.7	0.7	0	0	0	0	9.0	18.6	29.5	35.3	53.0	120.7e
70 to <80 years	1,578	64	10.4	0.7	0e	0	0	0	7.8	16.8	25.0	30.8	55.1e	80.8e
80+ years	915	72	11.3	0.7	0e	0	Ö	0	9.5	18.0	26.2	30.4	41.4e	64.8e
Birth to <2 years	1,918	48	21.6	1.9	0e	0	0	0	0	23.2	78.5	111.6	174.2e	267.5e
2 to <16 years	7,012	61	9.1	0.4	0	0	Õ	0	3.5	13.2	26.0	35.4	62.2	227.1e
16 to <70 years	13,250	67	10.7	0.4	0	0	0	0	6.3	16.9	29.3	36.7	58.3	120.7e
21 to <50 years	6,742	67	11.0	0.5	0	0	0	ő	6.3	17.0	29.6	38.3	60.7	110.1°
50+ years	6,810	67	11.5	0.6	0	0	0	ő	8.6	18.1	29.1	35.2	53.9	120.7e
Race	0,010	07	11.5	0.0	Ü	v	Ü	Ů	0.0	10.1	27.1	33.2	55.7	120.7
Mexican American	5,787	55	7.4	0.5	0	0	0	0	1.7	10.2	21.0	30.0	56.3	244.4e
Non-Hispanic black	5,337	66	7.9	0.3	0	0	0	0	3.6	11.5	21.2	28.4	51.1	267.5°
Non-Hispanic white	10,294	66	11.7	0.5	0	0	0	0	7.1	18.3	30.3	39.0	64.5	252.6e
Other Hispanic	2,082	62	9.1	0.5	0	0	0	0	4.3	13.1	24.3	34.4	53.1	232.0° 224.0°
Other race—including multiple	1,173	66	12.7	1.0	0e	0	0	0	7.8	19.1	32.9	43.7	82.5 ^e	227.1°

Table 3-13. Two-Day Average^a per Capita^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Community Water (mL/kg-day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- b Includes all participants whether or not they ingested any water from the source during survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.
- Represents the percentage of individuals consuming at least once over the 2-day survey period.
- Estimates are less statistically reliable based on guidance published in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-14. Two-Day Average^a per Capita^b Estimates of Direct^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Bottled (mL/kg-day)

	Sample	Percent								Percentil	es			
Population Group	Sample Size	Consuming ^d	Mean	SE	1 st	5 th	10^{th}	25^{th}	50 th	75 th	90 th	95 th	99 th	Max
All ages	24,673	44	4.9	0.2	0	0	0	0	0	6.6	15.5	22.3	39.1	316.2e
Age group														
Birth to <1 month	87	19	1.6	0.6	0^{e}	0^{e}	0^{e}	0	0	0	$3.0^{\rm e}$	10.8^{e}	31.1e	63.0^{e}
1 to <3 months	233	12	1.4	0.4	0^{e}	0^{e}	0	0	0	0	2.4	8.4e	29.6^{e}	31.5e
3 to <6 months	282	18	1.5	0.3	0^{e}	0^{e}	0	0	0	0	5.7	11.9e	19.3e	28.2^{e}
6 to <12 months	588	31	3.6	0.4	0^{e}	0	0	0	0	3.8	13.5	20.9	$35.6^{\rm e}$	71.5e
Birth to <1 year	1,190	23	2.6	0.3	0^{e}	0	0	0	0	0	9.5	15.2	31.6e	71.5e
1 to <2 years	728	38	6.3	0.6	0^{e}	0	0	0	0	7.7	22.9	31.6	52.0e	78.5e
2 to <3 years	751	39	7.6	0.8	0^{e}	0	0	0	0	8.7	23.3	38.5	72.3e	316.2e
3 to <6 years	1,418	40	6.7	0.6	0^{e}	0	0	0	0	8.4	21.4	31.8	64.9e	105.8e
6 to <11 years	2,292	42	5.0	0.3	0	0	0	0	0	7.1	15.3	23.0	47.9	114.5e
11 to <16 years	2,551	45	4.2	0.3	0	0	0	0	0	5.9	12.5	19.0	34.1	66.8e
16 to <21 years	2,191	50	5.6	0.4	0	0	0	0	1.3	8.4	16.8	23.5	40.9	106.4e
21 to <30 years	2,082	52	6.0	0.4	0	0	0	0	1.6	9.1	18.9	24.8	37.5	103.3e
30 to <40 years	2,282	52	5.9	0.4	0	0	0	0	1.2	9.0	17.8	24.8	40.7	84.1e
40 to <50 years	2,378	50	5.3	0.3	0	0	0	0	0	7.9	16.6	22.4	38.2	166.7e
50 to <60 years	2,103	42	4.1	0.3	0	0	0	0	0	5.6	13.6	20.0	33.1	75.2e
60 to <70 years	2,214	39	3.5	0.3	0	0	0	0	0	4.2	12.3	18.7	28.2	68.5e
70 to <80 years	1,578	30	2.5	0.2	0^{e}	0	0	0	0	1.9	9.2	14.8	28.5e	48.1e
80+ years	915	19	1.6	0.2	0^{e}	0	0	0	0	0	5.0	10.1	22.8^{e}	80.9^{e}
Birth to <2 years	1,918	30	4.3	0.3	0^{e}	0	0	0	0	4.1	14.7	26.2	48.4e	78.5e
2 to <16 years	7,012	43	5.2	0.3	0	0	0	0	0	6.8	16.4	24.1	44.4	316.2e
16 to <70 years	13,250	48	5.1	0.2	0	0	0	0	0	7.3	16.2	22.4	37.0	166.7e
21 to <50 years	6,742	51	5.7	0.3	0	0	0	0	1.0	8.5	17.6	23.8	39.2	166.7e
50+ years	6,810	37	3.4	0.2	0	0	0	0	0	3.8	12.0	18.0	29.9	80.9^{e}
Race	,													
Mexican American	5,787	60	7.2	0.4	0	0	0	0	3.3	10.7	20.0	25.7	46.4	114.5e
Non-Hispanic black	5,337	52	5.5	0.2	0	0	0	0	1.3	7.9	16.7	23.5	38.4	84.2e
Non-Hispanic white	10,294	40	4.2	0.2	0	0	0	0	0	5.1	13.9	20.5	35.6	166.7e
Other Hispanic	2,082	55	7.2	0.6	0	0	0	0	2.1	9.6	20.4	29.7	51.1	316.2e
Other race—including multiple	1,173	49	6.0	0.5	0e	0	0	0	0	9.2	19.3	26.9	41.3e	87.6e

Table 3-14. Two-Day Average^a per Capita^b Estimates of Direct^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Bottled (mL/kg-day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- Includes all participants whether or not they ingested any water from the source during survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water, defined as water added in the preparation of food or beverages, was not accounted for in the estimation of bottled water intake.
- Represents the percentage of individuals consuming at least once over the 2-day survey period.
- Estimates are less statistically reliable based on guidance published in the *Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III* and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-15. Two-Day Average^a per Capita^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Other Sources (mL/kg-day)

										Percentil	les			
Population Group	Sample Size	Percent Consuming ^d	Mean	SE	1 st	5 th	10 th	25 th	50 th	75 th	90 th	95 th	99 th	Max
All ages	24,673	33	4.6	0.4	0	0	0	0	0	3.5	15.0	24.5	53.3	343.1
Age group														
Birth to <1 month	87	45	66.2	13.5	0^{e}	0^{e}	0^{e}	0	0	143.4	183.2e	205.8^{e}	302.0^{e}	302.0^{e}
1 to <3 months	233	50	62.6	7.0	0^{e}	0^{e}	0	0	0	122.0	171.0	194.7 ^e	230.7e	343.1e
3 to <6 months	282	53	49.0	5.5	0^{e}	0^{e}	0	0	1.9	102.0	137.6	157.4e	204.6e	225.8e
6 to <12 months	588	49	31.0	2.7	0^{e}	0	0	0	0	63.0	96.9	119.3	154.8e	239.7e
Birth to <1 year	1,190	50	43.7	3.3	0^{e}	0	0	0	0	86.1	134.4	157.4	215.8e	343.1e
1 to <2 years	728	37	6.9	1.0	0^{e}	0	0	0	0	8.2	23.8	30.7	74.8e	130.3e
2 to <3 years	751	35	6.8	1.0	0^{e}	0	0	0	0	6.6	23.0	40.3	75.5e	162.0e
3 to <6 years	1,418	36	4.5	0.5	0^{e}	0	0	0	0	4.8	14.9	24.2	44.1e	164.9e
6 to <11 years	2,292	32	3.5	0.4	0	0	0	0	0	2.6	12.6	20.6	40.2	72.1e
11 to <16 years	2,551	39	3.5	0.3	0	0	0	0	0	3.5	12.3	19.4	33.7	81.1e
16 to <21 years	2,191	34	3.1	0.5	0	0	0	0	0	2.2	10.7	18.1	38.0	120.6e
21 to <30 years	2,082	30	2.6	0.4	0	0	0	0	0	1.3	8.5	13.7	36.6	94.1e
30 to <40 years	2,282	28	3.3	0.5	0	0	0	0	0	1.3	11.4	22.3	43.5	86.9e
40 to <50 years	2,378	33	4.7	0.5	0	0	0	0	0	4.4	17.4	26.9	47.4	98.0e
50 to <60 years	2,103	32	5.0	0.5	0	0	0	0	0	4.8	19.1	27.5	52.0	83.6e
60 to <70 years	2,214	32	4.1	0.5	0	0	0	0	0	5.0	15.5	21.7	40.4	93.3e
70 to <80 years	1,578	36	5.2	0.5	0^{e}	0	0	0	0	7.5	20.3	24.9	40.6^{e}	61.3e
80+ years	915	28	3.7	0.5	0^{e}	0	0	0	0	4.5	14.1	19.9	28.7e	53.6e
Birth to <2 years	1,918	44	26.3	2.0	0^{e}	0	0	0	0	27.0	105.0	135.8	199.1e	343.1e
2 to <16 years	7,012	36	4.0	0.3	0	0	0	0	0	3.6	13.5	21.9	43.0	164.9e
16 to <70 years	13,250	31	3.9	0.4	0	0	0	0	0	2.8	13.4	22.9	44.3	120.6e
21 to <50 years	6,742	31	3.6	0.4	0	0	0	0	0	2.1	12.0	22.2	44.3	98.0e
50+ years	6,810	32	4.7	0.4	0	0	0	0	0	5.3	17.5	24.6	44.2	93.3e
Race														
Mexican American	5,787	43	5.0	0.3	0	0	0	0	0	4.7	11.8	19.7	80.1	296.5e
Non-Hispanic black	5,337	30	2.8	0.2	0	0	0	0	0	1.0	7.4	11.6	40.7	343.1e
Non-Hispanic white	10,294	31	4.9	0.5	0	0	0	0	0	3.8	17.4	26.6	51.8	276.2e
Other Hispanic	2,082	36	3.8	0.4	0	0	0	0	0	3.8	9.6	14.4	50.1	200.5e
Other race—including multiple	1,173	32	5.0	0.6	0^{e}	0	0	0	0	4.3	16.3	25.5	55.8e	237.8e

Table 3-15. Two-Day Average^a per Capita^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Other Sources (mL/kg-day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- b Includes all participants whether or not they ingested any water from the source during survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.
- Represents the percentage of individuals consuming at least once over the 2-day survey period.
- Estimates are less statistically reliable based on guidance published in the *Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III* and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-16. Two-Day Average^a per Capita^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: All Sources (mL/kg-day)

	Sample	Percent							Per	centiles				
Population Group	Size	Consuming ^d	Mean	SE	1 st	5 th	10 th	25 th	50 th	75 th	90 th	95 th	99 th	Max
All ages	24,673	99	20.2	0.3	0	2.0	4.2	9.1	16.4	26.4	39.3	49.1	83.3	343.1e
Age group														
Birth to <1 month	87	78	109.8	13.4	0^{e}	0^{e}	0^{e}	10.6	129.9	178.8	206.5e	253.0e	302.0^{e}	302.0^{e}
1 to <3 months	233	70	89.2	5.3	0^{e}	0^{e}	0	0	108.2	140.4	187.7	203.9e	267.2e	343.1e
3 to <6 months	282	83	77.2	4.3	0^{e}	0^{e}	0	12.3	86.3	116.9	143.3	164.9e	215.8e	252.6e
6 to <12 months	588	98	64.8	2.4	0^{e}	2.6	7.5	26.6	66.1	96.2	122.6	138.2	167.6e	239.7e
Birth to <1 year	1,190	87	75.5	2.7	0^{e}	0	0	21.1	74.8	113.3	149.4	183.2	237.8e	343.1e
1 to <2 years	728	98	26.4	1.1	0^{e}	1.5	4.5	13.1	22.0	34.2	53.5	69.4	86.2e	216.4e
2 to <3 years	751	99	29.1	1.2	0^{e}	3.1	5.7	11.5	23.0	41.2	59.3	71.3	95.3e	316.2e
3 to <6 years	1,418	99	22.6	0.7	0.1^{e}	2.6	4.8	10.0	18.7	31.1	44.0	53.6	85.9e	164.9e
6 to <11 years	2,292	98	18.4	0.6	0	1.6	3.5	8.1	14.9	24.8	35.8	46.9	70.1	157.7e
11 to <16 years	2,551	98	13.5	0.6	0	0.5	1.5	5.2	10.5	17.8	28.5	38.3	61.9	81.9e
16 to <21 years	2,191	97	14.9	0.5	0	0.4	1.9	5.4	11.7	20.3	32.3	40.8	53.2	120.6e
21 to <30 years	2,082	98	19.1	0.7	0	1.5	3.5	7.9	15.9	25.0	39.6	49.0	67.3	112.0e
30 to <40 years	2,282	99	20.4	0.5	0.2	2.7	4.7	9.9	16.9	28.5	40.7	47.8	65.0	95.0^{e}
40 to <50 years	2,378	99	21.1	0.6	0.3	2.8	5.3	10.4	18.4	28.1	39.8	48.1	72.3	178.8e
50 to <60 years	2,103	100	21.0	0.5	0.6	2.7	5.5	10.9	18.3	28.3	38.7	46.4	72.7	122.9e
60 to <70 years	2,214	100	19.3	0.5	1.1	4.3	6.1	10.6	16.9	25.4	35.3	41.8	56.5	120.7e
70 to <80 years	1,578	99	18.1	0.4	1.0e	4.1	6.3	9.9	16.5	23.1	32.0	40.2	56.9e	80.8e
80+ years	915	100	16.5	0.4	2.3e	4.5	6.2	9.7	14.8	22.0	28.1	32.5	47.6e	91.8e
Birth to <2 years	1,918	92	52.2	1.9	0^{e}	0	1.5	14.8	31.4	80.1	127.2	152.4	213.9e	343.1e
2 to <16 years	7,012	98	18.2	0.4	0	1.1	3.0	7.3	13.9	24.7	38.4	49.1	74.1	316.2e
16 to <70 years	13,250	99	19.7	0.3	< 0.05	2.2	4.5	9.5	16.9	26.8	38.7	46.4	67.4	178.8e
21 to <50 years	6,742	99	20.2	0.4	0.1	2.3	4.6	9.6	17.1	27.5	39.9	48.3	68.4	178.8e
50+ years	6,810	100	19.5	0.3	0.8	3.7	5.8	10.5	17.1	25.6	35.7	43.4	65.3	122.9e
Race	-,-													
Mexican American	5,787	99	19.6	0.3	0.1	2.1	3.9	8.1	14.7	24.2	38.0	50.5	108.1	296.5e
Non-Hispanic black	5,337	98	16.2	0.3	0	1.4	2.9	6.4	12.3	20.7	31.5	40.2	86.6	343.1e
Non-Hispanic white	10,294	99	20.7	0.4	Ö	2.0	4.5	9.7	17.3	27.3	40.0	49.1	79.8	284.4 ^e
Other Hispanic	2,082	99	20.0	0.7	Ö	2.7	4.1	8.3	14.6	25.5	39.0	51.3	112.0	316.2e
Other race—including multiple	1,173	99	23.8	0.7	0.3e	3.4	5.6	11.4	19.1	30.2	45.9	56.2	96.5e	237.8e

Table 3-16. Two-Day Average^a per Capita^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: All Sources (mL/kg-day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- b Includes all participants whether or not they ingested any water from the source during survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages. Does not include indirect consumption of bottled water.
- Represents the percentage of individuals consuming at least once over the 2-day survey period.
- Estimates are less statistically reliable based on guidance published in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-17. Two-Day Average^a Consumer-Only^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Community Water (mL/day)

								Da	maamtilaa				
								Pe	rcentiles				
Population Group	Sample Size	Mean	SE	1^{st}	5 th	10^{th}	25^{th}	50 th	75 th	90^{th}	95 th	99 th	Max
All ages	15,219	1,096	21	13	70	147	369	834	1,540	2,413	2,972	4,463	8,634 ^d
Age group													
Birth to <1 month	20	581	84	15 ^d	25^{d}	40^{d}	148 ^d	699	839^{d}	901^{d}	938^{d}	$1,037^{d}$	$1,037^{d}$
1 to <3 months	45	785	47	105 ^d	148^{d}	489^{d}	658^{d}	804	958^{d}	$1,177^{d}$	1,224 ^d	$1,403^{d}$	$1,403^{d}$
3 to <6 months	65	649	55	7^{d}	96^{d}	144 ^d	450^{d}	655	887^{d}	$1,037^{d}$	$1,125^{d}$	$1,388^{d}$	$1,390^{d}$
6 to <12 months	244	554	31	12 ^d	37^{d}	69	201	587	823	993	$1,104^{d}$	$1,324^{d}$	$1,797^{d}$
Birth to <1 year	374	595	25	7^{d}	40^{d}	98	277	657	851	1,009	1,106 ^d	$1,376^{d}$	1,797 ^d
1 to <2 years	394	245	15	7^{d}	15	28	85	209	306	524	658	842 ^d	$2,619^{d}$
2 to <3 years	445	332	15	6^{d}	43	59	126	254	430	733	901	1,183 ^d	$2,861^{d}$
3 to <6 years	860	338	15	7^{d}	33	71	139	274	477	683	836	1,282 ^d	$2,179^{d}$
6 to <11 years	1,473	455	20	6^{d}	39	73	176	356	580	953	1,258	$2,277^{d}$	$4,048^{d}$
11 to <16 years	1,449	562	38	7^{d}	31	68	160	361	726	1,315	1,761	$2,773^{d}$	$5,120^{d}$
16 to <21 years	1,312	722	27	6^{d}	29	66	199	442	1,026	1,647	2,214	$3,237^{d}$	$7,184^{d}$
21 to <30 years	1,318	1,183	52	11 ^d	59	136	377	877	1,628	2,645	3,407	5,271 ^d	$7,504^{d}$
30 to <40 years	1,530	1,277	37	24^{d}	115	223	508	1,010	1,789	2,720	3,278	4,584 ^d	$7,402^{d}$
40 to <50 years	1,532	1,356	50	18 ^d	129	281	593	1,083	1,911	2,708	3,374	$4,776^{d}$	$7,041^{d}$
50 to <60 years	1,412	1,419	37	35 ^d	151	334	669	1,200	1,923	2,815	3,388	$4,626^{d}$	6,554 ^d
60 to <70 years	1,453	1,394	43	63 ^d	213	370	710	1,214	1,890	2,602	3,187	4,123 ^d	8,634 ^d
70 to <80 years	1,017	1,214	31	129 ^d	321	405	689	1,088	1,559	2,118	2,641	3,601 ^d	$4,975^{d}$
80+ years	650	1,087	30	62 ^d	250	359	586	990	1,445	1,964	2,250	$3,180^{d}$	5,334 ^d
Birth to <2 years	768	388	18	7 ^d	15	40	134	281	641	864	999	1,288 ^d	2,619 ^d
2 to <16 years	4,227	458	19	6	34	68	156	324	592	985	1,348	2,559	5,120 ^d
16 to <70 years	8,557	1,269	25	15	103	205	503	1,024	1,784	2,645	3,250	4,773	8,634 ^d
21 to <50 years	4,380	1,277	31	17	97	202	497	1,001	1,818	2,685	3,353	4,859	7,504 ^d
50+ years	4,532	1,343	27	53	216	363	677	1,152	1,783	2,574	3,081	4,309	8,634 ^d
Race	.,	1,0 .0				202	· · ·	-,	1,,,,,,,	_,	2,001	.,	0,001
Mexican American	3,011	794	31	4	52	106	244	530	1.063	1,814	2,485	4,116	$7,504^{d}$
Non-Hispanic black	3,560	782	27	7	38	89	247	519	1,054	1,819	2,378	4,031	$7,402^{d}$
Non-Hispanic white	6,698	1,201	25	15	84	172	450	965	1,695	2,558	3,081	4,570	8,634 ^d
Other Hispanic	1,207	914	52	17 ^d	74	119	284	619	1,195	2,125	2,848	4,584 ^d	7,184 ^d
Other race—including multiple	743	1,085	67	20 ^d	89	172	410	789	1,532	2,246	2,990	5,143 ^d	7,018 ^d

Table 3-17. Two-Day Average^a Consumer-Only^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Community Water (mL/day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- b Excludes individuals who did not ingest water from the source during the survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.
- Estimates are less statistically reliable based on guidance published in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-18. Two-Day Average ^a Consumer-Only ^b Estimates of Direct ^c Water Ingestion Based on National Health and Nutrition
Examination Survey (NHANES) 2005–2010: Bottled Water (mL/day)

								-					
								Po	ercentiles				
Population Group	Sample Size	Mean	SE	1^{st}	5^{th}	10^{th}	25^{th}	50^{th}	75^{th}	90 th	95^{th}	99 th	Max
All ages	11,309	736	15	37	89	119	250	500	984	1,666	2,133	3,435	8,834 ^d
Age group													
Birth to <1 month	16	38	17	3^{d}	3^{d}	3^{d}	3^{d}	30	44 ^d	$104^{\rm d}$	155 ^d	296^{d}	296^{d}
1 to <3 months	38	66	15	1^{d}	3^{d}	5^{d}	15 ^d	44	119 ^d	178^{d}	192 ^d	192 ^d	192 ^d
3 to <6 months	79	61	6	4^{d}	15 ^d	15 ^d	30	44	89	119 ^d	133 ^d	178^{d}	178 ^d
6 to <12 months	228	109	9	7^{d}	15 ^d	30	44	89	133	244	281 ^d	474^{d}	$680^{\rm d}$
Birth to <1 year	361	93	7	3^{d}	7^{d}	15	30	59	119	207	252^{d}	385^{d}	680^{d}
1 to <2 years	317	188	15	7^{d}	30^{d}	44	74	133	266	415	578^{d}	711 ^d	790^{d}
2 to <3 years	332	273	26	15 ^d	40^{d}	52	74	193	333	548	711 ^d	1,341 ^d	$4,205^{d}$
3 to <6 years	617	299	19	22^{d}	52	59	119	215	385	622	830	1,666 ^d	1,762 ^d
6 to <11 years	1,036	374	18	37^{d}	59	89	148	250	466	770	1,067	$2,001^{d}$	4,717 ^d
11 to <16 years	1,236	517	26	37^{d}	89	119	237	356	635	1,184	1,600	$2,276^{d}$	4,322 ^d
16 to <21 years	1,111	753	37	96^{d}	148	193	296	555	992	1,500	1,995	$3,140^{d}$	5,810 ^d
21 to <30 years	1,125	882	34	59 ^d	125	178	296	694	1,244	1,816	2,354	$3,672^{d}$	$7,673^{d}$
30 to <40 years	1,244	903	36	52 ^d	119	178	296	681	1,228	1,935	2,481	$4,001^{d}$	$6,636^{d}$
40 to <50 years	1,240	860	33	44^{d}	119	178	259	605	1,184	1,896	2,368	$3,895^{d}$	8,834 ^d
50 to <60 years	991	818	33	59 ^d	119	178	296	593	1,067	1,896	2,250	$3,826^{d}$	4,513 ^d
60 to <70 years	1,008	713	31	59 ^d	118	126	250	509	987	1,600	1,948	$2,714^{d}$	5,024 ^d
70 to <80 years	507	644	34	22^{d}	82	119	237	444	918	1,422	1,894	2,664 ^d	3,228 ^d
80+ years	184	577	53	15 ^d	52^{d}	82^{d}	178	385	770	1,225 ^d	1,822 ^d	2,844 ^d	6,213 ^d
Birth to <2 years	678	149	11	3^{d}	15	30	48	111	178	314	474	711 ^d	790 ^d
2 to <16 years	3,221	410	13	30	59	83	156	280	500	859	1,250	2,132	$4,717^{d}$
16 to <70 years	6,719	839	18	59	119	178	296	606	1,138	1,837	2,254	3,750	8,834 ^d
21 to <50 years	3,609	881	22	52	119	178	296	652	1,185	1,896	2,370	3,895	8,834 ^d
50+ years	2,690	748	19	44	96	133	250	518	1,000	1,697	2,137	3,111	6,213 ^d
Race	,								,	,	,	,	, -
Mexican American	3,349	717	27	30	74	119	237	487	975	1,658	2,004	3,256	6,213 ^d
Non-Hispanic black	2,598	757	28	40	89	125	250	500	1,000	1,685	2,281	3,986	6,634 ^d
Non-Hispanic white	3,681	732	18	37	89	125	250	500	974	1,658	2,081	3,507	8,834 ^d
Other Hispanic	1,120	793	44	30^{d}	74	119	237	509	1,067	1,895	2,495	3,254 ^d	7,673 ^d
Other race—including multiple	561	713	39	30^{d}	74	148	250	509	947	1,593	2,039	2,844 ^d	4,717 ^d

Table 3-18. Two-Day Average^a Consumer-Only^b Estimates of Direct^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Bottled Water (mL/day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- b Excludes individuals who did not ingest water from the source during the survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water, defined as water added in the preparation of food or beverages, was not accounted for in the estimation of bottled water intake.
- Estimates are less statistically reliable based on guidance published in the *Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations* (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-19. Two-Day Average^a Consumer-Only^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Other Sources (mL/day)

Population Group				Percentiles										
	Sample Size	Mean	SE	1 st	5 th	10 th	25 th	50 th	75 th	90 th	95 th	99 th	Max	
All ages	8,722	833	39	8	35	70	214	550	1,105	1,976	2,682	4,113	8,398 ^d	
Age group														
Birth to <1 month	47	611	37	153 ^d	269^{d}	288^{d}	455 ^d	638	720^{d}	912 ^d	923 ^d	994 ^d	1,011 ^d	
1 to <3 months	134	704	26	14 ^d	161 ^d	296^{d}	551	710	856	$1,055^{d}$	$1,122^{d}$	1,184 ^d	1,489 ^d	
3 to <6 months	175	665	35	5 ^d	15 ^d	62 ^d	433	729	887	$1,154^{d}$	$1,250^{d}$	1,396 ^d	1,424 ^d	
6 to <12 months	328	564	22	1^{d}	17 ^d	51	268	590	807	1,048	$1,182^{d}$	1,359 ^d	1,486 ^d	
Birth to <1 year	684	619	15	5 ^d	19	74	402	668	839	1,049	1,154	1,391 ^d	$1,489^{d}$	
1 to <2 years	310	209	19	2^{d}	12 ^d	28	80	144	286	472	642 ^d	917 ^d	1,485 ^d	
2 to <3 years	282	268	28	2^{d}	14 ^d	17	72	178	363	630	887^{d}	$1,161^{d}$	$2,284^{d}$	
3 to <6 years	525	231	14	6^{d}	17	27	69	138	282	532	721	$1,141^{d}$	$4,698^{d}$	
6 to <11 years	755	331	28	8^{d}	28	42	95	241	481	764	948	1,290 ^d	2,437 ^d	
11 to <16 years	994	513	32	6^{d}	17	40	115	328	705	1,181	1,526	2,885 ^d	3,911 ^d	
16 to <21 years	760	632	69	12 ^d	24	49	135	381	851	1,583	2,297	$3,209^{d}$	$7,815^{d}$	
21 to <30 years	682	640	70	7^{d}	30	50	160	404	766	1,428	2,445	$3,750^{d}$	$8,127^{d}$	
30 to <40 years	708	937	77	7 ^d	38	94	256	574	1,258	2,510	3,004	4,248 ^d	$7,459^{d}$	
40 to <50 years	805	1,117	75	17 ^d	52	119	390	785	1,535	2,414	3,330	4,696 ^d	$8,398^{d}$	
50 to <60 years	666	1,260	82	9 ^d	139	207	498	928	1,718	2,820	3,726	5,339 ^d	$7,600^{d}$	
60 to <70 years	742	1,042	57	29^{d}	126	214	434	836	1,335	2,155	2,800	$4,160^{d}$	7,447 ^d	
70 to <80 years	546	1,116	38	22 ^d	117	257	506	996	1,570	2,247	2,443	$3,210^{d}$	5,316 ^d	
80+ years	263	900	37	59 ^d	196 ^d	282	533	808	1,118	1,635	1,836 ^d	$2,330^{d}$	$3,917^{d}$	
Birth to <2 years	994	454	16	5 ^d	15	44	124	392	725	924	1,102	1,359 ^d	1,489 ^d	
2 to <16 years	2,556	380	18	6	20	39	93	228	515	917	1,165	2,347	4,698 ^d	
16 to <70 years	4,363	969	49	10	43	93	284	654	1,289	2,297	2,969	4,335	$8,398^{d}$	
21 to <50 years	2,195	919	63	9	37	80	252	595	1,229	2,238	2,901	4,310	8,398 ^d	
50+ years	2,217	1,138	41	22	132	230	486	883	1,501	2,321	2,958	4,645	$7,600^{d}$	
Race	, .	,			-) ·	<i>)-</i>	7) = =	. ,	
Mexican American	2,620	467	18	4	26	52	133	308	596	993	1,348	3,132	$5,036^{d}$	
Non-Hispanic black	1,570	429	21	4 ^d	17	34	97	292	568	896	1,255	2,663 ^d	4,911 ^d	
Non-Hispanic white	3,307	1,010	49	10	43	89	293	733	1,368	2,303	2,913	4,310	8,398 ^d	
Other Hispanic	827	460	27	9d	38	75	144	332	637	944	1,210	2,652 ^d	$3,680^{d}$	
Other race—including multiple	398	781	62	18 ^d	54	89	304	516	1,020	1,772	2,204	3,725 ^d	4,562 ^d	

Table 3-19. Two-Day Average^a Consumer-Only^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Other Sources (mL/day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- b Excludes individuals who did not ingest water from the source during the survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.
- Estimates are less statistically reliable based on guidance published in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-20. Two-Day Average^a Consumer-Only^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: All Sources (mL/day)

Population Group	Sample Size	Mean	SE	Percentiles										
				1 st	5 th	10 th	25 th	50 th	75 th	90 th	95 th	99 th	Max	
All ages	24,299	1,325	20	29	130	247	544	1,076	1,843	2,715	3,306	4,773	10,280 ^d	
Age group														
Birth to <1 month	68	597	47	30^{d}	40^{d}	87^{d}	434^{d}	685	781 ^d	924 ^d	953 ^d	1,144 ^d	1,234 ^d	
1 to <3 months	182	725	27	14 ^d	148 ^d	261 ^d	590	734	902	$1,090^{d}$	1,154 ^d	$1,390^{d}$	1,489 ^d	
3 to <6 months	243	666	28	5 ^d	15 ^d	125	449	714	894	1,122	1,251 ^d	1,391 ^d	1,456 ^d	
6 to <12 months	577	590	20	7^{d}	44	84	276	629	847	1,032	1,182	1,383 ^d	1,797 ^d	
Birth to <1 year	1,070	628	15	7^{d}	44	121	373	671	864	1,058	1,177	$1,390^{d}$	1,797 ^d	
1 to <2 years	714	300	12	7^{d}	37	59	149	250	378	633	768	934 ^d	2,619 ^d	
2 to <3 years	741	408	17	14 ^d	53	78	166	330	563	837	1,001	$1,317^{d}$	4,205 ^d	
3 to <6 years	1,405	416	12	13 ^d	54	92	187	339	569	818	993	$1,495^{d}$	4,698d	
6 to <11 years	2,263	565	17	12	61	123	250	476	754	1,110	1,389	2,305	5,473 ^d	
11 to <16 years	2,504	767	30	12	59	119	317	597	1,016	1,590	2,248	3,402	5,120 ^d	
16 to <21 years	2,129	1,068	36	14	89	198	399	907	1,487	2,218	2,808	3,792	7,815 ^d	
21 to <30 years	2,052	1,459	48	31	168	310	635	1,229	1,953	2,894	3,606	5,271	8,325 ^d	
30 to <40 years	2,262	1,642	40	46	247	400	798	1,407	2,261	3,149	3,859	5,135	7,459 ^d	
40 to <50 years	2,369	1,688	46	48	269	450	874	1,478	2,275	3,156	3,837	5,091	10,280 ^d	
50 to <60 years	2,095	1,705	38	69	262	490	919	1,509	2,247	3,065	3,925	5,349	7,600 ^d	
60 to <70 years	2,211	1,552	37	118	370	531	893	1,366	2,082	2,752	3,205	4,160	8,634 ^d	
70 to <80 years	1,570	1,367	29	159 ^d	377	496	845	1,275	1,735	2,366	2,748	3,619 ^d	5,316 ^d	
80+ years	914	1,142	26	170 ^d	318	429	698	1,007	1,493	1,953	2,296	3,236 ^d	7,054 ^d	
Birth to <2 years	1,784	464	12	7d	40	74	193	374	725	917	1,070	1,359 ^d	2,619 ^d	
2 to <16 years	6,913	597	15	12	57	109	241	465	775	1,213	1,589	2,773	5,473 ^d	
16 to <70 years	13,118	1,564	25	43	220	370	770	1,347	2,121	2,972	3,643	5,135	10,280 ^d	
21 to <50 years	6,683	1,604	33	40	229	382	767	1,380	2,183	3,092	3,780	5,167	10,280 ^d	
50+ years	6,790	1,545	25	115	327	496	859	1,357	2,018	2,798	3,363	4,689	8,634 ^d	
Race	0,770	1,545	23	113	321	470	037	1,557	2,010	2,770	3,303	7,007	0,054	
Mexican American	5,725	1,070	27	22	108	195	396	813	1,463	2,250	2,876	4,490	7,504 ^d	
Non-Hispanic black	5,246	1,070	25	22	106	192	414	809	1,419	2,261	2,804	4,393	7,519 ^d	
Non-Hispanic white	10,116	1,422	26	29	141	274	615	1,207	1,974	2,837	3,421	4,865	10,280 ^d	
Other Hispanic	2,058	1,422	44	33	119	202	442	897	1,610	2,538	3,307	4,584	8,325 ^d	
Other race—including multiple	2,038 1,154	1,178	48	53 ^d	178	283	580	1,124	1,810	2,338	3,278	4,364 4,397 ^d	7,018 ^d	

Table 3-20. Two-Day Average^a Consumer-Only^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: All Sources (mL/day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- b Excludes individuals who did not ingest water from the source during the survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages. Does not include indirect consumption of bottled water.
- Estimates are less statistically reliable based on guidance published in the *Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations* (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-21. Two-Day Average^a Consumer-Only^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Community Water (mL/kg-day)

Population Group		Mean	SE	Percentiles										
	Sample Size			1 st	5 th	10 th	25 th	50 th	75 th	90 th	95 th	99 th	Max	
All ages	15,219	16.6	0.3	0.2	1.2	2.6	6.3	12.8	22.1	33.8	43.9	71.1	267.5 ^d	
Age group														
Birth to <1 month	20	132.8	20.0	3.5^{d}	4.4^{d}	11.2 ^d	21.1^{d}	151.9	190.5 ^d	219.7^{d}	224.0^{d}	253.0^{d}	253.0^{d}	
1 to <3 months	45	136.4	8.6	22.3^{d}	26.4^{d}	72.9^{d}	111.6 ^d	134.0	163.7 ^d	192.2 ^d	267.2^{d}	267.5^{d}	267.5^{d}	
3 to <6 months	65	92.9	8.5	1.0^{d}	12.0^{d}	22.8^{d}	64.4^{d}	91.0	116.8 ^d	143.3 ^d	158.4 ^d	252.6^{d}	252.6^{d}	
6 to <12 months	244	62.3	3.7	1.2 ^d	4.4^{d}	7.8	23.0	63.9	96.2	113.3	133.0^{d}	167.6 ^d	213.9^{d}	
Birth to <1 year	374	79.0	4.2	1.0^{d}	4.8^{d}	10.6	33.5	78.5	111.6	142.7	174.0^{d}	252.6^{d}	267.5^{d}	
1 to <2 years	394	22.1	1.4	0.6^{d}	1.4	2.3	7.9	18.5	28.7	48.7	57.3	84.5 ^d	216.4^{d}	
2 to <3 years	445	23.9	1.1	0.4^{d}	3.1	4.0	9.2	17.5	32.7	51.4	66.6	83.3^{d}	227.1^{d}	
3 to <6 years	860	18.7	0.8	0.3^{d}	1.7	4.0	7.5	14.4	26.2	38.8	45.2	67.3^{d}	126.6 ^d	
6 to <11 years	1,473	15.2	0.7	0.2^{d}	1.2	2.5	5.6	11.5	20.3	31.3	40.8	69.5^{d}	157.4 ^d	
11 to <16 years	1,449	10.4	0.8	0.1^{d}	0.5	1.1	2.9	6.8	13.1	24.7	31.1	62.2^{d}	81.9 ^d	
16 to <21 years	1,312	10.2	0.4	0.1^{d}	0.3	0.9	2.8	6.2	14.9	24.6	31.1	50.5^{d}	82.0^{d}	
21 to <30 years	1,318	15.9	0.8	0.1^{d}	0.7	1.7	5.2	11.7	21.5	34.4	46.9	67.1 ^d	99.9^{d}	
30 to <40 years	1,530	15.8	0.5	0.3^{d}	1.4	2.8	6.2	12.4	22.2	33.4	43.6	58.7^{d}	91.9^{d}	
40 to <50 years	1,532	17.2	0.6	0.2^{d}	1.6	3.1	7.2	13.5	23.5	35.6	43.3	64.8^{d}	110.1 ^d	
50 to <60 years	1,412	17.6	0.5	0.3^{d}	1.8	3.8	8.2	14.9	24.1	34.4	41.8	65.3^{d}	103.4 ^d	
60 to <70 years	1,453	17.3	0.6	0.6^{d}	2.5	4.5	8.7	14.8	22.9	33.3	39.8	55.4^{d}	120.7 ^d	
70 to <80 years	1,017	16.3	0.5	1.3 ^d	3.7	5.2	8.4	14.2	20.9	28.7	37.0	59.4^{d}	80.8^{d}	
80+ years	650	15.6	0.5	1.2 ^d	3.6	5.2	8.1	14.1	21.2	28.1	32.7	45.7^{d}	64.8^{d}	
Birth to <2 years	768	45.4	2.5	0.7^{d}	1.5	3.7	12.7	25.1	69.4	112.9	139.6	193.2 ^d	267.5^{d}	
2 to <16 years	4,227	14.9	0.4	0.2	1.0	1.9	4.9	10.7	20.0	32.6	44.0	70.3	227.1^{d}	
16 to <70 years	8,557	16.1	0.3	0.2	1.2	2.6	6.3	12.9	22.3	33.5	42.5	64.1	120.7 ^d	
21 to <50 years	4,380	16.3	0.4	0.2	1.2	2.6	6.2	12.5	22.6	34.7	43.9	64.8	110.1 ^d	
50+ years	4,532	17.1	0.4	0.6	2.5	4.4	8.4	14.7	22.8	32.5	39.6	58.0	120.7^{d}	
Race														
Mexican American	3,011	13.6	0.5	0.1	1.2	2.1	4.5	9.4	17.4	28.7	38.9	73.1	244.4 ^d	
Non-Hispanic black	3,560	12.0	0.4	0.1	0.6	1.5	3.7	8.3	15.5	25.8	33.5	61.0	267.5 ^d	
Non-Hispanic white	6,698	17.6	0.4	0.3	1.5	3.0	7.2	14.2	23.7	35.1	45.1	69.8	252.6^{d}	
Other Hispanic	1,207	14.6	0.5	0.4^{d}	1.4	2.3	5.7	10.8	18.5	29.8	41.0	65.8^{d}	224.0^{d}	
Other race—including multiple	743	19.1	1.0	0.3^{d}	1.8	3.5	7.8	14.7	24.5	38.0	51.3	84.7^{d}	227.1 ^d	

Table 3-21. Two-Day Average^a Consumer-Only^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Community Water (mL/kg-day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- Excludes individuals who did not ingest water from the source during the survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.
- Estimates are less statistically reliable based on guidance published in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-22. Two-Day Average ^a Consumer-Only ^b Estimates of Direct ^c Water Ingestion Based on National Health and Nutrition
Examination Survey (NHANES) 2005–2010: Bottled Water (mL/kg-day)

	Examina	ation Sur	vey (NHA	ANES) 20	005-201	0: Bottl	ed Wate	er (mL/k	g-day)				
								Pe	rcentiles				
Population Group	Sample Size	Mean	SE	1 st	5 th	10 th	25 th	50 th	75 th	90 th	95 th	99 th	Max
All ages	11,309	11.0	0.2	0.7	1.6	2.2	3.8	7.8	14.5	23.4	30.3	50.3	316.2 ^d
Age group													
Birth to <1 month	16	8.4	3.6	0.7^{d}	0.7^{d}	0.7^{d}	0.7^{d}	5.6	10.8^{d}	22.5^{d}	31.1^{d}	63.0^{d}	63.0^{d}
1 to <3 months	38	11.1	2.4	0.2^{d}	0.4^{d}	0.9^{d}	2.4^{d}	6.7	18.8^{d}	29.6^{d}	30.6^{d}	31.5^{d}	31.5^{d}
3 to <6 months	79	8.3	0.8	0.5^{d}	2.2^{d}	2.2^{d}	3.7	6.6	12.3	16.0^{d}	19.3 ^d	26.1^{d}	28.2^{d}
6 to <12 months	228	11.8	1.0	0.9^{d}	1.9^{d}	2.8	4.8	9.2	14.7	25.2	32.3^{d}	46.9^{d}	71.5^{d}
Birth to <1 year	361	11.0	0.7	0.4^{d}	1.4 ^d	2.2	4.2	8.1	14.1	25.2	30.6^{d}	46.9^{d}	71.5 ^d
1 to <2 years	317	16.8	1.2	0.7^{d}	3.1^{d}	3.8	6.0	12.7	24.1	39.5	48.4^{d}	66.7^{d}	78.5^{d}
2 to <3 years	332	19.7	1.9	1.0^{d}	3.1^{d}	3.6	5.3	13.8	23.4	41.3	52.1 ^d	96.9^{d}	316.2^{d}
3 to <6 years	617	16.5	1.0	1.2^{d}	2.7	3.6	6.1	10.9	21.3	37.0	43.7	83.4^{d}	105.8^{d}
6 to <11 years	1,036	12.0	0.5	1.1 ^d	2.2	2.8	4.7	8.7	14.8	24.5	34.4	61.5^{d}	114.5 ^d
11 to <16 years	1,236	9.2	0.4	0.6^{d}	1.4	2.4	4.0	6.7	11.6	20.0	25.4	35.8^{d}	66.8^{d}
16 to <21 years	1,111	11.1	0.6	1.3 ^d	2.1	2.7	4.0	8.3	15.0	23.4	29.6	50.1 ^d	106.4 ^d
21 to <30 years	1,125	11.5	0.5	1.0^{d}	1.8	2.3	4.2	8.8	15.6	24.5	30.4	45.5^{d}	103.3 ^d
30 to <40 years	1,244	11.3	0.5	0.7^{d}	1.6	2.2	3.8	8.4	15.1	24.2	33.2	49.4^{d}	84.1 ^d
40 to <50 years	1,240	10.7	0.5	0.7^{d}	1.6	2.1	3.4	7.9	14.2	22.6	29.6	45.8^{d}	166.7 ^d
50 to <60 years	991	9.9	0.4	0.7^{d}	1.4	1.9	3.3	7.3	13.3	21.4	28.2	46.0^{d}	75.2^{d}
60 to <70 years	1,008	8.9	0.4	0.9^{d}	1.3	1.8	3.1	6.3	12.5	20.3	23.3	37.0^{d}	65.8^{d}
70 to <80 years	507	8.5	0.5	0.3^{d}	1.1	1.4	2.9	5.9	11.9	19.9	25.8	30.8^{d}	48.1^{d}
80+ years	184	8.4	0.8	0.2^{d}	0.9^{d}	$1.0^{\rm d}$	2.4	6.2	11.1	17.6 ^d	23.0^{d}	45.4^{d}	80.9^{d}
Birth to <2 years	678	14.4	0.9	0.7^{d}	2.2	3.1	5.2	10.6	19.8	31.6	40.9	54.1 ^d	78.5^{d}
2 to <16 years	3,221	12.3	0.4	0.8	1.9	2.8	4.5	8.3	15.5	25.8	35.7	61.5	316.2^{d}
16 to <70 years	6,719	10.7	0.3	0.7	1.6	2.2	3.7	7.8	14.4	22.7	29.0	46.0	166.7 ^d
21 to <50 years	3,609	11.2	0.3	0.7	1.6	2.2	3.8	8.3	15.0	23.7	31.0	46.4	166.7 ^d
50+ years	2,690	9.3	0.3	0.6	1.2	1.8	3.1	6.6	12.8	20.9	26.2	42.3	80.9^{d}
Race	,												
Mexican American	3,349	12.0	0.3	0.9	1.7	2.4	4.5	9.1	15.8	24.3	31.7	55.1	114.5 ^d
Non-Hispanic black	2,598	10.6	0.3	0.8	1.7	2.3	3.8	7.6	14.1	23.3	29.6	47.9	84.2 ^d
Non-Hispanic white	3,681	10.5	0.3	0.7	1.5	2.1	3.6	7.5	14.0	22.3	29.0	48.5	166.7 ^d
Other Hispanic	1,120	13.1	0.8	1.1 ^d	1.7	2.2	4.3	8.6	17.0	29.1	36.6	69.4 ^d	316.2 ^d
Other race—including multiple	561	12.2	0.6	0.7^{d}	2.0	2.8	4.5	9.3	16.7	27.7	31.4	43.7 ^d	87.6 ^d

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-22. Two-Day Average^a Consumer-Only^b Estimates of Direct^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Bottled Water (mL/kg-day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- b Excludes individuals who did not ingest water from the source during the survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water, defined as water added in the preparation of food or beverages, was not accounted for in the estimation of bottled water intake.
- Estimates are less statistically reliable based on guidance published in the *Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations* (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-23. Two-Day Average^a Consumer-Only^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Other Sources (mL/kg-day)

	h and Nutri	D-manufile.											
	Sample								Percentiles				
Population Group	Size	Mean	SE	1 st	5 th	10^{th}	25^{th}	50 th	75 th	90^{th}	95 th	99 th	Max
All ages	8,722	14.1	0.5	0.1	0.6	1.3	3.8	8.8	17.8	30.3	42.9	99.4	343.1
Age group													
Birth to <1 month	47	147.9	12.5	34.9^{d}	51.6 ^d	66.5^{d}	99.0^{d}	148.4	183.2 ^d	205.8^{d}	296.5^{d}	302.0^{d}	302.0^{d}
1 to <3 months	134	125.5	5.2	5.2^{d}	26.9^{d}	54.7^{d}	102.0	122.0	154.2	194.7 ^d	218.4^{d}	237.8^{d}	343.1 ^d
3 to <6 months	175	91.9	5.2	0.6^{d}	1.9 ^d	8.9^{d}	54.8	98.5	123.3	157.4 ^d	176.3 ^d	215.8^{d}	225.8^{d}
6 to <12 months	328	63.8	2.8	0.1^{d}	1.8^{d}	6.1	29.0	63.8	89.7	119.3	140.8^{d}	167.2 ^d	239.7^{d}
Birth to <1 year	684	88.0	3.2	0.6^{d}	2.6	8.4	49.2	86.5	120.9	157.4	188.3	237.8^{d}	343.1^{d}
1 to <2 years	310	18.6	1.8	0.2^{d}	1.1^{d}	2.7	5.9	13.4	24.2	39.4	58.4^{d}	77.0^{d}	130.3 ^d
2 to <3 years	282	19.6	2.1	0.2^{d}	1.1 ^d	1.5	5.3	12.7	26.1	48.2	63.5^{d}	81.9 ^d	162.0 ^d
3 to <6 years	525	12.3	0.8	0.3^{d}	1.1	1.7	3.9	8.1	15.9	26.1	33.9	67.2^{d}	164.9 ^d
6 to <11 years	755	11.2	1.0	0.3^{d}	0.9	1.5	3.2	7.6	15.1	25.3	35.9	53.6^{d}	72.1 ^d
11 to <16 years	994	8.9	0.5	0.1^{d}	0.3	0.7	2.0	5.9	12.4	21.7	27.0	45.7^{d}	81.1 ^d
16 to <21 years	760	9.1	0.9	0.1^{d}	0.4	0.7	2.0	5.5	12.5	22.9	30.0	45.2^{d}	120.6 ^d
21 to <30 years	682	8.6	1.0	0.1^{d}	0.3	0.6	2.0	5.5	10.9	21.1	30.5	48.3^{d}	94.1 ^d
30 to <40 years	708	11.8	1.0	0.1^{d}	0.4	1.1	3.0	7.4	16.0	30.3	37.5	55.0^{d}	86.9 ^d
40 to <50 years	805	14.0	1.0	0.2^{d}	0.6	1.6	4.4	10.0	20.1	31.1	41.6	56.7^{d}	98.0^{d}
50 to <60 years	666	15.7	1.0	0.1^{d}	1.8	2.8	5.6	11.0	21.7	32.9	44.3	72.7^{d}	83.6 ^d
60 to <70 years	742	13.0	0.8	0.3^{d}	1.5	2.7	5.5	19.7	17.6	25.7	35.5	55.0^{d}	93.3 ^d
70 to <80 years	546	14.7	0.8	0.2^{d}	1.3	3.2	6.5	12.6	21.0	28.8	33.3	46.8^{d}	61.3 ^d
80+ years	263	13.2	0.5	0.8^{d}	2.6^{d}	4.5	7.5	12.6	16.2	24.3	28.1^{d}	34.9^{d}	53.6 ^d
Birth to <2 years	994	60.1	2.9	0.5^{d}	1.8	3.9	11.6	40.2	99.0	140.4	163.9	218.4^{d}	343.1 ^d
2 to <16 years	2,556	11.1	0.6	0.1	0.6	1.2	3.0	7.6	14.9	25.2	34.9	58.3	164.9 ^d
16 to <70 years	4,363	12.3	0.7	0.1	0.5	1.3	3.6	8.4	16.9	28.8	37.8	55.4	120.6 ^d
21 to <50 years	2,195	11.7	0.8	0.1	0.5	1.0	3.1	7.8	16.0	28.5	36.9	54.9	98.0^{d}
50+ years	2,217	14.5	0.5	0.2	1.6	2.8	5.7	11.2	20.0	29.8	38.4	60.6	93.3 ^d
Race	*												
Mexican American	2,620	11.6	0.5	0.1	0.6	1.1	2.7	5.7	11.3	22.1	38.9	127.0	296.5d
Non-Hispanic black	1,570	9.5	0.6	0.1^{d}	0.3	0.5	1.7	4.5	9.3	15.6	27.7	135.1 ^d	343.1 ^d
Non-Hispanic white	3,307	15.6	0.7	0.2	0.7	1.6	4.7	11.1	20.8	33.0	44.3	86.3	276.2 ^d
Other Hispanic	827	10.6	0.8	0.2^{d}	0.6	1.3	3.2	6.1	10.2	19.7	30.7	119.8 ^d	200.5 ^d
Other Race—including multiple	398	15.7	1.0	0.2^{d}	1.3	2.5	4.8	9.4	20.6	29.2	44.4	115.8 ^d	237.8 ^d

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-23. Two-Day Average^a Consumer-Only^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: Other Sources (mL/kg-day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- b Excludes individuals who did not ingest water from the source during the survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.
- Estimates are less statistically reliable based on guidance published in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-24. Two-Day Average^a Consumer-Only^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: All Sources (mL/kg-day)

					• `					·			
	Sample								Percentile	S			
Population Group	Size	Mean	SE	1 st	5 th	10 th	25^{th}	50^{th}	75 th	90 th	95 th	99 th	Max
All ages	24,299	20.5	0.3	0.6	2.6	4.6	9.3	16.6	26.6	39.5	49.5	84.0	343.1 ^d
Age group													
Birth to <1 month	68	141.3	12.6	5.6^{d}	11.2 ^d	20.8^{d}	95.0^{d}	149.0	190.5^{d}	224.0^{d}	262.6^{d}	302.0^{d}	302.0^{d}
1 to <3 months	182	128.3	5.0	2.4^{d}	23.8^{d}	50.1^{d}	103.9	124.7	163.7	198.6 ^d	218.4 ^d	267.5^{d}	343.1 ^d
3 to <6 months	243	93.1	4.1	0.6^{d}	1.9 ^d	15.6	60.9	96.6	121.3	157.3	173.6 ^d	225.8^{d}	252.6^{d}
6 to <12 months	577	66.5	2.3	0.8^{d}	5.7	10.9	29.1	67.2	96.5	123.8	139.1	167.6 ^d	239.7^{d}
Birth to <1 year	1,070	86.4	2.7	0.8^{d}	5.7	14.4	43.7	85.0	118.4	156.8	188.9	239.7^{d}	343.1^{d}
1 to <2 years	714	27.0	1.1	0.7^{d}	3.4	5.4	14.2	22.4	34.4	54.1	69.4	90.1^{d}	216.4 ^d
2 to <3 years	741	29.4	1.2	0.9^{d}	3.8	6.0	12.0	23.6	41.7	60.2	71.6	95.3 ^d	316.2^{d}
3 to <6 years	1,405	22.8	0.7	0.7^{d}	3.0	5.1	10.1	18.8	31.1	44.2	53.8	85.9 ^d	164.9 ^d
6 to <11 years	2,263	18.7	0.6	0.4	2.3	4.0	8.4	15.2	25.2	36.2	47.6	70.9	157.7 ^d
11 to <16 years	2,504	13.8	0.6	0.2	1.0	2.1	5.6	10.8	17.9	28.7	38.4	61.9	81.9 ^d
16 to <21 years	2,129	15.4	0.5	0.2	1.3	2.7	5.9	12.6	20.9	32.7	41.0	53.3	120.6 ^d
21 to <30 years	2,052	19.4	0.7	0.4	2.1	4.0	8.3	16.3	25.4	39.7	49.0	67.3	112.0 ^d
30 to <40 years	2,262	20.5	0.5	0.6	3.0	5.0	10.0	16.9	28.5	40.9	47.9	65.0	95.0^{d}
40 to <50 years	2,369	21.2	0.6	0.6	2.9	5.5	10.5	18.5	28.1	39.9	48.1	72.3	178.8 ^d
50 to <60 years	2,095	21.1	0.5	0.8	3.0	5.6	11.1	18.4	28.4	38.8	46.6	72.7	122.9 ^d
60 to <70 years	2,211	19.3	0.5	1.3	4.4	6.2	10.6	17.0	25.4	35.3	41.8	56.5	120.7 ^d
70 to <80 years	1,570	18.2	0.5	2.0^{d}	4.3	6.5	10.1	16.5	23.2	32.1	40.2	56.9^{d}	80.8^{d}
80+ years	914	16.5	0.4	2.3^{d}	4.5	6.2	9.7	14.8	22.0	28.1	32.5	47.6^{d}	91.8 ^d
Birth to <2 years	1,784	56.6	1.8	0.7^{d}	4.0	7.0	18.0	36.4	86.3	131.2	157.3	215.8 ^d	343.1 ^d
2 to <16 years	6,913	18.6	0.4	0.3	1.7	3.5	7.7	14.2	24.9	38.7	49.3	74.6	316.2 ^d
16 to <70 years	13,118	19.9	0.3	0.6	2.7	4.8	9.7	17.0	26.9	38.8	46.6	67.9	178.8 ^d
21 to <50 years	6,683	20.4	0.4	0.6	2.7	4.9	9.7	17.3	27.7	40.0	48.4	68.4	178.8 ^d
50+ years	6,790	19.6	0.3	1.2	3.8	6.0	10.6	17.2	25.6	35.7	43.4	65.3	122.9 ^d
Race	-,												
Mexican American	5,725	19.7	0.3	0.4	2.3	4.0	8.2	14.7	24.3	38.2	50.6	108.4	296.5d
Non-Hispanic black	5,246	16.5	0.3	0.3	1.9	3.2	6.7	12.5	20.8	31.7	40.2	88.4	343.1 ^d
Non-Hispanic white	10,116	21.0	0.4	0.6	2.8	5.0	10.0	17.6	27.5	40.2	49.6	80.3	284.4 ^d
Other Hispanic	2,058	20.3	0.7	0.6	3.0	4.3	8.7	14.7	25.6	39.3	51.5	112.0	316.2 ^d
Other race—including multiple	1,154	23.9	0.7	1.0 ^d	3.8	5.9	11.7	19.2	30.2	45.9	56.2	96.5 ^d	237.8 ^d

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-24. Two-Day Average^a Consumer-Only^b Estimates of Combined Direct and Indirect^c Water Ingestion Based on National Health and Nutrition Examination Survey (NHANES) 2005–2010: All Sources (mL/kg-day) (Continued)

- Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.
- b Excludes individuals who did not ingest water from the source during the survey period.
- Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages. Does not include indirect consumption of bottled water.
- Estimates are less statistically reliable based on guidance published in the *Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations* (NCHS, 1993).

HNIS = Human Nutrition Information Service.

NCHS = National Center for Health Statistics.

SE = Standard error.

Source: U.S. EPA analysis of NHANES 2005–2010 data using http://fcid.foodrisk.org/.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-25. Intake Rate	s of Total Fluids and Total Tap V	Water by Age Group
Ave	erage Daily Consumption Rate (L/day)	
Age Group	Total Fluids ^a	Total Tap Water ^b
6 to 11 months	0.80	0.20
2 years 14 to 16 years	0.99 1.47	0.50 0.72
25 to 30 years 60 to 65 years	1.76 1.63	1.04 1.26

Includes milk, "ready-to-use" formula, milk-based soup, carbonated soda, alcoholic beverages, canned juices, water, coffee, tea, reconstituted juices, and reconstituted soups. Does not include reconstituted infant formula.

Source: Derived from Pennington (1983).

Ta	ble 3-26. Mean and St	andard Error (SE) for the Water by Age	•	everages and Tap
Age years	Tap Water Intake mL	Water-Based Drinks mL ^a	Soups mL	Total Beverage Intake ^b mL
All ages	662.5 ± 9.9	457.1 ± 6.7	45.9 ± 1.2	$1,434.0 \pm 13.7$
<1	170.7 ± 64.5	8.3 ± 43.7	10.1 ± 7.9	307.0 ± 89.2
1 to 4	434.6 ± 31.4	97.9 ± 21.5	43.8 ± 3.9	743.0 ± 43.5
5 to 9	521.0 ± 26.4	116.5 ± 18.0	36.6 ± 3.2	861.0 ± 36.5
10 to 14	620.2 ± 24.7	140.0 ± 16.9	35.4 ± 3.0	$1,025.0 \pm 34.2$
15 to 19	664.7 ± 26.0	201.5 ± 17.7	34.8 ± 3.2	$1,241.0 \pm 35.9$
20 to 24	656.4 ± 33.9	343.1 ± 23.1	38.9 ± 4.2	$1,484.0 \pm 46.9$
25 to 29	619.8 ± 34.6	441.6 ± 23.6	41.3 ± 4.2	$1,531.0 \pm 48.0$
30 to 39	636.5 ± 27.2	601.0 ± 18.6	40.6 ± 3.3	$1,642.0 \pm 37.7$
40 to 59	735.3 ± 21.1	686.5 ± 14.4	51.6 ± 2.6	$1,732.0 \pm 29.3$
>60	762.5 ± 23.7	561.1 ± 16.2	59.4 ± 2.9	$1,547.0 \pm 32.8$

Includes water-based drinks such as coffee, etc. Reconstituted infant formula does not appear to be included in this group.

Source: U.S. EPA (1984).

Includes water, coffee, tea, reconstituted juices, and reconstituted soups.

Includes tap water and water-based drinks such as coffee, tea, soups, and other drinks such as soft drinks, fruitades, and alcoholic drinks.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-27. Average	Гоtal Tap Water Intake Rate by Sex	, Age, and Geographic Area
Group/Subgroup	Number of Respondents	Average Total Tap Water Intake ^{a,b} L/day
Total group	5,258	1.39
Sex		
Males	3,892	1.40
Females	1,366	1.35
Age, years		
21 to 44	291	1.30
45 to 64	1,991	1.48
65 to 84	2,976	1.33
Geographic area		
Atlanta	207	1.39
Connecticut	844	1.37
Detroit	429	1.33
Iowa	743	1.61
New Jersey	1,542	1.27
New Mexico	165	1.49
New Orleans	112	1.61
San Francisco	621	1.36
Seattle	316	1.44
Utah	279	1.35

^a Standard deviations not reported in Cantor et al. (1987).

Source: Cantor et al. (1987).

Table 3-28. Frequ	uency Distribution of Total Tap V	Water Intake Rates ^a
Consumption Rate L/day	Frequency ^b %	Cumulative Frequency ^b %
≤0.80	20.6	20.6
0.81 - 1.12	21.3	41.9
1.13-1.44	20.5	62.4
1.45-1.95	19.5	81.9
≥1.96	18.1	100.0

Represents consumption of tap water and beverages derived from tap water in a "typical" winter week.

Source: Cantor et al. (1987).

Total tap water defined as all water and beverages derived from tap water.

Extracted from Table 3 in the article by Cantor et al. (1987).

Chapter 3—Ingestion of Water and Other Select Liquids

		Table 3-29	9. Total T	Гар Water Inta	ke (mL/o	day) for E	Both Sex	es Comb	ined ^a				
	Number of							Percer	ntile Distrib	ution			
Age (years)	Observations	Mean	SD	SE of Mean	1	5	10	25	50	75	90	95	99
<0.5	182	272	247	18	*	0	0	80	240	332	640	800	*
0.5 to 0.9	221	328	265	18	*	0	0	117	268	480	688	764	*
1 to 3	1,498	646	390	10	33	169	240	374	567	820	1,162	1,419	1,899
4 to 6	1,702	742	406	10	68	204	303	459	660	972	1,302	1,520	1,932
7 to 10	2,405	787	417	9	68	241	318	484	731	1,016	1,338	1,556	1,998
11 to 14	2,803	925	521	10	76	244	360	561	838	1,196	1,621	1,924	2,503
15 to 19	2,998	999	593	11	55	239	348	587	897	1,294	1,763	2,134	2,871
20 to 44	7,171	1,255	709	8	105	337	483	766	1,144	1,610	2,121	2,559	3,634
45 to 64	4,560	1,546	723	11	335	591	745	1,057	1,439	1,898	2,451	2,870	3,994
65 to 74	1,663	1,500	660	16	301	611	766	1,044	1,394	1,873	2,333	2,693	3,479
>75	878	1,381	600	20	279	568	728	961	1,302	1,706	2,170	2,476	3,087
Infants (ages <1)	403	302	258	13	0	0	0	113	240	424	649	775	1,102
Children (ages 1 to 10)	5,605	736	410	5	56	192	286	442	665	960	1,294	1,516	1,954
Teens (ages 11 to 19)	5,801	965	562	7	67	240	353	574	867	1,246	1,701	2,026	2,748
Adults (ages 20 to 64)	11,731	1,366	728	7	148	416	559	870	1,252	1,737	2,268	2,707	3,780
Adults (ages >65)	2,541	1,459	643	13	299	598	751	1,019	1,367	1,806	2,287	2,636	3,338
All	26,081	1,193	702	4	80	286	423	690	1,081	1,561	2,092	2,477	3,415

Total tap water is defined as "all water from the household tap consumed directly as a beverage or used to prepare foods and beverages."

Source: Ershow and Cantor (1989).

^{*} Value not reported due to insufficient number of observations.

SE = Standard error.

Chapter 3—Ingestion of Water and Other Select Liquids

	Nur	mber of			Water Inta		0 17							
	Obse	ervations	_		_				Perce	ntile Distri	bution			
Age (years)	Actual Count	Weighted Count	Mean	SD	SE of Mean	1	5	10	25	50	75	90	95	99
<0.5	182	201.2	52.4	53.2	3.9	*	0	0	14.8	37.8	66.1	128.3	155.6	*
0.5 to 0.9	221	243.2	36.2	29.2	2	*	0	0	15.3	32.2	48.1	69.4	102.9	*
1 to 3	1,498	1,687.7	46.8	28.1	0.7	2.7	11.8	17.8	27.2	41.4	60.4	82.1	101.6	140.6
4 to 6	1,702	1,923.9	37.9	21.8	0.5	3.4	10.3	14.9	21.9	33.3	48.7	69.3	81.1	103.4
7 to 10	2,405	2,742.4	26.9	15.3	0.3	2.2	7.4	10.3	16	24	35.5	47.3	55.2	70.5
11 to 14	2,803	3,146.9	20.2	11.6	0.2	1.5	4.9	7.5	11.9	18.1	26.2	35.7	41.9	55
15 to 19	2,998	3,677.9	16.4	9.6	0.2	1	3.9	5.7	9.6	14.8	21.5	29	35	46.3
20 to 44	7,171	13,444.5	18.6	10.7	0.1	1.6	4.9	7.1	11.2	16.8	23.7	32.2	38.4	53.4
45 to 64	4,560	8,300.4	22	10.8	0.2	4.4	8	10.3	14.7	20.2	27.2	35.5	42.1	57.8
65 to 74	1,663	2,740.2	21.9	9.9	0.2	4.6	8.7	10.9	15.1	20.2	27.2	35.2	40.6	51.6
>75	878	1,401.8	21.6	9.5	0.3	3.8	8.8	10.7	15	20.5	27.1	33.9	38.6	47.2
Infants (ages <1) Children (ages 1 to 10)	403 5,605	444.3 6,354.1	43.5 35.5	42.5 22.9	2.1 0.3	0 2.7	0 8.3	0 12.5	15.3 19.6	35.3 30.5	54.7 46.0	101.8 64.4	126.5 79.4	220.5 113.9
Teens (ages 11 to 19)	5,801	6,824.9	18.2	10.8	0.1	1.2	4.3	6.5	10.6	16.3	23.6	32.3	38.9	52.6
Adults (ages 20 to 64)	11,731 2,541	21,744.9 4,142.0	19.9 21.8	10.8 9.8	0.1 0.2	2.2 4.5	5.9 8.7	8.0 10.9	12.4 15.0	18.2 20.3	25.3 27.1	33.7 34.7	40.0 40.0	54.5 51.
Adults (ages >65) All	26,081	4,142.0 39,510.2	21.8	9.8 15.4	0.2	4.3 1.7	5.8	8.2	13.0	20.3 19.4	28.0	34.7 39.8	50.0	79.5

^a Total tap water is defined as "all water from the household tap consumed directly as a beverage or used to prepare foods and beverages."

Source: Ershow and Cantor (1989).

^{*} Value not reported due to insufficient number of observations.

SE = Standard error.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-31	. Total Tap W	ater Inta	ke (as %	of total	water in	take) by	Broad	Age Cat	egory ^{a,b}	
					Percen	entile Distribution				
Age (years)	Mean	1	5	10	25	50	75	90	95	99
<1	26	_c	_c	_c	12	22	37	55	62	82
1 to 10	45	6	19	24	34	45	57	67	72	81
11 to 19	47	6	18	24	35	47	59	69	74	83
20 to 64	59	12	27	35	49	61	72	79	83	90
>65	65	25	41	47	58	67	74	81	84	90

a Does not include pregnant women, lactating women, or breast-fed children.

Source: Ershow and Cantor (1989).

					% of Ta	p Water			
Age years	Source	Mean	SD	5	25	50	75	95	99
<1	Food ^c	11	24	_d	_d	_d	10	70	100
	Drinking water	69	37	_d	39	87	100	100	100
	Other beverages	20	33	_d	_d	_d	22	100	100
	All sources	100							
1 to 10	Food ^c	15	16	_d	5	10	19	44	100
	Drinking water	65	25	_d	52	70	84	96	100
	Other beverages	20	21	_d	_d	15	32	63	93
	All sources	100							
11 to 19	Food ^c	13	15	_d	3	8	17	38	100
	Drinking water	65	25	_d	52	70	85	98	100
	Other beverages	22	23	_d	_d	16	34	68	96
	All sources	100							
20 to 64	Food ^c	8	10	_d	2	5	11	25	49
	Drinking water	47	26	_d	29	48	67	91	100
	Other beverages	45	26	_d	25	44	63	91	100
	All sources	100							
>65	Food ^c	8	9	_d	2	5	11	23	38
	Drinking water	50	23	_d	36	52	66	87	99
	Other beverages	42	23	3	27	40	57	85	100
	All sources	100							
All	Food ^c	10	13	_d	2	6	13	31	64
	Drinking water	54	27	_d	36	56	75	95	100
	Other beverages	36	27	_d	14	34	55	87	100
	All sources	100							

^a Does not include pregnant women, lactating women, or breast-fed children.

Source: Ershow and Cantor (1989).

Total tap water is defined as "all water from the household tap consumed directly as a beverage or used to prepare foods and beverages."

Value is less than 0.5%.

b Individual values may not add to totals due to rounding.

Food category includes soups.

d Value is less than 0.5%.

Chapter 3—Ingestion of Water and Other Select Liquids

Group	I	n Total Fluid Intake Rate	•
years	μ	σ	R^2
<1	6.979	0.291	0.996
1 to <11	7.182	0.340	0.953
11 to <20	7.490	0.347	0.966
20 to <65	7.563	0.400	0.977
>65	7.583	0.360	0.988
All ages	7.487	0.405	0.984
Simulated balanced population	7.492	0.407	1.000
Group	I	n Total Fluid Intake Rate	;
years	μ	σ	R^2
<1	5.587	0.615	0.970
1 to <11	6.429	0.498	0.984
11 to <20	6.667	0.535	0.986
20 to <65	7.023	0.489	0.956
>65	7.088	0.476	0.978
All ages	6.870	0.530	0.978
Simulated balanced population	6.864	0.575	0.995

= Standard deviation.

Source: Roseberry and Burmaster (1992).

= Mean.

μ

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-34. Estimate	Table 3-34. Estimated Quantiles and Means for Total Tap Water Intake Rates (mL/day) ^a									
Age Group		_ Arithmetic								
years	2.5	25	50	75	97.5	Average				
<1	80	176	267	404	891	323				
1 to <11	233	443	620	867	1,644	701				
11 to <20	275	548	786	1,128	2,243	907				
20 to <65	430	807	1,122	1,561	2,926	1,265				
>65	471	869	1,198	1,651	3,044	1,341				
All ages	341	674	963	1,377	2,721	1,108				
Simulated balanced population	310	649	957	1,411	2,954	1,129				

Total tap water is defined as "all water from the household tap consumed directly as a beverage or used to prepare foods and beverages."

Source: Roseberry and Burmaster (1992).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-33. Water ingested ()	mL/day) ^a from Water by Itself a				
Category		6 Weeks $N = 124$	3 Months $N = 120$	6 Months $N = 99$	9 Months $N = 77$
Water by itself	Range Per capita mean ^b \pm SD Consumer-only mean ^c Percent consuming ^d	$0-355$ 30 ± 89 89 28	$0-355$ 30 ± 59 89 24	$0-266$ 30 ± 59 118 42	$0-473$ 89 ± 89 118 66
Water added to formula-powdered concentrate	Range Per capita mean ± SD Consumer-only mean Percent consuming	$0-1,242$ 177 ± 296 473 39	$0-1,242$ 266 ± 384 621 42	$0-1,124$ 266 ± 355 562 48	$0-1,064$ 207 ± 325 562 36
Liquid concentrate	Range Per capita mean ± SD Consumer-only mean Percent consuming	$0-621$ 89 ± 148 355 23	$0-680$ 237 ± 207 384 30	$0-710$ 148 ± 207 414 35	$0-532$ 59 ± 148 325 21
All concentrated formula	Range Per capita mean ± SD Consumer-only mean Percent consuming	$0-1,242$ 266 ± 296 444 60	$0-1,242$ 384 ± 355 562 68	$0-1,123$ 414 ± 325 532 81	$0-1,064$ 266 ± 296 503 56
Water added to juices and other beverages	Range Per capita mean ± SD Consumer-only mean Percent consuming	$0-118$ $<30 \pm 30$ 89 3	$0-710$ 30 ± 89 207 9	$0-473$ 30 ± 89 148 18	$0-887$ 59 ± 148 207 32
Water added to powdered baby foods and cereals	Range Per capita mean ± SD Consumer-only mean Percent consuming	$0-30$ $<30 \pm 30$ 30 2	$0-177$ $<30 \pm 30$ 59 17	$0-266$ 59 ± 59 89 64	$0-177$ 30 ± 59 89 43
Water added to other foods (soups, Jell-o, puddings)	Range Per capita mean ± SD Consumer-only mean Percent consuming	- - - 0	$0-118$ 30 ± 30 89 2	0-118 <30 ± 30 59 8	$0-355$ 30 ± 59 118 29

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-35. Water Ingested (mL/day) ^a from Water by Itself and Water Added to Other Beverages and Foods (Continued)									
Category		6 Weeks N = 124	3 Months $N = 120$	6 Months N = 99	9 Months N = 77				
All sources of water	Range Per capita mean ± SD Consumer-only mean Percent consuming	$0-1,242$ 296 ± 325 414 68	$0-1,419$ 414 ± 414 562 77	$0-1,123$ 473 ± 325 503 94	0-1,745 444 ± 355 473 97				

a Converted from ounces/day; 1 fluid ounce = 29.57 mL.

Source: Levy et al. (1995).

Mean intake among entire sample.

Mean intake for only those ingesting water from the particular category.

d Percentage of infants receiving water from that individual source.

N =Number of observations.

Indicates there is insufficient sample size to estimate means.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-36. Mean per Capita Drinking Water Intake Based on U.S. Department of Agriculture (USDA), Continuing Survey of Food Intake by Individuals (CSFII) Data from 1989–1991 (mL/day)

Sex and Age	Plain Drinking			Fruit Drinks	
years	Water	Coffee	Tea	and Adesa	Total
Males and females:					
<1	194	0	< 0.5	17	211.5
1 to 2	333	< 0.5	9	85	427.5
3 to 5	409	2	26	100	537
<u>≤</u> 5	359	1	17	86	463
Males:					
6 to 11	537	2	44	114	697
12 to 19	725	12	95	104	936
20 to 29	842	168	136	101	1,247
30 to 39	793	407	136	50	1,386
40 to 49	745	534	149	53	1,481
50 to 59	755	551	168	51	1,525
60 to 69	946	506	115	34	1,601
70 to 79	824	430	115	45	1,414
<u>≥</u> 80	747	326	165	57	1,295
<u>≥</u> 20	809	408	139	60	1,416
Females:					
6 to 11	476	1	40	86	603
12 to 19	604	21	87	87	799
20 to 29	739	154	120	61	1,074
30 to 39	732	317	136	59	1,244
40 to 49	781	412	174	36	1,403
50 to 59	819	438	137	37	1,431
60 to 69	829	429	124	36	1,418
70 to 79	772	324	161	34	1,291
>80	856	275	149	28	1,308
>20	774	327	141	46	1,288
All individuals	711	260	114	65	1,150

Includes regular and low-calorie fruit drinks, punches, and ades, including those made from powdered mix and frozen concentrate. Excludes fruit juices and carbonated drinks.

Source: USDA (1995).

Chapter 3—Ingestion of Water and Other Select Liquids

				Nu	mber of Gl	asses in a Da	у	
Population Group	Total N	None	1-2	3-5	6–9	10-19	20+	DK
Overall	4,663	1,334	1,225	1,253	500	151	31	138
Sex								
Male	2,163	604	582	569	216	87	25	65
Female	2,498	728	643	684	284	64	6	73
Refused	2	2	-	-	-	-	-	-
Age (years)								
1 to 4	263	114	96	40	7	1	0	5
5 to 11	348	90	127	86	15	7	2	20
12 to 17	326	86	109	88	22	7	-	11
18 to 64	2,972	908	751	769	334	115	26	54
>64	670	117	127	243	112	20	2	42
Race								
White	3,774	1,048	1,024	1,026	416	123	25	92
Black	463	147	113	129	38	9	1	21
Asian	77	25	18	23	6	1	-	4
Some others	96	36	18	22	6	7	2	5
Hispanic	193	63	42	40	28	10	2	7
Refused	60	15	10	13	6	1	1	9
Hispanic								
No	4,244	1,202	1,134	1,162	451	129	26	116
Yes	347	116	80	73	41	18	4	13
DK	26	5	6	7	4	3	-	1
Refused	46	11	5	11	4	1	1	8
Employment	10	11	3	11	'		•	O
Full-time	2,017	637	525	497	218	72	18	40
Part-time	379	90	94	120	50	13	7	5
Not employed	1,309	313	275	413	188	49	3	54
Refused	32	6	4	11	1	2	1	4
Education	32	O	4	11	1	2	1	7
	399	89	95	118	51	14	2	28
<high school<="" td=""><td>1,253</td><td>89 364</td><td>95 315</td><td>330</td><td>132</td><td>52</td><td>13</td><td>37</td></high>	1,253	89 364	95 315	330	132	52	13	37
High school graduate	1,255 895	258	313 197	275	132	31	5	9
<college< td=""><td>895 650</td><td>258 195</td><td>197</td><td>275 181</td><td>82</td><td>31 19</td><td>5 4</td><td>6</td></college<>	895 650	258 195	197	275 181	82	31 19	5 4	6
College graduate					82 62			
Post graduate	445	127	109	113	02	16	3	12
Census region	1.040	251	262	200	05	22	7	20
Northeast	1,048	351	262	266	95 127	32	7	28
Midwest	1,036	243	285	308	127	26	9	33
South	1,601	450	437	408	165	62	11	57
West	978	290	241	271	113	31	4	20
Day of week	2.55	064	0.40	0.62	22.1	0.5	2=	
Weekday	3,156	864	840	862	334	96	27	106
Weekend	1,507	470	385	391	166	55	4	32
Season			_					
Winter	1,264	398	321	336	128	45	5	26
Spring	1,181	337	282	339	127	33	10	40
Summer	1,275	352	323	344	155	41	9	40
Fall	943	247	299	234	90	32	7	32

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-37.	Table 3-37. Number of Respondents Who Consumed Tap Water at a Specified Daily Frequency (Continued)										
				Nu	mber of G	asses in a Da	ıy				
Population Group	Total N	None	1-2	3-5	6-9	10-19	20+	DK			
Asthma											
No	4,287	1,232	1,137	1,155	459	134	29	115			
Yes	341	96	83	91	40	16	1	13			
DK	35	6	5	7	1	1	1	10			
Angina											
No	4,500	1,308	1,195	1,206	470	143	29	123			
Yes	125	18	25	40	27	6	1	6			
DK	38	8	5	7	3	2	1	9			
Bronchitis/emphysema											
No	4,424	1,280	1,161	1,189	474	142	29	124			
Yes	203	48	55	58	24	9	1	5			
DK	36	6	9	6	2	-	1	9			

- = Missing data. DK = Don't know. N = Sample size.

Refused = Respondent refused to answer.

Source: U.S. EPA (1996).

Table 3-38. N	umber of R			onsumed J Daily Freq		stituted wit	h Tap Wat	er		
	Number of Glasses in a Day									
Population Group	Total N	None	1-2	3-5	6-9	10-19	20+	DK		
Overall	4,663	1,877	1,418	933	241	73	21	66		
Sex										
Male	2,163	897	590	451	124	35	17	33		
Female	2,498	980	826	482	117	38	4	33		
Refused	2	-	2	-	-	-	-	-		
Age (years)										
1 to 4	263	126	71	48	11	4	1	2		
5 to 11	348	123	140	58	12	2	1	11		
12 to 17	326	112	118	63	18	7	1	4		
18 to 64	2,972	1,277	817	614	155	46	16	30		
>64	670	206	252	133	43	12	2	14		
Race										
White	3,774	1,479	1,168	774	216	57	16	44		
Black	463	200	142	83	15	9	1	7		
Asian	77	33	27	15	1	-	-	0		
Some others	96	46	19	24	2	1	3	1		
Hispanic	193	95	51	30	5	5	1	5		
Refused	60	24	11	7	2	1	-	9		

Chapter 3—Ingestion of Water and Other Select Liquids

				Num	ber of Glasse	es in a Day		
Population Group	Total N	None	1-2	3-5	6-9	10-19	20+	DK
Hispanic								
Ño	4,244	1,681	1,318	863	226	64	17	49
Yes	347	165	87	61	14	7	4	7
DK	26	11	6	5	_	1	-	3
Refused	46	20	7	4	1	1	-	7
Employment								
Full-time	2,017	871	559	412	103	32	9	20
Part-time	379	156	102	88	19	7	2	5
Not employed	1,309	479	426	265	75	20	7	21
Refused	32	15	4	4	2	1	-	3
Education								
<high school<="" td=""><td>399</td><td>146</td><td>131</td><td>82</td><td>25</td><td>7</td><td>2</td><td>4</td></high>	399	146	131	82	25	7	2	4
High school graduate	1,253	520	355	254	68	21	7	17
<college< td=""><td>895</td><td>367</td><td>253</td><td>192</td><td>47</td><td>18</td><td>5</td><td>11</td></college<>	895	367	253	192	47	18	5	11
College graduate	650	274	201	125	31	7	1	5
Post graduate	445	182	130	92	26	5	3	4
Census region							-	
Northeast	1,048	440	297	220	51	13	4	15
Midwest	1,036	396	337	200	63	17	4	14
South	1,601	593	516	332	84	26	10	28
West	978	448	268	181	43	17	3	9
Day of week	770	110	200	101	15	17	3	
Weekday	3,156	1,261	969	616	162	51	11	46
Weekend	1,507	616	449	307	79	22	10	20
Season	1,507	010	112	307	17	22	10	20
Winter	1,264	529	382	245	66	23	4	10
Spring	1,181	473	382	215	54	19	8	17
Summer	1,181	490	389	263	68	18	6	28
Fall	943	385	265	210	53	13	3	11
Asthma	743	363	203	210	33	13	3	11
No	4,287	1,734	1,313	853	216	69	20	55
Yes	4,287 341	1,734	1,313	833 74	216 25	3	20 1	5 5
DK	35	130	3	6	-	3 1	-	6
Angina	33	13	3	υ	-	1	-	Ü
Angma No	4,500	1,834	1,362	900	231	67	20	59
Yes		31	53	900 25	_			
	125		3	25 8	7	5	1	1
DK	38	12	3	ð	3	1	-	6
Bronchitis/emphysema	4 424	1 702	1 261	002	220	<i>(=</i>	21	57
No V	4,424	1,782	1,361	882	230	65	21	57
Yes	203	84	53	44	10	6	-	3
DK	36	11	4	7	1	2	-	6

- = Missing data. DK = Don't know. N = Sample size.

Refused = Respondent refused to answer.

Source: U.S. EPA (1996).

Chapter 3—Ingestion of Water and Other Select Liquids

	Table	3-39. Mean a	nd (standard er	ror [SE]) Wat	er and Drii	ık Consu	mption (mL/kg-day)) by Race/Ethnic	ity	
Race/Ethnic Group	N	Plain Tap Water	Milk and Milk Drinks	Reconstituted Formula	RTF Formula	Baby Food	Juices and Carbonated Drinks	Noncarbonated Drinks	Other	Total ^a
Black Non-Hispanic	121	21 (1.7)	24 (4.6)	35 (6.0)	4 (2.0)	8 (1.6)	2 (0.7)	14 (1.3)	21 (1.7)	129 (5.7)
White Non-Hispanic	620	13 (0.8)	23 (1.2)	29 (2.7)	8 (1.5)	10 (1.2)	1 (0.2)	11 (0.7)	18 (0.8)	113 (2.6)
Hispanic	146	15 (1.2)	23 (2.4)	38 (7.3)	12 (4.0)	10 (1.4)	1 (0.3)	10 (1.6)	16 (1.4)	123 (5.2)
Other	59	21 (2.4)	19 (3.7)	31 (9.1)	19 (11.2)	7 (4.0)	1 (0.5)	8 (2.0)	19 (3.2)	124 (10.6)

^a Totals may be slightly different from the sums of all categories due to rounding.

RTF = Ready to feed.

Source: Heller et al. (2000).

N = Number of observations.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-40. I	Plain Tap Water a Urban	nd Total Water icity, and Povert		oy Age, Sex, Regio	on,	
		Plain Ta mL/k	p Water g-day	Total Water mL/kg-day		
Variable	N	Mean	SE	Mean	SE	
Age						
<12 months	296	11	1.0	130	4.6	
12 to 24 months	650	18	0.8	108	1.7	
Sex						
Male	475	15	1.0	116	4.1	
Female	471	15	0.8	119	3.2	
Region						
Northeast	175	13	1.4	121	6.3	
Midwest	197	14	1.0	120	3.1	
South	352	15	1.3	113	3.7	
West	222	17	1.1	119	4.6	
Urbanicity						
Urban	305	16	1.5	123	3.5	
Suburban	446	13	0.9	117	3.1	
Rural	195	15	1.2	109	3.9	
Poverty category ^a						
0-1.30	289	19	1.5	128	2.6	
1.31-3.50	424	14	1.0	117	4.2	
>3.50	233	12	1.3	109	3.5	
Total	946	15	0.6	118	2.3	

Poverty category represents family's annual incomes of 0–1.30, 1.31–3.50, and greater than 3.50 times the federal poverty level.

Source: Heller et al. (2000).

N =Number of observations.

SE = Standard Error.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-41. Perce	Table 3-41. Percentage of Subjects Consuming Beverages and Mean Daily Beverage Intakes (mL/day) for Children with Returned Questionnaires											
Age at Questionnaire Actual Age (months)	6 Months 6.29 ± 0.35 677	9 Months 9.28 ± 0.35 681	12 Months 12.36 \pm 0.46 659	16 Months 16.31 ± 0.49 641	20 Months 20.46 ± 0.57 632	24 Months 24.41 ± 0.53 605	6 to 24 Months ^a - 585 ^c					
Human milk ^d	30	19	11	5	3	0	-					
Infant formula ^e % ^d mL/day ^g	$68 \\ 798 \pm 234$	69 615 ± 328	29 160 ± 275	4 12 ± 77	$\begin{array}{c} 2\\9\pm83\end{array}$	0	$67^{\rm f}$ 207 ± 112					
Cow's milk ^e % ^d mL/day ^g	$5\\30\pm145$	25 136 ± 278	79 470 ± 310	91 467 ± 251	$93\\402\pm237$	97 358 ± 225	$67^{\rm f}$ 355 ± 163					
Formula and cow's milk ^e % ^d mL/day ^g	$70\\828\pm186$	81 751 ± 213	88 630 ± 245	92 479 ± 248	94 411 ± 237	98 358 ± 228	$67^{\rm f}$ 562 ± 154					
Juice and juice drinks % ^d mL/day ^g	55 65 ± 95	73 103 ± 112	89 169 ± 151	94 228 ± 166	95 269 ± 189	93 228 ± 172	99^{h} 183 ± 103					
Water % ^d mL/day ^g	36 27 ± 47	59 53 ± 71	75 92 ± 109	87 124 ± 118	90 142 ± 127	94 145 ± 148	$\begin{array}{c} 99^{h} \\ 109 \pm 74 \end{array}$					
Other beverages ⁱ % ^d mL/day ^g	$\begin{matrix} 1 \\ 3\pm18 \end{matrix}$	$9\\6\pm27$	23 27 ± 71	$42 \\ 53 \pm 109$	$62\\83\pm121$	$86\\89\pm133$	$80^{\rm h}$ 44 ± 59					

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-41. Percentage of Subjects Consuming Beverages and Mean Daily Beverage Intakes (mL/day) for Children with Returned Questionnaires (Continued)													
Age at Questionnaire Actual Age (months) N ^b	$6 \text{ Months} \\ 6.29 \pm 0.35 \\ 677$	9 Months 9.28 ± 0.35 681	12 Months 12.36 \pm 0.46 659	16 Months 16.31 ± 0.49 641	20 Months 20.46 ± 0.57 632	$24 \text{ Months} \\ 24.41 \pm 0.53 \\ 605$	6 to 24 Months ^a - 585 ^c						
Total beverages (mL/day) ^{e,g,j}	934 ± 219	917 ± 245	926 ± 293	887 ± 310	908 ± 310	819 ± 299	920 ± 207						

- ^a Cumulative number of children and percentage of children consuming beverage and beverage intakes for the 6- through 24-month period.
- Number of children with returned questionnaires at each time period.
- Number of children with cumulative intakes for 6- through 24-month period.
- d Percentage of children consuming beverage.
- Children are not included when consuming human milk.
- Percentage of children consuming beverage during 6- through 24-month period. Children who consumed human milk are not included.
- Mean standard deviation of beverage intake. Converted from ounces/day; 1 fluid ounce = 29.57 mL.
- Percentage of children consuming beverage during 6- through 24-month period.
- Other beverages include nonjuice beverages (e.g., carbonated beverages, Kool-Aid).
- Total beverages includes all beverages except human milk.
- Indicates insufficient data.

Source: Marshall et al. (2003a).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-42. Mean (± standard deviation [SD]) Daily Beverage Intakes Reported on Beverage Frequency Questionnaire and 3-Day Food and Beverage Diaries

						A	ge					ļ
	6 month	N = 240		12 mont	hs $(N = 192)$		3 year	s (N = 129)		5 years	s (N = 112)	
	Questionnaire	Diary		Questionnaire	Diary		Questionnaire	Diary		Questionnaire	Diary	
Beverage	mL/da	ay ^a	% ^b	mL/da	ay ^a	%b	mL/d	ay ^a	% ^b	mL/da	ay ^a	% ^b
Human milk	204 ± 373	195 ± 358	28.0	9 ± 21	56 ± 225	12.6	NAc	NA	-	NA	NA	-
Infant formula	609 ± 387	603 ± 364	85.8	180 ± 290	139 ± 251	37.0	NA	NA	-	NA	NA	-
Cow's milk	24 ± 124	24 ± 124	6.7	429 ± 349	408 ± 331	90.4	316 ± 216	358 ± 216	100	319 ± 198	325 ± 177	98.2
Juice/juice drinks	56 ± 124	33 ± 59	57.5	151 ± 136	106 ± 101	92.2	192 ± 169	198 ± 169	96.9	189 ± 169	180 ± 163	95.5
Liquid soft drinks	6 ± 68	0 ± 0	1.3	9 ± 30	3 ± 15	20.9	62 ± 71	74 ± 101	74.2	74 ± 95	101 ± 121	82.1
Powdered soft drinks	0 ± 18	0 ± 0	0.4	12 ± 47	3 ± 18	10.5	62 ± 115	47 ± 101	51.2	74 ± 124	47 ± 95	52.7
Water	44 ± 80	30 ± 53	61.7	127 ± 136	80 ± 109	84.9	177 ± 204	136 ± 177	95.3	240 ± 242	169 ± 183	99.1
Total	940 ± 319	896 ± 195	100	905 ± 387	804 ± 284	100	795 ± 355	816 ± 299	100	896 ± 399	819 ± 302	100

^a Mean standard deviation of all subjects. Converted from ounces/day; 1 fluid ounce = 29.57 mL.

Source: Marshall et al. (2003b).

b Percent of subjects consuming beverage on either questionnaire or diary.

N = Number of observations.

NA = Not applicable.

⁻ Indicates insufficient data to calculate percentage.

Chapter 3—Ingestion of Water and Other Select Liquids

	,	Table 3-43	3. Consumpti	ion of Bev	erages by In	fants and T	oddlers (fee	ding infant	s and toddle	ers study)		
						Age (n	nonths)					
	4 to 6 months	s(N = 862)	7 to 8 months	N = 483	9 to 11 month	N = 679	12 to 14 $N = 3$		15 to 18 to $N = 3$		19 to 24 mon	ths $(N = 316)$
Beverage	Consumers	Mean ± SD	Consumers	Mean ± SD	Consumers	Mean ± SD	Consumers	Mean ± SD	Consumers	Mean ± SD	Consumers	Mean ± SD
Category	0 ∕₀ ^a	mL/day ^b	0∕ ₀ a	mL/day ^b	% ^a	mL/day^b	0∕ ₀ a	mL/day ^b	0∕ ₀ a	mL/day ^b	% ^a	mL/day ^b
Total milks ^c	100	778 ± 257	100	692 ± 257	99.7	659 ± 284	98.2	618 ± 293	94.2	580 ± 305	93.4	532 ± 281
100% juice ^d	21.3	121 ± 89	45.6	145 ± 109	55.3	160 ± 127	56.2	186 ± 145	57.8	275 ± 189	61.6	281 ± 189
Fruit drinks ^e	1.6	101 ± 77	7.1	98 ± 77	12.4	157 ± 139	29.1	231 ± 186	38.6	$260 \pm \\231$	42.6	305 ± 308
Carbonated	0.1	86 ± 0	1.1	6 ± 9	1.7	89 ± 92	4.5	115 ± 83	11.2	$157 \pm \\106$	11.9	163 ± 172
Water	33.7	163 ± 231	56.1	$174 \pm \\219$	66.9	210 ± 234	72.2	302 ± 316	74.0	313 ± 260	77.0	337 ± 245
Other ^f	1.4	201 ± 192	2.2	201 ± 219	3.5	169 ± 166	6.6	251 ± 378	12.2	$198 \pm \\231$	11.2	166 ± 248
Total beverages	100	$\begin{array}{c} 863 \pm \\ 254 \end{array}$	100	$866 \pm \\310$	100	911 ± 361	100	1,017 ± 399	100	1,079 ± 399	100	1,097 ± 482

Weighted percentages, adjusted for over-sampling, nonresponse, and under-representation of some racial and ethnic groups.

Source: Skinner et al. (2004).

Amounts consumed only by those children who had a beverage from this beverage category. Converted from ounces/day; 1 fluid ounce = 29.57 mL.

^c Includes human milk, infant formula, cow's milk, soy milk, and goat's milk.

Fruit or vegetable juices with no added sweeteners.

^e Includes beverages with less than 100% juice and often with added sweeteners; some were fortified with one or more nutrients.

[&]quot;Other" beverages category included tea, cocoa, and similar dry milk beverages, and electrolyte replacement beverages for infants.

N = Number of observations.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3	3-44. Number	of Drinking Wa	ater Events Per	Day, Intake Per E	vent (mL/ev	ent), and Daily	Intake (mL/day)	a
			Summer				Winter	
		Events/day	mL ^b /event	mL ^b /day		Events/day	mL ^b /event	mL ^b /day
Age and Sex	N	Mean ± SD	$Mean \pm SD$	$Mean \pm SD$	N	Mean ± SD	$Mean \pm SD$	$Mean \pm SD$
<2 years, M/F	52	2.8 ± 2.2	145 ± 74	399 ± 417	86	3.0 ± 2.7	127 ± 74	393 ± 411
3 to 5 years, M/F	77	3.9 ± 3.1	157 ± 74	583 ± 488	123	3.1 ± 2.1	142 ± 68	444 ± 384
6 to 12 years, M/F	138	3.2 ± 2.3	207 ± 124	621 ± 515	211	3.1 ± 2.2	172 ± 151	544 ± 727
13 to 19 years, M	52	3.6 ± 2.8	287 ± 225	$1,011 \pm 1,091$	79	3.5 ± 3.2	260 ± 160	$926\pm1,\!431$
13 to 19 years, F	60	3.0 ± 2.1	263 ± 154	769 ± 943	91	4.2 ± 3.6	251 ± 195	$1,091 \pm 1,508$
20 to 49 years, M	313	4.1 ± 3.1	358 ± 260	$1,\!431 \pm 1,\!470$	460	3.9 ± 3.4	290 ± 198	$1,112 \pm 1,221$
20 to 49 years, F	389	4.5 ± 3.4	296 ± 198	$1,\!286 \pm 1,\!230$	618	4.3 ± 3.2	290 ± 207	$1,\!209 \pm 1,\!118$
>50 years, M	259	4.5 ± 3.2	245 ± 130	$1,\!076 \pm 887$	301	4.1 ± 2.6	245 ± 169	$1,011 \pm 831$
>50 years, F	400	5.7 ± 3.4	237 ± 130	$1,\!277\pm872$	489	5.1 ± 3.2	240 ± 93	$1{,}183 \pm 597$
Total	1,740	4.4 ± 3.2	266 ± 186	$1,141 \pm 1,094$	2,458	4.1 ± 3.1	248 ± 180	$1,\!023\pm 1,\!059$

Source: Barraj et al. (2009).

Based on a randomly selected day for each survey participant in the DWCS. Converted from ounces to mL by U.S. EPA by multiplying intake rates in ounces by 29.57 mL/ounce.

⁼ Female.

M = Male.

⁼ Number of participants.

Chapter 3—Ingestion of Water and Other Select Liquids

Water Intake	Young-Old (65 to <75 years) N = 1,105	Middle-Old (75 to $<$ 85 years) N = 746	Oldest-Old (85+ years) N = 203
Total (g/day)	2,905.8 (39.5)	2,573.4 (44.1)	2,275.8 (69.7)
Total (g/kg-day)	38.4 (0.6)	36.5 (0.6)	35.7 (1.7)

Source: Zizza et al. (2009).

Table 3-46. Per Capita^a Estimates of Combined Direct and Indirect^b Water Ingestion Based on 1994-1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Community Water (mL/day)

						Percentile			
Age	Sample Size	Mean	10	25	50	75	90	95	99
Birth to <1 month	91	184	-	-	-	322	687*	839*	860*
1 to <3 months	253	227	-	-	-	456	804	896*	1,165*
3 to <6 months	428	362	-	-	148	695	928	1,056	1,424*
6 to <12 months	714	360	-	17	218	628	885	1,055	1,511*
1 to <2 years	1,040	271	-	60	188	402	624	837	1,215*
2 to <3 years	1,056	317	-	78	246	479	683	877	1,364*
3 to <6 years	4,391	380	4	98	291	547	834	1,078	1,654
6 to <11 years	1,670	447	22	133	350	648	980	1,235	1,870*
11 to <16 years	1,005	606	30	182	459	831	1,387	1,727	2,568*
16 to <18 years	363	731	16	194	490	961	1,562	1,983*	3,720*
18 to <21 years	389	826	24	236	628	1,119	1,770	2,540*	3,889*
>21 years	9,207	1,104	69	422	928	1,530	2,230	2,811	4,523
>65 years ^c	2,170	1,127	16	545	1,067	1,601	2,139	3,551	3,661
All ages	20,607	926	30	263	710	1,311	2,014	2,544	4,242

Includes all participants whether or not they ingested any water from the source during survey period.

Kahn (2008) (based on 1994-1996, 1998 USDA CSFII).

Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

U.S. EPA (2004).

⁼ Zero.

The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in* the United States (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-47. Per Capita^a Estimates of Combined Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Bottled Water (mL/day)

	Sample					Percentile			
Age	Size	Mean	10	25	50	75	90	95	99
Birth to <1 month	91	104	-	-	-	18	437*	556*	1,007*
1 to <3 months	253	106	-	-	-	-	541	771*	1,056*
3 to <6 months	428	120	-	-	-	-	572	774	1,443*
6 to <12 months	714	120	-	-	-	53	506	761	1,284*
1 to <2 years	1,040	59	-	-	-	-	212	350	801*
2 to <3 years	1,056	76	-	-	-	-	280	494	1,001*
3 to <6 years	4,391	84	-	-	-	-	325	531	1,031*
6 to <11 years	1,670	84	-	-	-	-	330	532	1,079*
11 to <16 years	1,005	111	-	-	-	-	382	709	1,431*
16 to <18 years	363	109	-	-	-	-	426	680*	1,605*
18 to <21 years	389	185	-	-	-	-	514	1,141*	2,364*
>21 years	9,207	189	-	-	-	-	754	1,183	2,129
>65 years ^c	2,170	136	-	-	-	-	591	1,038	1,957
All ages	20,607	163	-	-	-	-	592	1,059	2,007

Includes all participants whether or not they ingested any water from the source during survey period.

Source: Kahn (2008) (Based on 1994–1996, 1998 USDA CSFII).

Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

⁻ = Zero.

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-48. Per Capita^a Estimates of Combined Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Other Sources (mL/day)

	Sample					Percentile			
Age	Size	Mean	10	25	50	75	90	95	99
Birth to <1 month	91	13	-	-	-	-	-	-	393*
1 to <3 months	253	35	-	-	-	-	-	367*	687*
3 to <6 months	428	45	-	-	-	-	-	365	938*
6 to <12 months	714	45	-	-	-	-	31	406	963*
1 to <2 years	1,040	22	-	-	-	-	-	118	482*
2 to <3 years	1,056	39	-	-	-	-	52	344	718*
3 to <6 years	4,391	43	-	-	-	-	58	343	830
6 to <11 years	1,670	61	-	-	-	-	181	468	1,047*
11 to <16 years	1,005	102	-	-	-	-	344	786	1,698*
16 to <18 years	363	97	-	-	-	-	295	740*	1,760*
18 to <21 years	389	47	-	-	-	-	-	246*	1,047*
>21 years	9,207	156	-	-	-	-	541	1,257	2,381
>65 years ^c	2,170	171	-	-	-	-	697	1,416	2,269
All ages	20,607	128	-	-	-	-	345	1,008	2,151

Includes all participants whether or not they ingested any water from the source during survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

b Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

⁻ = Zero.

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-49. Per Capita^a Estimates of Combined Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): All Sources (mL/day)

	Sample					Percentile			
Age	Size	Mean	10	25	50	75	90	95	99
Birth to <1 month	91	301	-	-	135	542	846*	877*	1,088*
1 to <3 months	253	368	-	-	267	694	889	1,020*	1,265*
3 to <6 months	428	528	-	89	549	812	1,025	1,303	1,509*
6 to <12 months	714	530	37	181	505	771	1,029	1,278	1,690*
1 to <2 years	1,040	358	68	147	287	477	735	961	1,281*
2 to <3 years	1,056	437	104	211	372	588	825	999	1,662*
3 to <6 years	4,391	514	126	251	438	681	980	1,200	1,794
6 to <11 years	1,670	600	169	304	503	803	1,130	1,409	2,167*
11 to <16 years	1,005	834	224	401	663	1,099	1,649	1,960	3,179*
16 to <18 years	363	964	236	387	742	1,273	1,842	2,344*	3,854*
18 to <21 years	389	1,075	189	406	803	1,394	2,117	2,985*	4,955*
>21 years	9,207	1,466	500	828	1,278	1,871	2,553	3,195	5,174
>65 years ^c	2,170	1,451	651	935	1,344	1,832	2,323	2,708	3,747
All ages	20,607	1,233	285	573	1,038	1,633	2,341	2,908	4,805

Includes all participants whether or not they ingested any water from the source during survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

⁻ = Zero.

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-50. Per Capita^a Estimates of Combined Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Community Water (mL/kg-day)

	Sample		Percentile						
Age	size	Mean	10	25	50	75	90	95	99
Birth to <1 month	88	52	-	-	-	101	196*	232*	253*
1 to <3 months	245	48	-	-	-	91	151	205*	310*
3 to <6 months	411	52	-	-	20	98	135	159	216*
6 to <12 months	678	41	-	2	24	71	102	126	185*
1 to <2 years	1,002	23	-	5	17	34	53	71	106*
2 to <3 years	994	23	-	6	17	33	50	60	113*
3 to <6 years	4,112	22	-	6	17	31	48	61	93
6 to <11 years	1,553	16	1	5	12	22	34	43	71*
11 to <16 years	975	12	1	4	9	16	25	34	54*
16 to <18 years	360	11	-	3	8	15	23	31*	55*
18 to <21 years	383	12	1	4	10	16	17	35*	63*
>21 years	9,049	15	1	6	12	21	31	39	62
>65 years ^c	2,139	16	-	7	15	23	31	37	52
All ages	19,850	16	1	5	12	21	32	43	75

Includes all participants whether or not they ingested any water from the source during survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

⁼ Zero.

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-51. Per Capita^a Estimates of Combined Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Bottled Water (mL/kg-day)

				, 8	• /				
	Sample					Percentile			
Age	Size	Mean	10	25	50	75	90	95	99
Birth to <1 month	88	33	-	-	-	6	131*	243*	324*
1 to <3 months	245	22	-	-	-	-	97	161*	242*
3 to <6 months	411	16	-	-	-	-	74	117	193*
6 to <12 months	678	13	-	-	-	4	52	87	139*
1 to <2 years	1,002	5	-	-	-	-	18	28	67*
2 to <3 years	994	5	-	-	-	-	19	35	84*
3 to <6 years	4,112	5	-	-	-	-	18	30	59
6 to <11 years	1,553	3	-	-	-	-	10	18	41*
11 to <16 years	975	2	-	-	-	-	8	14	26*
16 to <18 years	360	2	-	-	-	-	6	10*	27*
18 to <21 years	383	3	-	-	-	-	8	19*	34*
>21 years	9,049	3	-	-	-	-	10	17	32
>65 years ^c	2,139	2	-	-	-	-	9	15	27
All ages	19,850	3	-	-	-	-	10	18	39

Includes all participants whether or not they ingested any water from the source during survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

⁼ Zero.

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-52. Per Capita^a Estimates of Combined Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Other Sources (mL/kg-day)

	Sample					Percentile			
Age	Size	Mean	10	25	50	75	90	95	99
Birth to <1 month	88	4	-	-	-	-	-	-	122*
1 to <3 months	245	7	-	-	-	-	-	52*	148*
3 to <6 months	411	7	-	-	-	-	-	55	155*
6 to <12 months	678	5	-	-	-	-	3	35	95*
1 to <2 years	1,002	2	-	-	-	-	-	11	45*
2 to <3 years	994	3	-	-	-	-	4	23	61*
3 to <6 years	4,112	2	-	-	-	-	3	19	48
6 to <11 years	1,553	2	-	-	-	-	7	16	36*
11 to <16 years	975	2	-	-	-	-	7	14	34*
16 to <18 years	360	2	-	-	-	-	5	11*	27*
18 to <21 years	383	1	-	-	-	-	-	4*	14*
>21 years	9,049	2	-	-	-	-	7	17	33
>65 years ^c	2,139	2	-	-	-	-	10	20	35
All ages	19,850	2	-	-	-	-	6	16	35

Includes all participants whether or not they ingested any water from the source during survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

⁼ Zero.

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-53. Per Capita^a Estimates of Combined Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): All Sources (mL/kg-day)

Age	Sample Size	Percentile								
		Mean	10	25	50	75	90	95	99	
Birth to <1 month	88	89	-	-	21	168	235*	269*	338*	
1 to <3 months	245	77	-	-	46	134	173	246*	336*	
3 to <6 months	411	75	-	9	73	118	156	186	225*	
6 to <12 months	678	59	4	20	53	86	118	148	194*	
1 to <2 years	1,002	31	6	13	24	39	63	85	122*	
2 to <3 years	994	31	7	15	26	41	59	73	130*	
3 to <6 years	4,112	29	7	14	25	38	56	69	102	
6 to <11 years	1,553	21	6	10	18	27	39	50	76*	
11 to <16 years	975	16	4	8	13	20	31	39	60*	
16 to <18 years	360	15	4	6	12	18	28	37*	59*	
18 to <21 years	383	16	3	6	12	21	32	41*	73*	
>21 years	9,049	20	7	11	17	26	36	44	68	
>65 years ^c	2,139	21	9	13	19	27	34	39	54	
All ages	20,850	21	6	10	17	26	38	50	87	

Includes all participants whether or not they ingested any water from the source during survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

b Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

⁼ Zero.

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-54. Consumers-Only^a Estimates of Combined Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII):

Community Water (mL/day)

Age	Sample Size	Percentile								
		Mean	10	25	50	75	90	95	99	
Birth to <1 month	40	470*	32*	215*	482*	692*	849*	858*	919*	
1 to <3 months	114	552	67*	339	533	801	943*	1,053*	1,264*	
3 to <6 months	281	556	44	180	561	837	1,021	1,171*	1,440*	
6 to <12 months	562	467	44	105	426	710	971	1,147	1,586*	
1 to <2 years	916	308	43	107	229	428	674	893	1,248*	
2 to <3 years	934	356	49	126	281	510	700	912	1,388*	
3 to <6 years	3,960	417	57	146	336	581	867	1,099	1,684	
6 to <11 years	1,555	480	74	177	373	682	994	1,251	2,024*	
11 to <16 years	937	652	106	236	487	873	1,432	1,744	2,589*	
16 to <18 years	341	792	106	266	591	987	1,647	2,002*	3,804*	
18 to <21 years	364	895	114	295	674	1,174	1,860	2,565*	3,917*	
>21 years	8,505	1,183	208	529	1,006	1,582	2,289	2,848	4,665	
>65 years ^c	1,958	1,242	310	704	1,149	1,657	2,190	2,604	3,668	
All ages	18,509	1,000	127	355	786	1,375	2,069	2,601	4,274	

Excludes individuals who did not ingest water from the source during the survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-55. Consumers-Only^a Estimates of Combined Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII):

Bottled Water (mL/day)

	Sample	Percentile								
Age	Size	Mean	10	25	50	75	90	95	99	
Birth to <1 month	25	-	-	-	-	-	-	-	-	
1 to <3 months	64	450*	31*	62*	329*	743*	886*	1,045*	1,562*	
3 to <6 months	103	507	48*	88	493	747	1,041*	1,436*	1,506*	
6 to <12 months	200	425	47	114	353	630	945*	1,103*	1,413*	
1 to <2 years	229	262	45	88	188	324	600	709*	1,083*	
2 to <3 years	232	352	57	116	241	471	736	977*	1,665*	
3 to <6 years	1,021	380	72	149	291	502	796	958	1,635*	
6 to <11 years	332	430	88	168	350	557	850	1,081*	1,823*	
11 to <16 years	192	570	116*	229	414	719	1,162*	1,447*	2,705*	
16 to <18 years	63	615*	85*	198*	446*	779*	1,365*	1,613*	2,639*	
18 to <21 years	97	769	118*	236	439	943	1,788*	2,343*	3,957*	
>21 years	1,893	831	167	354	650	1,071	1,773	2,093	3,505	
>65 years ^c	302	910	234	465	785	1,182	1,766	2,074	2,548	
All ages	4,451	736	118	266	532	975	1,567	1,964	3,312	

Excludes individuals who did not ingest water from the source during the survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

b Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

⁻ Insufficient sample size to estimate mean and percentiles.

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-56. Consumers-Only^a Estimates of Combined Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII):

Other Sources (mL/day)

	Sample					Percentile			
Age	Size	Mean	10	25	50	75	90	95	99
Birth to <1 month	3	-	-	-	-	-	-	-	-
1 to <3 months	19	-	-	-	-	-	-	-	-
3 to <6 months	38	562*	59*	179*	412*	739*	983*	1,205*	2,264*
6 to <12 months	73	407*	31*	121*	300*	563*	961*	1,032*	1,144*
1 to <2 years	98	262	18*	65	143	371	602*	899*	1,204*
2 to <3 years	129	354	56*	134	318	472	704*	851*	1,334*
3 to <6 years	533	396	59	148	314	546	796	1,019	1,543*
6 to <11 years	219	448	89	177	347	682	931	1,090*	1,596*
11 to <16 years	151	687	171*	296	482	947	1,356*	1,839*	2,891*
16 to <18 years	53	657*	152*	231*	398*	823*	1,628*	1,887*	2,635*
18 to <21 years	33	569*	103*	142*	371*	806*	1,160*	1,959*	1,962*
>21 years	1,386	1,137	236	503	976	1,533	2,161	2,739	4,673
>65 years ^c	323	1,259	360	680	1,188	1,660	2,136	2,470	3,707*
All ages	2,735	963	148	347	741	1,344	1,970	2,468	3,814

Excludes individuals who did not ingest water from the source during the survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

b Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

⁻ Insufficient sample size to estimate means and percentiles.

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-57. Consumers-Only^a Estimates of Combined Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): All Sources (mL/day)

	Sample					Percentile			
Age	Size	Mean	10	25	50	75	90	95	99
Birth to <1 month	58	511*	51*	266*	520*	713*	858*	986*	1,274*
1 to <3 months	178	555	68*	275	545	801	946*	1,072*	1,470*
3 to <6 months	363	629	69	384	612	851	1,064	1,330*	1,522*
6 to <12 months	667	567	90	250	551	784	1,050	1,303	1,692*
1 to <2 years	1,017	366	84	159	294	481	735	978	1,281*
2 to <3 years	1,051	439	105	213	375	589	825	1,001	1,663*
3 to <6 years	4,350	518	134	255	442	682	980	1,206	1,796
6 to <11 years	1,659	603	177	310	506	805	1,131	1,409	2,168*
11 to <16 years	1,000	837	229	404	665	1,105	1,649	1,961	3,184*
16 to <18 years	357	983	252	395	754	1,276	1,865	2,346*	3,866*
18 to <21 years	383	1,094	219	424	823	1,397	2,144	3,002*	4,967*
>21 years	9,178	1,472	506	829	1,282	1,877	2,559	3,195	5,175
>65 years ^c	2,167	1,453	651	939	1,345	1,833	2,324	2,708	3,750
All ages	20,261	1,242	296	585	1,047	1,642	2,345	2,923	4,808

Excludes individuals who did not ingest water from the source during the survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-58. Consumers-Only^a Estimates of Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Community Water (mL/kg-day)

	Sample					Percentile			
Age	Size	Mean	10	25	50	75	90	95	99
Birth to <1 month	37	137*	11*	65*	138*	197*	235*	238*	263*
1 to <3 months	108	119	12*	71	107	151	228*	285*	345*
3 to <6 months	269	80	7	27	77	118	148	173*	222*
6 to <12 months	534	53	5	12	47	81	112	129	186*
1 to <2 years	880	27	4	9	20	36	56	75	109*
2 to <3 years	879	26	4	9	21	36	52	62	121*
3 to <6 years	3,703	24	3	8	19	33	49	65	97
6 to <11 years	1,439	17	3	6	13	23	35	45	72*
11 to <16 years	911	13	2	5	10	17	26	34	54*
16 to <18 years	339	12	1	4	9	16	24	32*	58*
18 to <21 years	361	13	2	5	10	17	29	35*	63*
>21 years	8,355	16	3	7	13	22	32	39	63
>65 years ^c	1,927	18	5	10	16	24	32	37	53
All ages	17,815	17	3	7	13	22	33	44	77

Excludes individuals who did not ingest water from the source during the survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

b Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-59. Consumers-Only^a Estimates of Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Bottled Water (mL/kg-day)

	Sample					Percentile			
Age	Size	Mean	10	25	50	75	90	95	99
Birth to <1 month	25	-	-	-	-	-	-	-	-
1 to <3 months	64	92*	7*	12*	76*	151*	164*	220*	411*
3 to <6 months	95	72	6*	15	69	100	149*	184*	213*
6 to <12 months	185	47	5*	11	34	73	104*	120*	166*
1 to <2 years	216	22	5	8	16	27	49	66*	103*
2 to <3 years	211	25	4	8	17	35	54	81*	91*
3 to <6 years	946	21	4	8	16	29	45	57	90*
6 to <11 years	295	15	3	5	11	19	30	42*	69*
11 to <16 years	180	11	2*	4	8	14	24*	27*	44*
16 to <18 years	63	10*	1*	3*	7*	11*	23*	27*	37*
18 to <21 years	93	11	2*	3	6	14	27*	30*	54*
>21 years	1,861	12	2	5	9	16	25	31	45
>65 years ^c	297	13	3	7	12	17	26	30	42*
All ages	4,234	13	2	5	9	17	27	36	72

Excludes individuals who did not ingest water from the source during the survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

b Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

⁻ Insufficient sample size to estimate means and percentiles.

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-60. Consumers-Only^a Estimates of Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): Other Sources (mL/kg-day)

	Sample					Percentile			
Age	Size	Mean	10	25	50	75	90	95	99
Birth to <1 month	3	-	-	-	-	-	-	-	-
1 to <3 months	19	-	-	-	-	-	-	-	-
3 to <6 months	38	80*	10*	23*	59*	106*	170*	200*	246*
6 to <12 months	68	44*	4*	10*	33*	65*	95*	106*	147*
1 to <2 years	95	23	1*	5	13	28	46*	84*	125*
2 to <3 years	124	26	4*	10	21	34	55*	66*	114*
3 to <6 years	505	22	3	8	17	30	46	56	79*
6 to <11 years	208	16	3	6	12	23	32	39*	62*
11 to <16 years	148	13	3*	6	9	18	27*	36*	56*
16 to <18 years	52	10*	2*	4*	7*	12*	24*	29*	43*
18 to <21 years	33	8*	1*	2*	6*	10*	16*	27*	31*
>21 years	1,365	15	3	6	13	21	30	39	58
>65 years ^c	322	18	5	9	16	24	31	37	50*
All ages	2,657	16	3	6	12	21	32	41	67

^a Excludes individuals who did not ingest water from the source during the survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

b Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

⁻ Indicates insufficient sample size to estimate distribution percentiles.

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-61. Consumers-Only^a Estimates of Direct and Indirect^b Water Ingestion Based on 1994–1996, 1998 Continuing Survey of Food Intake by Individuals (CSFII): All Sources (mL/kg-day)

	Sample					Percentile			
Age	Size	Mean	10	25	50	75	90	95	99
Birth to <1 month	55	153*	13*	83*	142*	208*	269*	273*	400*
1 to <3 months	172	116	12*	50	107	161	216*	291*	361*
3 to <6 months	346	90	9	52	86	125	161	195*	233*
6 to <12 months	631	63	10	27	58	88	120	152	198*
1 to <2 years	980	31	7	14	25	40	64	86	122*
2 to <3 years	989	31	7	15	27	41	59	73	130*
3 to <6 years	4,072	29	7	15	25	38	56	70	102*
6 to <11 years	1,542	21	6	10	18	27	39	50	76*
11 to <16 years	970	16	4	8	13	20	31	39	60*
16 to <18 years	354	15	4	7	12	18	29	37*	60*
18 to <21 years	378	16	3	6	12	21	32	41*	73*
>21 years	9,020	20	7	11	17	26	36	44	68
>65 years ^c	2,136	21	9	13	19	27	34	39	54
All ages	19,509	21	6	11	17	26	38	50	87

Excludes individuals who did not ingest water from the source during the survey period.

Source: Kahn (2008) (Based on 1994-1996, 1998 USDA CSFII).

Direct water is defined as water ingested directly as a beverage; indirect water is defined as water added in the preparation of food or beverages.

c U.S. EPA (2004).

^{*} The sample size does not meet minimum requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

				Ciliu	-DCai iii	g Age (13	10 30	j curs)						
		Percent		_					Percenti	les				
Population Group	N	Consuming ^b	Mean	SE	1 st	5 th	10 th	25 th	50 th	75 th	90 th	95 th	99 th	Maximum
						g/day								
All water sources ^c														
Pregnant	426	98	1,539	76	$0^{\rm d}$	251	450	813	1,291	2,200	2,872	3,203	4,120 ^d	$5,719^{d}$
Lactating	101	96	1,908	195	$0^{\rm d}$	213^{d}	356^{d}	917	2,061	2,720	$2,987^{d}$	3,911 ^d	4,351 ^d	5,551 ^d
Child-bearing age	5,543	99	1,383	31	0	125	278	616	1,138	1,957	2,787	3,371	4,530	$10,280^{d}$
Community water ^e														
Pregnant	426	63	731	81	$0^{\rm d}$	0	0	0	364	1,091	2,138	2,859	$3,558^{d}$	5,162 ^d
Lactating	101	72	1,075	201	$0^{\rm d}$	$0^{\rm d}$	0^{d}	0	719	2,061	$2,720^{d}$	$3,061^{d}$	4,351 ^d	4,351 ^d
Child-bearing age	5,543	63	683	30	0	0	0	0	282	1,025	2,055	2,634	3,962	6,213 ^d
Bottled water ^f														
Pregnant	426	60	545	55	$0^{\rm d}$	0	0	0	259	974	1,466	1,896	$2,605^{d}$	$3,792^{d}$
Lactating	101	51	541	143	$0^{\rm d}$	$0^{\rm d}$	0^{d}	0	119	889	1,931 ^d	$2,044^{d}$	$3,256^{d}$	3,413 ^d
Child-bearing age	5,543	53	424	18	0	0	0	0	119	644	1,259	1,726	2,844	8,834 ^d
Other water sources ^f														
Pregnant	426	35	263	66	$0^{\rm d}$	0	0	0	0	186	702	1,777	$2,693^{d}$	5,719 ^d
Lactating	101	21	293	131	0^{d}	0^{d}	0^{d}	0	0	0	1,024 ^d	2,854 ^d	3,911 ^d	4,612 ^d
Child-bearing age	5,543	34	276	30	0	0	0	0	0	237	918	1,575	3,273	6,220 ^d
						g/kg-day								
All water sources ^c														
Pregnant	426	98	21.1	1.1	$0^{\rm d}$	3.1	5.9	10.7	16.7	28.9	41.6	49.0	63.9 ^d	94.1
Lactating	101	96	28.8	2.8	$0^{\rm d}$	3.9^{d}	6.9^{d}	14.1	29.8	46.2	48.3 ^d	51.3 ^d	65.3 ^d	75.0
Child-bearing age	5,543	99	19.7	0.47	0	1.8	4.0	8.5	16.1	27.5	41.1	48.4	67.1	178.8

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-62. Two-Day Average ^a per Capita Drinking Water Intake: Pregnant and Lactating Women, and Women of
Child-Bearing Age (13 to <50 years) (Continued)

		Percent							Percentil	les				
Population Group	N	Consuming ^b	Mean	SE	1 st	5 th	10 th	25 th	50 th	75 th	90 th	95 th	99 th	Maximum
Community water ^e														
Pregnant	426	63	9.8	1.1	$0^{\rm d}$	0	0	0	5.0	15.6	30.5	37.3	44.0^{d}	92.2 ^d
Lactating	101	72	16.5	3.3	0^{d}	0^{d}	0^{d}	0	11.6	29.8	46.2^{d}	47.0^{d}	65.3 ^d	65.3 ^d
Child-bearing age	5,543	63	9.8	0.46	0	0	0	0	4.1	15.0	29.1	38.2	60.1	110.1 ^d
Bottled water ^g														
Pregnant	426	60	7.7	0.88	$0^{\rm d}$	0	0	0	3.6	12.5	21.4	33.2	46.8^{d}	58.1 ^d
Lactating	101	51	7.8	1.8	$0^{\rm d}$	0^{d}	0^{d}	0	1.6	12.0	26.4 ^d	33.4^{d}	46.0^{d}	51.0 ^d
Child-bearing age	5,543	53	6.0	0.27	0	0	0	0	1.7	9.0	18.3	24.9	40.7	166.7 ^d
Other water sources ^f														
Pregnant	426	35	3.6	0.88	$0^{\rm d}$	0	0	0	0	2.6	11.2	25.2	36.6^{d}	94.1 ^d
Lactating	101	21	4.5	2.1	$0^{\rm d}$	$0^{\rm d}$	0^{d}	0	0	0	16.3 ^d	48.3 ^d	51.3 ^d	65.3 ^d
Child-bearing age	5,543	34	3.9	0.42	0	0	0	0	0	3.3	12.6	23.3	44.4	98.0 ^d

Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.

HNIS = Human Nutrition Information Service.

V = Sample size.

SE = Standard error.

Source: Based on EPA analysis of 2005–2010 NHANES using http://fcid.foodrisk.org/.

b Represents the percentage of individuals consuming at least once over the 2-day survey period.

All water sources: water, community supply (direct and indirect water consumption); water, bottled (direct water consumption only); water, well or rain cistern (direct and indirect water consumption); water, spring (direct and indirect water consumption); water, don't drink tap water (direct and indirect water consumption); water, other (direct and indirect water consumption); water, don't know (direct and indirect water consumption).

Estimates are less statistically reliable based on guidance published in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

e Community water: water, community supply (direct and indirect water consumption).

Other sources: water, well or rain cistern (direct and indirect water consumption); water, spring (direct and indirect water consumption); water, don't drink tap water (direct and indirect water consumption); water, other (direct and indirect water consumption); water, don't know (direct and indirect water consumption).

Bottled water: water, bottled (direct water consumption only).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 5 0	o. Two Day	Average ^a Consi		l-Bearing				int and i	Buctutiii	s women	i, and ***	omen or	
								Percentil	les				<u></u>
Population Group	N	Mean	SE	1 st	5 th	10^{th}	25 th	50 th	75 th	90 th	95 th	99 th	Maximum
					g/day								
All water sources ^b													
Pregnant	423	1,564	82.4	$70.7^{\rm c}$	318.3	522.7	836.7	1,324	2,200	2,894	3,213	$4,120^{c}$	5,719°
Lactating	100	1,979	186.3	212.8°	355.8°	439.1°	1,100	2,081	2,720	2,999°	3,911°	4,351°	5,551°
Child-bearing age	5,479	1,401	30.4	30.7	171.8	302.1	634.5	1,163	1,963	2,800	3,371	4,530	10,280°
Community water ^d													
Pregnant	259	1,158	95.9	3.2°	78.8°	189.6	452.7	921.1	1,872	2,642	2,935°	$3,866^{c}$	5,162°
Lactating	68	1,495	232.5	46.7°	189.4°	266.4°	476.1°	1,078	2,388c	$2,720^{c}$	3,061°	4,351°	4,351°
Child-bearing age	3,365	1,082	28.6	8.2	54.0	133.3	347.9	786.8	1,599	2,430	2,956	4,355	6,213°
Bottled water ^e													
Pregnant	255	913	61.0	59.3°	118.5°	192.5	362.2	859.1	1,250	1,745	2,184°	$2,670^{\circ}$	3,792°
Lactating	57	1,059	188.3	118.5°	125.1°	125.1°	311.1c	750.3	1,909°	2,029°	2,304°	3,318°	3,413°
Child-bearing age	3,075	805	20.0	51.8	118.5	177.5	281.4	592.5	1,099	1,684	2,184	3,631	8,834°
Other water sourcesf													
Pregnant	157	756	135.9	20.0°	49.7°	70.7°	164.8	422.4	969.4	2,191°	2,693°	3,014°	5,719°
Lactating	29	1,382	451.5	69.3°	137.3°	212.8°	229.9°	1,024	2,854°	3,911°	3,911	4,612°	4,612°
Child-bearing age	2,012	804	56.9	5.5	34.0	71.6	212.8	502.8	1,040	2,013	2,771	4,124	6,220°
					g/kg-day								
All water sources ^b													
Pregnant	423	21.4	1.2	$0.7^{\rm c}$	4.1	6.8	10.7	17.5	29.3	42.4	49.0	63.9°	94.1
Lactating	100	29.8	2.7	3.9°	6.7°	$7.0^{\rm c}$	17.0	30.0	46.2	48.3°	51.3°	65.3°	75.0
Child-bearing age	5,479	20.0	0.5	0.5	2.3	4.3	8.9	16.3	27.7	41.1	48.8	67.1	178.89

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-63. Two-Day Average ^a Consumer-Only Drinking Water Intake: Pregnant and Lactating Women, and Women of
Child-Bearing Age (13 to <50 years) (Continued)

								Percentil	es				
Population Group	N	Mean	SE	1 st	5 th	10 th	25 th	50 th	75 th	90 th	95 th	99 th	Maximum
Community water ^d													
Pregnant	259	15.5	1.2	0.1^{c}	0.9^{c}	2.5	6.2	12.0	23.3	33.3	37.7°	44.4°	92.2°
Lactating	68	22.9	4.0	$0.6^{\rm c}$	$3.0^{\rm c}$	4.4°	$7.0^{\rm c}$	17.0	44.6°	46.9°	47.0°	65.3°	65.3°
Child-bearing age	3,365	15.6	0.5	0.1	0.7	1.8	5.1	11.0	22.4	35.4	44.6	63.2	110.1°
Bottled water ^e													
Pregnant	255	12.9	1.0	1.1°	1.7°	2.7	5.0	9.9	16.8	26.5	33.4°	50.1°	58.1°
Lactating	57	15.2	2.3	1.6°	$2.2^{\rm c}$	2.2°	$4.0^{\rm c}$	12.0	23.5°	33.4°	40.7°	46.0^{c}	51.0°
Child-bearing age	3,075	11.4	0.3	0.7	1.7	2.3	4.1	8.4	15.0	24.0	31.9	48.5	166.7°
Other water sources ^f													
Pregnant	157	10.3	1.8	0.2°	0.6^{c}	1.4°	2.2	5.7	12.2	29.3°	36.6°	37.8°	94.1°
Lactating	29	21.3	6.8	$0.7^{\rm c}$	1.9°	3.5°	3.9°	16.3	48.3°	51.3°	51.3°	65.3°	65.3°
Child-bearing age	2,012	11.4	0.8	0.1	0.5	1.0	3.0	7.3	15.5	29.3	38.0	51.8	98.0°

Based on the average of 2 days of consumption reported for each NHANES respondent. If the respondent reported zero consumption on 1 of the 2 days and nonzero consumption on the other day, his/her average consumption would be the average of zero and nonzero consumption. Single day rates can be generated using http://fcid.foodrisk.org/.

Source: Based on U.S. EPA analysis of 2005–2010 NHANES using http://fcid.foodrisk.org/.

All Water Sources: water, community supply (direct and indirect water consumption); water, bottled (direct water consumption only); water, well or rain cistern (direct and indirect water consumption); water, spring (direct and indirect water consumption); water, don't drink tap water (direct and indirect water consumption); water, other (direct and indirect water consumption); water, don't know (direct and indirect water consumption).

Estimates are less statistically reliable based on guidance published in the Joint Policy on Variance Estimation and Statistical Reporting Standards on NHANES III and CSFII Reports: HNIS/NCHS Analytical Working Group Recommendations (NCHS, 1993).

d Community water: water, community supply (direct and indirect water consumption).

Bottled water: water, bottled (direct water consumption only).

Other sources: water, well or rain cistern (direct and indirect water consumption); water, spring (direct and indirect water consumption); water, don't drink tap water (direct and indirect water consumption); water, other (direct and indirect water consumption); water, don't know (direct and indirect water consumption).

HNIS = Human Nutrition Information Service.

N =Sample size.

SE = Standard error.

Chapter 3—Ingestion of Water and Other Select Liquids

Reproductive		Standard -	Percentile Distribution						
Status ^a	Mean	Deviation	5	10	25	50	75	90	95
mL/day									
Control	1,940	686	995	1,172	1,467	1,835	2,305	2,831	3,186
Pregnant	2,076	743	1,085	1,236	1,553	1,928	2,444	3,028	3,475
Lactating	2,242	658	1,185	1,434	1,833	2,164	2,658	3,169	3,353
mL/kg-day									
Control	32.3	12.3	15.8	18.5	23.8	30.5	38.7	48.4	55.4
Pregnant	32.1	11.8	16.4	17.8	17.8	30.5	40.4	48.9	53.5
Lactating	37.0	11.6	19.6	21.8	21.8	35.1	45.0	53.7	59.2

Number of observations: nonpregnant, nonlactating controls (N = 6,201); pregnant (N = 188); lactating (N = 77).

Source: Ershow et al. (1991).

Percentile Distribution									
Reproductive Status ^a	Mean	Standard Deviation	5	10	25	50	75	90	95
mL/day									
Control	1,157	635	310	453	709	1,065	1,503	1,983	2,310
Pregnant	1,189	699	274	419	713	1,063	1,501	2,191	2,424
Lactating	1,310	591	430	612	855	1,330	1,693	1,945	2,191
mL/kg-day									
Control	19.1	10.8	5.2	7.5	11.7	17.3	24.4	33.1	39.1
Pregnant	18.3	10.4	4.9	5.9	10.7	16.4	23.8	34.5	39.6
Lactating	21.4	9.8	7.4	9.8	14.8	20.5	26.8	35.1	37.4
Fraction of daily flu	id intake that	is tap water (%	(o)						
Control	57.2	18.0	24.6	32.2	45.9	59.0	70.7	79.0	83.2
Pregnant	54.1	18.2	21.2	27.9	42.9	54.8	67.6	76.6	83.2
Lactating	57.0	15.8	27.4	38.0	49.5	58.1	65.9	76.4	80.5

Number of observations: nonpregnant, nonlactating controls (N = 6,201); pregnant (N = 188); lactating (N = 77).

Source: Ershow et al. (1991).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-66. Total Fluid (mL/Day) Derived from Various Dietary Sources by Women Aged	
15 to 49 Years ^a	

	Con	trol Wo	men	Pregr	Pregnant Women			Lactating Women		
		Pero	centile		Perc	entile		Perc	entile	
Sources	Meanb	50	95	Mean ^b	50	95	Mean ^b	50	95	
Drinking water	583	480	1,440	695	640	1,760	677	560	1,600	
Milk and milk drinks	162	107	523	308	273	749	306	285	820	
Other dairy products	23	8	93	24	9	93	36	27	113	
Meats, poultry, fish, eggs	126	114	263	121	104	252	133	117	256	
Legumes, nuts, and seeds	13	0	77	18	0	88	15	0	72	
Grains and grain products	90	65	257	98	69	246	119	82	387	
Citrus and noncitrus fruit juices	57	0	234	69	0	280	64	0	219	
Fruits, potatoes, vegetables, tomatoes	198	171	459	212	185	486	245	197	582	
Fats, oils, dressings, sugars, sweets	9	3	41	9	3	40	10	6	50	
Tea	148	0	630	132	0	617	253	77	848	
Coffee and coffee substitutes	291	159	1,045	197	0	955	205	80	955	
Carbonated soft drinks ^c	174	110	590	130	73	464	117	57	440	
Noncarbonated soft drinks ^c	38	0	222	48	0	257	38	0	222	
Beer	17	0	110	7	0	0	17	0	147	
Wine spirits, liqueurs, mixed drinks	10	0	66	5	0	25	6	0	59	
All sources	1,940	NA	NA	2,076	NA	NA	2,242	NA	NA	

Number of observations: nonpregnant, nonlactating controls (N = 6,201); pregnant (N = 188); lactating (N = 77).

Source: Ershow et al. (1991).

Table 3-67. Da	ily Water In	take for Men and	l Pregnan	t Women	(L/day)				
			Percentile						
Category	N	$Mean \pm SD$	10	25	50	75	90		
Total water									
Pregnant women	34	1.86 ± 0.73	1.17	1.45	1.75	2.08	2.33		
Men	33	1.68 ± 0.70	0.70	1.34	1.59	2.08	2.39		
Tap water ^a									
Pregnant women	34	0.78 ± 0.51	0.20	0.43	0.62	1.12	1.39		
Men	33	0.78 ± 0.51	0.25	0.34	0.81	1.10	1.23		
Cold tap water at home ^b									
All pregnant women	34	0.37 ± 0.40	0	0.02	0.26	0.55	0.97		
Employed full time	18	0.28 ± 0.30	0	0.04	0.15	0.53	0.60		
Employed part time or less	16	0.47 ± 0.48	0	0.01	0.42	0.73	1.04		
All men	33	0.29 ± 0.35	0	0	0.15	0.51	0.69		

^a Filtered tap water excluded.

Source: Shimokura et al. (1998).

b Individual means may not add to all-sources total due to rounding.

^c Includes regular, low-calorie, and noncalorie soft drinks.

NA = Not appropriate to sum the columns for the 50^{th} and 95^{th} percentiles of intake.

Filtered tap water and iced tea excluded.

V = Number of subjects.

Chapter 3—Ingestion of Water and Other Select Liquids

Category	All Pregnant Women $N = 34$	Pregnant Women Employed Full Time $N = 18$	Pregnant Women Employed Part Time or Less $N = 16$	All Men $N = 33$
Consumption at home				
Cold drinking water	0.25	0.18	0.34	0.19
Cold tap-water-based beverages	0.11	0.10	0.13	0.10
Total cold tap water	0.37	0.28	0.47	0.29
Hot tap water	0.15	0.11	0.20	0.14
Total tap water	0.52	0.38	0.67	0.43
Consumption outside the home				
Cold drinking water	0.15	0.18	0.11	0.16
Cold tap-water-based beverages	0.04	0.06	0.02	0.03
Total cold tap water	0.19	0.23	0.14	0.18
Hot tap water	0.08	0.12	0.02	0.17
Total tap water	0.26	0.36	0.16	0.35
Total cold tap water	0.56	0.51	0.61	0.47
Total hot tap water	0.23	0.23	0.22	0.31
Total tap water	0.78	0.74	0.83	0.78

N =Number of subjects.

Source: Shimokura et al. (1998).

Chapter 3—Ingestion of Water and Other Select Liquids

					Percentiles					Percentiles	
	Characteristic	Mean	SD	25 th	50 th	75 th	Mean	SD	25 th	50 th	75 th
			Pre	gnant $(N = 7)$	71)			Not p	regnant (N =	= 43)	
Home	Cold tap water	1.8	1.4	0.9	1.4	2.3	1.3	1.0	0.5	0.9	2.0
	Cold tap-water-based beverages	1.0	0.8	0.7	0.9	1.4	0.9	0.6	0.4	0.7	1.2
	Hot tap-water-based beverages	0.1	0.2	0.0	0.0	0.2	0.2	0.5	0.0	0.0	0.2
	Total tap water intake	2.9	1.8	1.8	2.3	3.7	2.4	1.2	1.5	2.3	2.9
			Pre	gnant $(N=3)$	36)			Not p	regnant (N =	= 23)	
Work	Cold tap water	0.7	0.6	0.2	0.4	1.3	1.0	1.2	0.4	0.7	1.4
	Cold tap-water-based beverages	0.1	0.3	0.0	0.0	0.0	0.1	0.3	0.0	0.0	0.0
	Hot tap-water-based beverages	0.1	0.2	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0
	Total tap water intake	0.9	0.7	0.4	0.7	1.4	1.2	1.2	0.5	0.9	1.4
			Pre	gnant $(N=7)$	71)			Not p	regnant (N =	= 43)	
Total	Cold tap water	2.1	1.5	1.1	1.8	2.8	1.8	1.6	0.7	1.5	2.7
	Cold tap-water-based beverages	1.1	0.8	0.7	0.9	1.4	0.9	0.6	0.4	0.9	1.4
	Hot tap-water-based beverages	0.2	0.3	0.0	0.0	0.2	0.3	0.5	0.0	0.0	0.4
	Total tap water intake	3.4	1.8	2.0	3.0	4.3	3.0	1.7	1.8	2.7	4.1

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-70. Principal Sources of Drinking Water at Home for Pregnant and Nonpregnant Women (%)							
Source of Water	Pregnant	Nonpregnant					
Tap water	74.6	72.1					
Bottled water	14.1	11.6					
Filtered water	11.3	16.3					
Source: Zender et al. (2001).							

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-71. Total Ta	ap Water and Bottled	Water Intake by Pro	egnant Women (L/day)
	Cold T	ap Water	Bottle	ed Water
Variables	N	Mean (SD)	N	Mean (SD)
Demographics				
Home	2,293	1.3 (1.2)	a	a
Work	2,295	0.4 (0.6)	a	a
Total	2,293	1.7 (1.4)	2,284	0.6 (0.9)
Season				
Winter	587	1.6 (1.3)	584	0.6 (1.0)
Spring	622	1.7 (1.4)	622	0.6 (1.0)
Summer	566	1.8 (1.6)	560	0.6 (0.9)
Fall	518	1.8 (1.5)	518	0.5 (0.9)
Age at LMP				
17 to 25	852	1.6 (1.4)	848	0.6 (1.0)
26 to 30	714	1.8 (1.5)	710	0.6 (1.0)
31 to 35	539	1.7 (1.3)	538	0.5 (0.8)
≥36	188	1.8 (1.4)	188	0.5 (0.9)
Education				
≤High school	691	1.5 (1.5)	687	0.6 (1.0)
Some college	498	1.7 (1.5)	496	0.6 (1.0)
≥4-year college	1,103	1.8 (1.3)	1,100	0.5 (0.9)
Race/ethnicity				
White, non-Hispanic	1,276	1.8 (1.4)	1,273	0.5 (0.9)
Black, non-Hispanic	727	1.6 (1.5)	722	0.6 (0.9)
Hispanic, any race	204	1.1 (1.3)	202	1.1 (1.2)
Other	84	1.9 (1.5)	85	0.5 (0.9)
Marital status				
Single, never married	719	1.6 (1.5)	713	0.6 (1.0)
Married	1,497	1.8 (1.4)	1,494	0.5 (0.9)
Other	76	1.7 (1.9)	76	0.5 (0.9)
Annual income (\$)				
≤40,000	967	1.6 (1.5)	962	0.6 (1.0)
40,000-80,000	730	1.8 (1.4)	730	0.5 (0.9)
>80,000	501	1.7 (1.3)	499	0.5 (0.9)
Employment				
No	681	1.7 (1.5)	679	0.5 (0.9)
Yes	1,611	1.7 (1.4)	1,604	0.6 (0.9)

Chapter 3—Ingestion of Water and Other Select Liquids

		tinued)		
	-	Sap Water		ed Water
Variables	N	Mean (SD)	N	Mean (SD)
BMI				
Low	268	1.6 (1.3)	267	0.6 (1.0)
Normal	1,128	1.7 (1.4)	1,123	0.5 (0.9)
Overweight	288	1.7 (1.5)	288	0.6 (0.9)
Obese	542	1.8 (1.6)	540	0.6 (1.0)
Diabetes				
No diabetes	2,221	1.7 (1.4)	2,213	0.6 (0.9)
Regular diabetes	17	2.6 (2.1)	17	0.4 (0.8)
Gestational diabetes	55	1.6 (1.6)	54	0.6 (1.0)
Nausea during pregnancy				
No	387	1.6 (1.4)	385	0.6 (1.0)
Yes	1,904	1.7 (1.4)	1,897	0.6 (0.9)
Pregnancy history				
No prior pregnancy	691	1.7 (1.4)	685	0.6 (1.0)
Prior pregnancy with no SAB	1,064	1.7 (1.4)	1,063	0.5 (0.9)
Prior pregnancy with SAB	538	1.8 (1.5)	536	0.6 (1.0)
Caffeine				
0 mg/day	578	1.8 (1.5)	577	0.6 (1.0)
1-150 mg/day	522	1.6 (1.3)	522	0.5 (0.8)
151-300 mg/day	433	1.6 (1.4)	433	0.6 (0.9)
>300 mg/day	760	1.7 (1.5)	752	0.6 (1.0)
Vitamin use				
No	180	1.4 (1.4)	176	0.5 (0.8)
Yes	2,113	1.7 (1.4)	2,108	0.6 (0.9)
Smoking				
Nonsmoker	2,164	1.7 (1.4)	2,155	0.6 (0.9)
<10 cigarettes/day	84	1.8 (1.5)	84	0.8 (1.3)
≥10 cigarettes/day	45	1.8 (1.6)	45	0.4 (0.7)
Alcohol use				
No	2,257	1.7 (1.4)	2,247	0.6 (0.9)
Yes	36	1.6 (1.2)	37	0.6 (0.8)
Recreational exercise				
No	1,061	1.5 (1.4)	1,054	0.6 (0.9)
Yes	1,232	1.8 (1.4)	1,230	0.6 (1.0)

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-71. Total Tap Water and Bottled Water Intake by Pregnant Women (L/day) (Continued)							
		Cold T	ap Water	Bottled Water			
	Variables	N	Mean (SD)	N	Mean (SD)		
Illicit dr	ug use						
No		2,024	1.7 (1.4)	2,017	0.6 (0.9)		
Yes		268	1.7 (1.5)	266	0.6 (1.0)		
BMI LMP N SAB	Data are not reported in the source = Body mass index. = Age of last menstrual period. = Number of observations. = Spontaneous abortion.	document.					
Source:	Forssén et al. (2007).						

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-72. P	ercentage o	f Mean Water Intake Consu Water by Pregnant W		ered Tap
		Cold Unfiltered Tap Water	Cold Filtered Tap Water	Bottled Water
Variables	N	%	%	%
Total	2,280	52	19	28
Season				
Winter	583	52	19	29
Spring	621	53	19	28
Summer	559	50	20	29
Fall	517	54	19	26
Age at LMP				
≤25	845	55	11	33
26-30	709	49	22	28
31–35	538	51	27	22
≥36	188	53	22	25
Education				
≤High school	685	56	8	34
Some college	495	53	16	30
≥4-year college	1,099	49	27	23
Race/ethnicity				
White, non-Hispanic	1,272	50	26	23
Black, non-Hispanic	720	60	9	30
Hispanic, any race	202	37	9	54
Other	84	48	27	25
Marital status				
Single, never married	711	57	9	33
Married	1,492	50	25	25
Other	76	57	9	34
Annual income (\$)				
≤40,000	960	56	11	33
40,000-80,000	728	51	24	24
>80,000	499	45	29	25
Employment				
No	678	52	21	27
Yes	1,601	52	19	29

Chapter 3—Ingestion of Water and Other Select Liquids

		Water by Pregnant Women (Cold Unfiltered Tap Water	Cold Filtered Tap Water	Bottled Water		
- Variables	N	9/0	9%	%		
BMI						
Low	266	50	21	29		
Normal	1,121	51	22	27		
Overweight	287	53	18	28		
Obese	540	56	14	29		
Diabetes						
No diabetes	2,209	52	19	28		
Regular diabetes	17	69	15	16		
Gestational diabetes	54	50	22	27		
Nausea during pregnancy						
No	385	54	18	28		
Yes	1,893	52	20	28		
Pregnancy history						
No prior pregnancy	685	48	21	31		
Prior pregnancy with no SAB	1,060	54	18	27		
Prior pregnancy with SAB	535	53	20	26		
Caffeine						
0 mg/day	577	50	22	27		
1–150 mg/day	520	53	17	29		
151-300 mg/day	432	52	17	30		
>300 mg/day	751	53	19	27		
Vitamin use						
No	176	57	8	34		
Yes	2,104	52	20	28		
Smoking						
Nonsmoker	2,151	51	20	28		
<10 cigarettes/day	84	60	10	28		
≥10 cigarettes/day	45	66	7	22		
Alcohol use						
No	2,244	52	19	28		
Yes	36	58	19	23		
Recreational exercise						
No	1,053	54	14	31		
Yes	1,227	51	24	26		

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-72. Percentage of Mean Water Intake Consumed as Unfiltered and Filtered Tap Water by Pregnant Women (Continued)											
		Cold Unfiltered Tap Water	Cold Filtered Tap Water	Bottled Water							
	Variables N	%	%	%							
Illicit dr	ug use										
No	2,013	51	20	28							
Yes	266	56	12	31							
BMI LMP N SAB	 body mass index. Age of last menstrual peri Number of observations. spontaneous abortion. 	od.									
Source:	Forssén et al. (2007).										

Source/Time Frame	N	Mean	50 th Percentile	90th Percentile
Cold tap water	1,981			
Prepregnancy		1.48	1.24	3.31
Early pregnancy		1.69	1.42	3.79
Mid-pregnancy		1.84	1.66	3.79
Hot tap water	1,987			
Prepregnancy		0.18	0.00	0.62
Early pregnancy		0.16	0.00	0.41
Mid-pregnancy		0.16	0.00	0.59
Bottled water	1,977			
Early pregnancy		0.57	0.18	1.77
Mid-pregnancy		0.59	0.09	2.07
Total water	1,968			
Early pregnancy	•	2.43	2.10	4.26
Mid-pregnancy		2.60	2.37	4.44

Source: Forssén et al. (2009).

Chapter 3—Ingestion of Water and Other Select Liquids

	No Cl	nange	Incr	ease	Decrease		
Change (L/day)	N	%	N	%	N	%	
Cold water	388	19.6					
<1.0			508	25.6	423	21.3	
1.0 - 2.5			280	14.1	220	11.1	
>2.5			92	4.6	70	3.5	
Total			880	44.4	713	36.0	
Hot water	1,228	61.8					
<1.0			163	8.2	148	7.4	
1.0 - 2.5			194	9.8	182	9.2	
>2.5			37	1.9	35	1.8	
Total			394	19.8	365	18.4	
Bottled water	721	36.5					
<1.0			214	10.8	399	20.2	
1.0-2.5			266	13.4	258	13.1	
>2.5			69	3.5	50	2.5	
Total			549	27.8	707	35.8	
Total water	76	3.9					
<1.0			449	22.8	409	20.8	
1.0-2.5			480	24.4	355	18.0	
>2.5			110	5.6	89	5.4	
Total			1,039	52.8	853	42.4	

Source: Forssén et al. (2009).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-75. Per Capita Estimates of Direct and Indirect Water Intake from All Sources by Pregnant, Lactating, and Child-Bearing Age Women (mL/kg-day)

		Mean		90th Percentile			95th Percentile			
			90% CI		90% BI				90% BI	
Women Categories	Sample Size	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
Pregnant	69	21*	19*	22*	39*	33*	46*	44*	38*	46*
Lactating	40	21*	15*	28*	53*	44*	55*	55*	52*	57*
Nonpregnant, nonlactating ages 15 to 44 years	2,166	19	19	20	35	35	36	36	46	47

^{*} The sample size does not meet minimum reporting requirements to make statistically reliable estimates as described in the *Third Report on Nutrition Monitoring in the United States*, 1994–1996 (LSRO, 1995).

NOTE: Source of data: 1994–1996, 1998 USDA CSFII; estimates are based on 2-day averages; interval estimates may involve aggregation of variance estimation units when data are too sparse to support estimation of the variance; all estimates exclude commercial and biological water.

90% CI = 90% confidence intervals for estimated means; 90% BI = 90% bootstrap intervals for percentile estimates using bootstrap method with 1,000 replications.

Source: Kahn and Stralka (2008) (Based on CSFII 1994-1996 and 1998).

Table 3-76. Per Capita Estimates of Direct and Indirect Water Intake from All Sources by Pregnant, Lactating, and Child-Bearing Age Women (mL/day)

			Mean			90th Percentile			95th Percentile		
			90% CI			90% BI			90%	6 BI	
Women Categories	Sample Size	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	
Pregnant	70	1,318*	1,199*	1,436*	2,336*	1,851*	3,690*	2,674*	2,167*	3,690*	
Lactating	41	1,806*	1,374*	2,238*	3,021*	2,722*	3,794*	3,767*	3,452*	3,803*	
Nonpregnant, nonlactating aged 15 to 44	2,221	1,243	1,193	1,292	2,336	2,222	2,488	2,937	2,774	3,211	

^{*} The sample size does not meet minimum reporting requirements to make statistically reliable estimates as described in the *Third Report on Nutrition Monitoring in the United States*, 1994–1996 (LSRO, 1995).

NOTE: Source of data: 1994–1996, 1998 USDA CSFII; estimates are based on 2-day averages; interval estimates may involve aggregation of variance estimation units when data are too sparse to support estimation of the variance; all estimates exclude commercial and biological water.

90% CI = 90% confidence intervals for estimated means; 90% BI = 90% bootstrap intervals for percentile estimates using bootstrap method with 1,000 replications.

Source: Kahn and Stralka (2008) (Based on CSFII 1994-1996 and 1998).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-77. Per Capita Estimated Direct and Indirect Community Water Ingestion by
Pregnant, Lactating, and Child-Bearing Age Women (mL/kg-day)

		-	<u> </u>			<u> </u>					
			Mean			90th Percentile			95 th Percentile		
			90% CI			90% BI			90% BI		
Women Categories	Sample Size	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	
Pregnant	69	13*	11*	14*	31*	28*	46*	43*	33*	46*	
Lactating	40	21*	15*	28*	53*	44*	55*	55*	52*	57*	
Nonpregnant, nonlactating ages 15 to 44 years	2,166	14	14	15	31	30	32	38	36	39	

^{*} The sample size does not meet minimum reporting requirements to make statistically reliable estimates as described in the *Third Report on Nutrition Monitoring in the United States*, 1994–1996 (LSRO, 1995).

NOTE: Source of data: 1994–1996, 1998 USDA CSFII; estimates are based on 2-day averages; interval estimates may involve aggregation of variance estimation units when data are too sparse to support estimation of the variance; all estimates exclude commercial and biological water.

90% CI = 90% confidence intervals for estimated means; 90% BI = 90% bootstrap intervals for percentile estimates using bootstrap method with 1,000 replications.

Source: Kahn and Stralka (2008) (Based on CSFII 1994-1996 and 1998).

Table 3-78. Per Capita Estimated Direct and Indirect Community Water Ingestion by Pregnant, Lactating, and Child-Bearing Age Women (mL/day)

			Mean			90th Percentile			95th Percentile		
			90% CI			90% BI			90%	6 BI	
Women Categories	Sample Size	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	
Pregnant	70	819*	669*	969*	1,815*	1,479*	2,808*	2,503*	2,167*	3,690*	
Lactating	41	1,379*	1,021*	1,737*	2,872*	2,722*	3,452*	3,434*	2,987*	3,803*	
Nonpregnant, nonlactating ages 15 to 44 years	2,221	916	882	951	1,953	1,854	2,065	2,575	2,403	2,908	

^{*} The sample size does not meet minimum reporting requirements to make statistically reliable estimates as described in the *Third Report on Nutrition Monitoring in the United States*, 1994–1996 (LSRO, 1995).

NOTE: Source of data: 1994–1996, 1998 USDA CSFII; estimates are based on 2-day averages; interval estimates may involve aggregation of variance estimation units when data are too sparse to support estimation of the variance; all estimates exclude commercial and biological water.

90% CI = 90% confidence intervals for estimated means; 90% BI = 90% bootstrap intervals for percentile estimates using bootstrap method with 1,000 replications.

Source: Kahn and Stralka (2008) (Based on CSFII 1994–1996 and 1998).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-79. Consumers-Only Estimated Direct and Indirect Water Intake from All Sources
by Pregnant, Lactating, and Child-Bearing Age Women (mL/kg-day)

			Mean			90 th Percentile			95th Percentile		
			90% CI			90% BI			90%	6 BI	
Women Categories	Sample Size	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	
Pregnant	69	21*	19*	22*	39*	33*	46*	44*	38*	46*	
Lactating	40	28*	19*	38*	53*	44*	57*	57*	52*	58*	
Nonpregnant, nonlactating ages 15 to 44 years	2,149	19	19	20	35	34	37	46	42	48	

^{*} The sample size does not meet minimum reporting requirements to make statistically reliable estimates as described in the *Third Report on Nutrition Monitoring in the United States*, 1994–1996 (LSRO, 1995).

NOTE: Source of data: 1994–1996, 1998 USDA CSFII; estimates are based on 2-day averages; interval estimates may involve aggregation of variance estimation units when data are too sparse to support estimation of the variance; all estimates exclude commercial and biological water.

90% CI = 90% confidence intervals for estimated means; 90% BI = 90% bootstrap intervals for percentile estimates using bootstrap method with 1,000 replications.

Source: Kahn and Stralka (2008) (Based on CSFII 1994-1996 and 1998).

Table 3-80. Consumers-Only Direct and Indirect Water Intake from All Sources by Pregnant, Lactating, and Child-Bearing Age Women (mL/day)

			Mean			90th Percentile			95th Percentile		
			90% CI			90%	6 BI		90% BI		
Women Categories	Sample Size	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	
Pregnant	70	1,318*	1,199*	1,436*	2,336*	1,851*	3,690*	2,674*	2,167*	3,690*	
Lactating	41	1,806*	1,374*	2,238*	3,021*	2,722*	3,794*	3,767*	3,452*	3,803*	
Nonpregnant, nonlactating ages 15 to 44 years	2,203	1,252	1,202	1,303	2,338	2,256	2,404	2,941	2,834	3,179	

^{*} The sample size does not meet minimum reporting requirements to make statistically reliable estimates as described in the *Third Report on Nutrition Monitoring in the United States*, 1994–1996 (LSRO, 1995).

NOTE: Source of data: 1994–1996, 1998 USDA CSFII; estimates are based on 2-day averages; interval estimates may involve aggregation of variance estimation units when data are too sparse to support estimation of the variance; all estimates exclude commercial and biological water.

90% CI = 90% confidence intervals for estimated means; 90% BI = 90% bootstrap intervals for percentile estimates using bootstrap method with 1,000 replications.

Source: Kahn and Stralka (2008) (Based on CSFII 1994–1996 and 1998).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-81. Consumers-Only Estimated Direct and Indirect Community Water Ingestion by Pregnant, Lactating, and Child-Bearing Age Women (mL/kg-day)

		Mean			90th Percentile			95th Percentile				
			90% CI			90% BI			90% BI			
Women Categories	Sample Size	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound		
Pregnant	65	14*	12*	15*	33*	29*	46*	43*	33*	46*		
Lactating	33	26*	18*	18*	54*	44*	55*	55*	53*	57*		
Nonpregnant, nonlactating ages 15 to 44 years	2,028	15	14	16	32	31	33	38	36	42		

^{*} The sample size does not meet minimum reporting requirements to make statistically reliable estimates as described in the *Third Report on Nutrition Monitoring in the United States*, 1994–1996 (LSRO, 1995).

NOTE: Source of data: 1994–1996, 1998 USDA CSFII; estimates are based on 2-day averages; interval estimates may involve aggregation of variance estimation units when data are too sparse to support estimation of the variance; all estimates exclude commercial and biological water.

90% CI = 90% confidence intervals for estimated means; 90% BI = 90% bootstrap intervals for percentile estimates using bootstrap method with 1,000 replications.

Source: Kahn and Stralka (2008) (Based on CSFII 1994-1996 and 1998).

Table 3-82. Consumers-Only Estimated Direct and Indirect Community Water Ingestion by Pregnant, Lactating, and Child-Bearing Age Women (mL/day)

			Mean			90th Percentile			95th Percentile		
			90% CI			90% BI			90%	6 BI	
Women Categories	Sample Size	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound	
Pregnant	65	872*	728*	1,016*	1,844*	1,776*	3,690*	2,589*	2,167*	3,690*	
Lactating	34	1,665*	1,181*	2,148*	2,959*	2,722*	3,452*	3,588*	2,987*	4,026*	
Nonpregnant, nonlactating ages 15 to 44 years	2,077	976	937	1,014	2,013	1,893	2,065	2,614	2,475	2,873	

^{*} The sample size does not meet minimum reporting requirements to make statistically reliable estimates as described in the *Third Report on Nutrition Monitoring in the United States*, 1994–1996 (LSRO, 1995).

NOTE: Source of data: 1994–1996, 1998 USDA CSFII; estimates are based on 2-day averages; interval estimates may involve aggregation of variance estimation units when data are too sparse to support estimation of the variance; all estimates exclude commercial and biological water.

90% CI = 90% confidence intervals for estimated means; 90% BI = 90% bootstrap intervals for percentile estimates using bootstrap method with 1,000 replications.

Source: Kahn and Stralka (2008) (Based on CSFII 1994–1996 and 1998).

Chapter 3—Ingestion of Water and Other Select Liquids

	Table 3-	83. Mean and 95th Percent	ile Community W	ater Intake among Formı	ıla-Fed Infants ^a		
	Unweighted Sample		Indirect	in Formula	Total Di	rect and Indirect	
Age Group	Size ^b	Weighted Sample Size ^b	Mean 95 th Percentile		Mean	95 th Percentile	
				mL/day			
<1 month	36	79,000	491°	856°	505°	858°	
1 to <3 months	96	236,000	572	963°	627	1,096°	
3 to <6 months	214	525,000	645	1,112°	699	1,300°	
6 to <12 months	324	823,000	573	1,192°	691	1,350°	
1 to <2 years	34	133,000	364	745°	591°	1,254 ^c	
			r	nL/kg-day			
<1 month	34	79,000	143°	240°	146°	240°	
1 to <3 months	90	236,000	124	285°	136	290°	
3 to <6 months	205	525,000	93	171°	101	186	
6 to <12 months	311	823,000	65	136°	78	151°	
1 to <2 years	32	133,000	38°	82°	60°	119 ^c	

a Formula-consumers only.

Source: Kahn et al. (2013).

Samples sizes for estimates in mL/kg-day are smaller than estimates in mL/day because body weight was not reported for some participants. Weighted samples sizes represent the number in each age group based on the unweighted number in the sample extrapolated to the overall U.S. population.

The sample size does not meet the minimum reporting requirements as described in the *Third Report on Nutrition Monitoring in the United States* (LSRO, 1995).

Chapter 3—Ingestion of Water and Other Select Liquids

Table	2 3-84. Ta	p Wate	r Intal	ke in Brea	st-Fed	and Fo	rmula-	Fed Inf	ants and	Mixed-	Fed Yo	ung (Children	at Diff	erent	Age Poi	nts	
		Т	ap Wat	er Intake ^b (mL/day	·)		Tap Water Intal					e ^b (mL/kg-day)					
				Total					Total				From 1	Househo	oldc	From M	lanufactui	ring ^d
Age	N^{a}	Mean	SD	Median	p95	Max	Mean	SD	Median	p95	Max	%e	Mean	SD	% f	Mean	SD	% f
Breast-fed																		
1 year, total	300	130	180	50	525	1,172	17	24**	6	65	150	17	15	23**	85	2.4	4.7**	15
3 months	111	67	167	0	493	746	10	25**	0	74	125	10	10	25**	97	0.3	1.9**	3
6 months	124	136	150	68	479	634	18	20**	8	58	85	18	14	19**	79	3.8	6.3*	21
9 months	47	254	218	207	656	1,172	30	27**	23	77	150	28	26	27**	87	3.7	3.4	13
12 months	18	144	170	85	649	649	15	18**	9	66	66	19	13	18**	86	2.2	2.1	14
Formula-fed																		
1 year, total	758	441	244	440	828	1,603	53	33	49	115	200	51	49	33	92	4.0	8.0	8
3 months	78	662	154	673	874	994	107	23	107	147	159	93	103	28	97	3.4	17.9	3
6 months	141	500	178	519	757	888	63	23	65	99	109	64	59	25	92	4.8	8.0	8
9 months	242	434	236	406	839	1,579	49	27	45	94	200	50	44	27	91	4.5	6.3	9
12 months	297	360	256	335	789	1,603	37	26	32	83	175	39	33	25	91	3.3	3.7	9

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3	-84. Ta	ap Wate	r Intal	ke in Brea	st-Fed	and Fo		Fed In Continu	fants and lued)	Mixed-	Fed Yo	ung (Children	at Dif	ferent	Age Poi	nts	
		Т	ap Wat	ter Intake ^b (mL/day	·)				Т	ap Wate	r Intak	e ^b (mL/kg	-day)				
				Total					Total				From F	Iouseho	old°	From M	anufactui	ring ^d
Age	N^{a}	Mean	SD	Median	p95	Max	Mean	SD	Median	p95	Max	% ^e	Mean	SD	% f	Mean	SD	% f
Mixed-fed																		
1 to 3 years, total	904	241	243	175	676	2,441	19	20	14	56	203	24	15	20	78	3.9	5.5	22
18 months	277	280	264	205	828	1,881	25	23	18	70	183	28	22	23	88	3.0	4.1	12
24 months	292	232	263	158	630	2,441	18	21	12	49	203	23	15	21	80	3.7	5.0	20
36 months	335	217	199	164	578	1,544	14	13	11	36	103	22	9	12	66	4.9	6.6	34

- a Numbers of 3-day diet records.
- Total tap water = tap water from the household and tap water from food manufacturing. Converted from g/day and g/kg-day; 1 g = 1 mL.
- Tap water from household = tap water from the household tap consumed directly as a beverage or used to prepare foods and beverages.
- Tap water from food = manufacturing tap water from the industrial food production used for the preparation of foods (bread, butter/margarine, tinned fruit, vegetables and legumes, ready to serve meals, commercial weaning food) and mixed beverages (lemonade, soft drinks).
- Mean as a percentage of total water.
- Mean as a percentage of total tap water.
- * Significantly different from formula-fed infants, p < 0.05.
- ** Significantly different from formula-fed infants, p < 0.0001.
- N =Number of observations.
- $p95 = 95^{th}$ percentile.
- SD = Standard deviation.

Source: Hilbig et al. (2002).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-85. Wa	ter Intake fo	or 2-Month-(Old Infants	(consumer	rs-only) ^a			
			Percentiles					
Type of Consumers	N	Mean	10 th	25 th	50 th	75 th	90 th	95 th
					mL/day			
Total water	393 ^b	521	57	372	515	713	926	1,036
Tap water only	232 ^b	564	102	394	552	757	959	1090
Bottled water only	134 ^b	504	71	382	489	684	838	995
Formula-fed infants who consumed dry formula reconstituted with either bottled or tap water	278°	654	419	467	590	779	981	1,105
					mL/kg-day	y		
Total water	393 ^b	98	11	67	97	130	173	194
Tap water only	232 ^b	105	18	77	103	140	176	201
Bottled water only	134 ^b	94	14	73	92	122	168	194
Formula-fed infants who consumed dry formula reconstituted with either bottled or tap water	278 ^b	122	79	90	112	144	179	200

^a Includes only infants who had some water ingestion.

Source: Levallois et al. (2008).

Includes 232 consuming only tap water, 134 consuming only bottled water, and 27 consuming both tap water and bottled water.

Of the 393 infants who had some water ingestion, 278 consumed dry formula diluted with either tap water or bottled water; 167 of these infants had their formula diluted with tap water.

N =Number of observations.

Chapter 3—Ingestion of Water and Other Select Liquids

	Activity Level									
Room Temperature ^b (°F)	High (0.15 hp/man) ^c		Medium (0.10 hp/man) ^c	Low (0.05 hp/man) ^c					
-	$\underline{\mathcal{N}}^{\mathrm{d}}$	<u>Intake</u>	<u>N</u>	<u>Intake</u>	<u>N</u>	<u>Intake</u>				
00	-	-	-	-	15	0.653 (0.75)				
95	18	0.540 (0.31)	12	0.345 (0.59)	6	0.50 (0.31)				
00	7	0.286 (0.26)	7	0.385 (0.26)	16	0.23 (0.20)				
35	7	0.218 (0.36)	16	0.213 (0.20)	-	-				
80	16	0.222 (0.14)	-	-	-	-				

^a Data expressed as mean intake with standard deviation in parentheses.

Source: McNall and Schlegel (1968).

Table 3-87. P	Table 3-87. Planning Factors for Individual Tap Water Consumption										
Environmental Condition	Recommended Planning Factor (gal/day) ^a	Recommended Planning Factor L/day ^{a,b}									
Hot	$3.0^{\rm c}$	11.4									
Temperate	1.5 ^d	5.7									
Cold	$2.0^{\rm e}$	7.6									

Based on a mixture of activities among the workforce as follows: 15% light work; 65% medium work; 20% heavy work. These factors apply to the conventional battlefield where no nuclear, biological, or chemical weapons are used.
 Converted from gal/day to L/day.

Source: U.S. Army (1983, 1999).

b Humidity = 80%; air velocity = 60 ft/minute.

The symbol "hp" refers to horsepower.

d Number of subjects with continuous data.

⁻ Data not reported in the source document.

This assumes 1 quart/12-hour rest period/man for perspiration losses and 1 quart/day-man for urination plus 6 quarts/12 hours of light work/man, 9 quarts/12 hours of moderate work/man, and 12 quarts/12 hours of heavy work/man.

This assumes 1 quart/12-hour rest period/man for perspiration losses and 1 quart/day/man for urination plus 1 quart/12 hours of light work/man, 3 quarts/12 hours of moderate work/man, and 6 quarts/12 hours of heavy work/man.

This assumes 1 quart/12-hour rest period/man for perspiration losses, 1 quart/day/man for urination, and 2 quarts/day/man for respiration losses plus 1 quart/12 hours of light work/man, 3 quarts/12 hours of moderate work/man, and 6 quarts/6 hours of heavy work/man.

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-88. Mean (± standard error [SE]) Fluid Intake (mL/kg-day) by Children Aged 1 to
10 Years, National Health and Nutrition Examination Survey (NHANES) III, 1988–1994

10 10415,	, 1 (1111111111111111111111111111111111	-	1. (20) 111, 1, 00 1, , 1
	Total Sample $N = 7,925$	Sample with Temperature Information $N = 3,869$	Sample without Temperature Information $N = 4,056$
Total fluid	84 ± 1.0	84 ± 1.0	85 ± 1.4
Plain water	27 ± 0.8	27 ± 1.0	26 ± 1.1
Milk	18 ± 0.3	18 ± 0.6	18 ± 0.4
Carbonated drinks	6 ± 0.2	5 ± 0.3	6 ± 0.3
Juice	12 ± 0.3	11 ± 0.6	12 ± 0.4

N =Number of observations.

Source: Sohn et al. (2001).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-89. Estimated Mean (± standard error [SE]) Amount of Total Fluid and Plain Water Intake among Children^a Aged 1 to 10 Years by Age, Sex, Race/Ethnicity, Poverty:Income Ratio, Region, and Urbanicity (National Health and Nutrition Examination Survey [NHANES] III, 1988–1994)

		Total	Fluid	Plain	Water
	N	mL/day	mL/kg-day	mL/day	mL/kg-day
Age (years)					
1	578	$1{,}393 \pm 31$	124 ± 2.9	298 ± 19	26 ± 1.8
2	579	$1,\!446\pm31$	107 ± 2.3	430 ± 26	32 ± 1.9
3	502	$1{,}548 \pm 75$	100 ± 4.6	482 ± 27	31 ± 1.8
4	511	$1,\!601\pm41$	91 ± 2.8	517 ± 23	29 ± 1.3
5	465	$1,\!670\pm54$	84 ± 2.3	525 ± 36	26 ± 1.7
6	255	$1,\!855\pm125$	81 ± 4.9	718 ± 118	31 ± 4.7
7	235	$1,\!808\pm66$	71 ± 2.3	674 ± 46	26 ± 1.9
8	247	$1{,}792 \pm 37$	61 ± 1.8	626 ± 37	21 ± 1.2
9	254	$2{,}113\pm78$	65 ± 2.1	878 ± 59	26 ± 1.4
10	243	$2,\!051\pm97$	58 ± 2.4	867 ± 74	24 ± 2.0
Sex					
Male	1,974	$1,\!802\pm30$	86 ± 1.8	636 ± 32	29 ± 1.3
Female	1,895	$1,\!664\pm24$	81 ± 1.5	579 ± 26	26 ± 1.0
Race/ethnicity					
White	736	$1,653 \pm 26$	79 ± 1.8	552 ± 34	24 ± 0.3
Black	1,122	$1,\!859 \pm 42$	88 ± 1.8	795 ± 36	36 ± 1.5
Mexican American	1,728	$1,\!817\pm25$	89 ± 1.7	633 ± 23	29 ± 1.1
Other	283	$1,\!813\pm47$	90 ± 4.2	565 ± 39	26 ± 1.7
Poverty:income ratio ^b					
Low	1,868	$1,\!828\pm32$	93 ± 2.6	662 ± 27	32 ± 1.3
Medium	1,204	$1,690 \pm 31$	80 ± 1.6	604 ± 35	26 ± 1.4
High	379	$1,\!668 \pm 54$	76 ± 2.5	533 ± 41	22 ± 1.7
Region ^{c,d}					
Northeast	679	$1{,}735 \pm 31$	87 ± 2.3	568 ± 52	26 ± 2.1
Midwest	699	$1{,}734 \pm 45$	84 ± 1.5	640 ± 54	29 ± 1.8
South	869	$1{,}739 \pm 31$	83 ± 2.2	613 ± 24	28 ± 1.3
West	1,622	737 ± 25	81 ± 1.7	624 ± 44	27 ± 1.9

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-89. Estimated Mean (± standard error [SE]) Amount of Total Fluid and Plain Water Intake among Children^a Aged 1 to 10 Years by Age, Sex, Race/Ethnicity, Poverty:Income Ratio, Region, and Urbanicity (National Health and Nutrition Examination Survey [NHANES] III, 1988–1994) (Continued)

		Total	Fluid	Plain Water		
	N	mL/day	mL/kg-day	mL/day	mL/kg-day	
Urban/rural ^d						
Urban	3,358	$1{,}736\pm18$	84 ± 1.0	609 ± 29	27 ± 1.1	
Rural	511	$1{,}737\pm19$	84 ± 4.3	608 ± 20	28 ± 1.2	
Total	3,869	$1{,}737 \pm 15$	84 ± 1.1	609 ± 24	27 ± 1.0	

- ^a Children for whom temperature data were obtained.
- b Based on ratio of household income to federal poverty threshold. Low: <1.300; medium: 1.301–3.500; high: >3.501.
- All variables except for region and urban/rural showed statistically significant differences for both total fluid and plain water intake by Bonferroni multiple comparison method.
- Northeast = Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont;

Midwest = Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Wisconsin;

South = Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia;

West = Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming.

N = Number of observations.

Source: Sohn et al. (2001).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-90. Daily Water Intake Based on Physical Activity Levels, Mean ± Standard Error (SE) g/day						
Physical Activity Level	Plain Water ^a	Beverage Moisture ^b	Food Moisture ^c	Total Water ^d		
	Age 2-19	years $(N = 3,978)^{e}$				
All	583 ± 28	47 ± 1	437 ± 7	$1,926 \pm 36$		
None	379 ± 13	$1,173 \pm 194$	417 ± 35	$1,969 \pm 244$		
A little	516 ± 79	842 ± 57	423 ± 27	1780 ± 108		
Some	515 ± 39	881 ± 32	412 ± 18	$1,808 \pm 67$		
A lot	643 ± 31	917 ± 44	442 ± 10	$2,003 \pm 49$		
	Age 20+ y	years $(N = 4,112)^{f}$				
All	$1,061 \pm 52$	$1,539 \pm 43$	580 ± 12	$3,179 \pm 68$		
Any leisure activity ≥10 minutes over						
previous month?						
Yes	$1,112 \pm 50$	$1,543 \pm 44$	587 ± 13	$3,242 \pm 72$		
No	933 ± 64	$1,528 \pm 53$	561 ± 16	$3,021 \pm 69$		
Average activity on usual day?						
Mostly sitting	998 ± 64	$1,487 \pm 65$	584 ± 17	$3,068 \pm 58$		
Mostly standing	$1,060 \pm 61$	$1,471 \pm 37$	579 ± 8	$3,110 \pm 74$		
Carry light loads or climb stairs	$1,100 \pm 93$	$1,680 \pm 87$	577 ± 19	$3,357 \pm 109$		
Heavy work or carry heavy loads	$1,142 \pm 110$	$1,733 \pm 55$	582 ± 29	$3,\!457\pm123$		
	Age 20	$0+(N=2,691)^{g}$				
All	985 ± 39	$1,418 \pm 34$	664 ± 14	$3,066 \pm 47$		
MET score = 0	ET score = 0 973 \pm 74		653 ± 19	$2,920 \pm 67$		
MET score = Tertile 1			$1,325 \pm 38$ 653 ± 13			
MET score = Tertile 2	$1,004 \pm 81$	$1,617 \pm 69$	± 69 680 ± 29 3			
MET score = Tertile 3	$1,047 \pm 81$	$1,806 \pm 58$	716 ± 25	$3,568 \pm 119$		

^a Includes tap water, water from a cooler or drinking fountain, spring water, and noncarbonated bottled water.

Source: Kant et al. (2009); Kant and Graubard (2010); Yang and Chun (2014).

b Includes moisture in beverages.

c Includes moisture in foods.

d Sum of plain water, beverage moisture, and food moisture.

Kant and Graubard (2010); based on NHANES 2005–2006.

f Kant et al. (2009); based on NHANES 1999–2006.

yang and Chun (2014); based on NHANES 2005–2006.

N =Number of individuals.

Chapter 3—Ingestion of Water and Other Select Liquids

Study Group	Number of Participants	Average Water Ingestion Rate mL/45-minute interval	Average Water Ingestion Rate mL/hour ^a				
Children <18 years old	41	37	49				
Males <18 years old	20	45	60				
Females <18 years old	21	30	43				
Adults (>18 years)	12	16	21				
Men	4	22	29				
Women	8	12	16				

Converted from mL/45-minute interval.

Source: Dufour et al. (2006).

Table 3-92. Swimming Pool Water Ingestion Rates (mL/hour) by Swimmer Groups					
Age Group	Sex	N	Geometric Mean	Confidence Intervals	95th Percentile
Children 6–10 years	All	66	24	17–33	96
Teens 11–15 years	All	121	24	19-30	152
Adults 16+ years	All	362	12	11-14	105
	Female	192	9	8-11	72
	Male	170	16	13-20	145

N = Number of study participants.

Source: Dufour et al. (2017); Dufour and Wymer (2017).

Table 3-93. Water Ingested while Swimming (mL/hour)							
					Percentiles		
Age (years)	N	Mean	25 th	50 th	75 th	90 th	95 th
6 to <11	66	38	15	25	53	77	96
11 to <16	121	44	11	29	48	103	152
16 to <21	84	33	9	19	41	74	105
6 to <21	271	39	11	25	47	87	137
21+	276	28	5	13	29	50	92

N = Number of study participants.

Source: Dufour (2017); based on data provided to L. Phillips by A. Dufour by personal communication, 6/21/2017.

Chapter 3—Ingestion of Water and Other Select Liquids

			Volume of Water Ingestee
Divers and Locations	Percentage of Divers	Number of Dives	mL
Occupational divers $(N=35)$			
Open sea	57	24 (151)	8.7 (25)
Coastal water, USD < 1 km	23	3.2 (36)	9.7 (25)
Coastal water, USD > 1 km	20	1.8 (16)	8.3 (25)
Coastal water, USD unknown	51	16 (200)	12 (100)
Open sea and coastal combined	-	-	9.8 (100)
Fresh water, USD < 1 km	37	8.3 (76)	5.5 (25)
Fresh water, USD > 1 km	37	16 (200)	5.5 (25)
Fresh water, no USD	37	16 (200)	4.8 (25)
Fresh water, USD unknown	77	45 (200)	6.0 (25)
All fresh water combined	-	-	5.7 (25)
Sports divers—ordinary mask $(N = 482)$			
Open sea	26	2.1 (120)	7.7 (100)
Coastal water	78	14 (114)	9.9 (190)
Open sea and coastal combined	-	-	9.0 (190)
Fresh recreational water	85	22 (159)	13 (190)
Canals and rivers	11	0.65 (62)	3.4 (100)
City canals	1.5	0.031(4)	2.8 (100)
Canals, rivers, city canals combined	-	-	3.2 (100)
Swimming pools	65	17 (134)	20 (190)
Sports divers—full face mask $(N = 482)$			
Open sea	0.21	0.012(6)	0.43 (2.8)
Coastal water	1.0	0.10 (34)	1.3 (15)
Fresh recreational water	27	0.44 (80)	1.3 (15)
Canals and rivers	1.2	0.098 (13)	0.47 (2.8)
City canals	0.41	0.010(3)	0.31 (2.8)
All surface water combined	-	- ` ´	0.81 (25)
Swimming pools	2.3	0.21 (40)	13 (190)

Source: Schijven and de Roda Husman (2006).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-95. Exposure Parameters for Swimmers in Swimming Pools, Fresh Water, and Seawater

		Adı	ılts			
	N	Лen	W	omen	Children	<15 years
Parameter	Mean	95% UCI	Mean	95% UCI	Mean	95% UCI
Swimming duration (min)						
Swimming pool	68	180	67	170	81	200
Fresh water	54	200	54	220	79	270
Seawater	45	160	41	180	65	240
Volume water swallowed (mL)						
Swimming pool	34	170	23	110	51	200
Fresh water	27	140	18	86	37	170
Seawater	27	140	18	90	31	140

UCI = Upper confidence interval.

Source: Schets et al. (2011).

Tabl	e 3-96. Est	imated Water	r Ingestion d	luring Wat	er Recrea	ation Activiti	es (mL/hr)	
		Sur	face Water Stu	ıdy		Swin	mming Pool S	tudy
Activity	N	Median	Mean	UCL	$\overline{}$ N	Median	Mean	UCL
			Limited Cor	ntact Scenario	os			
Boating	316	2.1	3.7	11.2	0	-	-	-
Canoeing	766				76			
No capsize		2.2	3.8	11.4		2.1	3.6	11.0
With capsize		3.6	6.0	19.9		3.9	6.6	22.4
All activities		2.3	3.9	11.8		2.6	4.4	14.1
Fishing	600	2.0	3.6	10.8	121	2.0	3.5	10.6
Kayaking	801				104			
No capsize		2.2	3.8	11.4		2.1	3.6	10.9
With capsize		2.9	5.0	16.5		4.8	7.9	26.8
All activities		2.3	3.8	11.6		3.1	5.2	17.0
Rowing	222				0			
No capsize		2.3	3.9	11.8		-	-	-
With capsize		2.0	3.5	10.6		_	-	_
All activities		2.3	3.9	11.8		-	-	-
Wading/splashing	0	-	-	-	112	2.2	3.7	11.2
Walking	0	-	-	-	23	2.0	3.5	10.6
			Full Conta	act Scenarios				
Immersion	0	-	-	_	112	3.2	5.1	15.3
Swimming	0	-	-	-	114	6.0	10.0	34.8
TOTAL	2,705				662			

N =Number of participants.

UCL = Upper confidence limit (i.e., mean + $1.96 \times SD$).

= No data.

Source: Dorevitch et al. (2011).

Chapter 3—Ingestion of Water and Other Select Liquids

Table 3-97. Pool Water Ingestion (mL/hr) by Activity and Age Group among Videotaped Participants								
Groups	N	Mean	SD	Range				
All swimmers	35	13.7	24.0	0-105.5				
Adults	19	3.5	11.7	0-50.9				
Children	16	25.7	29.2	0.9-105.5				
Lap swimmers	9	1.6	3.1	0.9-19				
Leisure swimmers	26	17.8	26.6	0-105.5				

N =Number of participants.

Source: Suppes et al. (2014).

					Percentile		
Age (years)	Mean	SD	5 th	10 th	50 th	90 th	95 th
All water types							
All ages	44.4	93.1	1.0	2.0	16.0	104.7	174.0
6-12	63.2	83.4	2.8	5.5	36.0	150.0	213.0
13-18	63.7	83.4	1.6	3.1	27.0	156.0	254.0
19-34	29.0	69.4	0.7	1.3	9.7	66.0	116.0
≥35	29.9	82.6	0.7	1.1	9.0	64.0	118.0
Fresh water							
All ages	35.4	74.6	0.8	1.3	12.7	84.0	140.0
6-12	53.0	69.9	2.4	5.0	30.0	126.2	184.0
13-18	45.0	79.9	1.0	2.0	18.0	112.0	174.7
19-34	21.9	54.4	0.4	0.9	7.1	50.0	85.3
≥35	22.6	62.1	0.4	0.9	6.7	47.6	88.0
Marine							
All ages	48.3	99.3	1.2	2.0	18.0	116.0	186.7
6-12	67.7	88.5	3.0	6.0	39.3	160.0	220.0
13-18	71.4	115.5	2.0	4.0	32.0	174.7	280.0
19-34	32.8	76.3	0.7	1.3	11.1	76.0	126.0
≥35	32.3	88.1	0.7	1.3	9.8	70.5	121.3

Chapter 3—Ingestion of Water and Other Select Liquids

APPENDIX A

Table A-1. Comparison of Community Water Intake Estimates^a 1994–1998 Continuing Survey of Food Intake by Individuals (CFSII), National Health and Nutrition Examination Survey (NHANES) 2003–2006, and NHANES 2005–2010

	CS	SFII 1994–1	998 ^b	NHA	NES 2003-2	2006°	NHAN	ES 2005-	2010 ^d
Age Range	N	Mean	95 th	N	Mean	95 th	N	Mean	95 th
			P	er Capita (ml	L/day)				
Birth <1 month	91	184	839	88	239	851	87	184	951
1 <3 months	253	227	896	143	282	962	233	145	905
3 < 6 months	428	362	1,056	244	373	925	282	187	981
6 < 12 months	714	360	1,055	466	303	866	588	269	988
1 < 2 years	1,040	271	837	611	223	760	728	146	565
2 <3 years	1,056	317	877	571	265	861	751	205	778
3 < 6 years	4,391	380	1,078	1,091	327	959	1,418	208	741
6 < 11 years	1,670	447	1,235	1,601	414	1,316	2,292	294	1,071
11 < 16 years	1,005	606	1,727	2,396	520	1,821	2,551	315	1,395
16 < 21 years	752	779	2,262	2,332	627	2,076	2,191	436	1,900
>21 years	9,207	1,104	2,811	8,673	1,043	2,958	13,552	859	2,732
All	20,607	926	2,544	18,216	869	2,717	24,673	711	2,641
Birth <1 month	88	52	232	88	52	169	87	42	200
1 <3 months	245	48	205	143	49	164	233	25	164
3 < 6 months	411	52	159	244	52	132	282	27	141
6 < 12 months	678	41	126	466	34	103	588	30	112
1 < 2 years	1,002	23	71	611	20	67	728	13	51
2 <3 years	994	23	60	571	19	61	751	15	58
3 < 6 years	4,112	22	61	1,091	18	51	1,418	11	42
6 < 11 years	1,553	16	43	1,601	14	43	2,292	10	34
11 < 16 years	975	12	34	2,396	10	32	2,551	6	26
16 < 21 years	743	12	33	2,332	9	32	2,191	6	28
>21 years	9,049	15	39	8,673	13	40	13,552	11	35
All	19,850	16	43	18,216	14	42	24,673	11	37
			Con	sumer Only (mL/day)				
Birth <1 month	40	470	858	51	409	852	20	581	938
1 <3 months	114	552	1,053	85	531	1,019	45	785	1,223
3 < 6 months	281	556	1,171	192	520	929	65	649	1,125
6 < 12 months	562	467	1,147	416	356	948	244	554	1,104
1 < 2 years	916	308	893	534	277	<i>781</i>	394	245	658
2 <3 years	934	356	912	508	321	911	445	332	901
3 < 6 years	3,960	417	1,099	985	382	999	860	338	836
6 < 11 years	1,555	480	1,251	1,410	511	1,404	1,473	455	1,258
11 < 16 years	937	652	1,744	2,113	637	1,976	1,449	562	1,761
16 <21 years	705	844	2,284	2,030	759	2,351	1,312	722	2,214
>21 years	8,505	1,183	2,848	7,616	1,227	3,092	8,912	1,276	3,075
All	18,509	1,000	2,601	15,940	1,033	2,881	15,219	1,096	2,972

Chapter 3—Ingestion of Water and Other Select Liquids

Table A-1. Comparison of Community Water Intake Estimates^a 1994–1998 Continuing Survey of Food Intake by Individuals (CFSII), National Health and Nutrition Examination Survey (NHANES) 2003–2006, and NHANES 2005–2010 (Continued)

	CS	SFII 1994–19	98 ^b	NHA	NES 2003-2	006°	NHAN	ES 2005-2	010^{d}
Age Range	N	Mean	95 th	N	Mean	95 th	N	Mean	95 th
			Const	ımer Only (m	nL/kg-day)				
Birth <1 month	37	137	238	51	90	172	20	133	224
1 <3 months	108	119	285	85	93	186	45	136	26 7
3 < 6 months	269	80	173	192	73	140	65	93	158
6 < 12 months	534	53	129	416	40	104	244	62	133
1 < 2 years	880	27	75	534	25	71	394	22	57
2 <3 years	879	26	62	508	23	62	445	24	67
3 <6 years	3,703	24	65	985	21	52	860	19	45
6 < 11 years	1,439	17	45	1,410	17	47	1,473	15	41
11 < 16 years	911	13	34	2,113	12	35	1,449	10	31
16 < 21 years	700	13	34	2,030	11	33	1,312	10	31
>21 years	8,355	16	39	7,616	16	36	8,912	17	41
All	17,815	17	44	15,940	16	44	15,219	17	44

a CSFII analysis assumes that some indirect water intake is from bottled water; NHANES analysis assumes that all indirect water intake is from community water.

CSFII = Continuing Survey of Food Intake by Individuals.

N =Number of observations.

NHANES = National Health and Nutrition Examination Survey.

Bold italics text indicates less reliable estimates.

Used as the basis of recommended values for children <3 years of age in the *Exposure Factors Handbook: 2011 Edition* (U.S. EPA, 2011).

^c Used as the basis of recommended values for ages ≥3 years in the *Exposure Factors Handbook: 2011 Edition* (U.S. EPA, 2011).

Based on the new JIFSAN Food Intake Calculator.

Chapter 3—Ingestion of Water and Other Select Liquids

Table A-2. Comparison of Bottled Water Intake Estimates^a 1994–1998 Continuing Survey of Food Intake by Individuals (CFSII), National Health and Nutrition Examination Survey (NHANES) 2003–2006, and NHANES 2005–2010

	CS	SFII 1994–1	998	NHA	NES 2003-	-2006	NHA	NES 2005-	2010
Age Range	N	Mean	95 th	N	Mean	95 th	N	Mean	95 th
			P	er Capita (m	L/day)				
Birth <1 month	91	104	556	88	6	28	87	7	44
1 <3 months	253	106	<i>771</i>	143	21	122	233	8	44
3 < 6 months	428	120	774	244	12	77	282	11	89
6 < 12 months	714	120	761	466	34	187	588	34	178
1 <2 years	1,040	59	350	611	65	342	728	71	356
2 <3 years	1,056	76	494	571	95	575	751	105	533
3 <6 years	4,391	84	531	1,091	108	526	1,418	121	578
6 < 11 years	1,670	84	532	1,601	138	696	2,292	156	731
11 < 16 years	1,005	111	709	2,396	202	938	2,551	235	1,095
16 < 21 years	752	147	911	2,332	365	1,621	2,191	380	1,500
>21 years	9,207	189	1,183	8,673	375	1,718	13,552	335	1,542
All	20,607	163	1,059	18,216	321	1,502	24,673	326	1,570
			Per	Capita (mL	/kg-day)				
Birth <1 month	88	33	243	88	1	7	87	2	11
1 <3 months	245	22	161	143	4	19	233	1	8
3 < 6 months	411	16	117	244	2	11	282	2	12
6 < 12 months	678	13	87	466	4	22	588	4	21
1 < 2 years	1,002	5	28	611	6	30	728	6	32
2 <3 years	994	5	35	571	7	40	751	8	39
3 < 6 years	4,112	5	30	1,091	6	31	1,418	7	32
6 < 11 years	1,553	3	18	1,601	4	24	2,292	5	23
11 < 16 years	975	2	14	2,396	4	17	2,551	4	19
16 < 21 years	743	3	15	2,332	5	24	2,191	6	24
>21 years	9,049	3	17	8,673	5	22	13,552	4	19
All	19,850	3	18	18,216	5	22	24,673	5	22
			Con	sumer Only	(mL/day)				
Birth <1 month	25	_	-	11	55	190	16	38	155
1 <3 months	64	450	1,045	28	135	347	38	66	192
3 < 6 months	103	507	1,436	65	69	202	79	61	133
6 <12 months	200	425	1,103	190	111	359	228	109	281
1 <2 years	229	262	709	247	193	474	317	188	578
2 <3 years	232	352	977	220	276	1,000	332	273	711
3 < 6 years	1,021	380	958	430	297	825	617	299	830
6 < 11 years	332	430	1,081	661	350	898	1,036	374	1,067
11 < 16 years	192	570	1,447	1,171	477	1,297	1,236	517	1,600
16 <21 years	160	692	1,978	1,211	755	2,223	1,111	753	1,995
>21 years	1,893	831	1,773	3,836	840	2,363	6,299	771	2,160
All	4,451	736	1,567	8,070	738	2,133	736	736	2,133

Chapter 3—Ingestion of Water and Other Select Liquids

Table A-2. Comparison of Bottled Water Intake Estimates^a 1994–1998 Continuing Survey of Food Intake by Individuals (CFSII), National Health and Nutrition Examination Survey (NHANES) 2003–2006, and NHANES 2005–2010 (Continued)

	CS	SFII 1994–19	998	NHA	NES 2003-	-2006	NHA	NES 2005-2	:010
Age Range	N	Mean	95 th	N	Mean	95 th	N	Mean	95 th
			Consu	ımer Only (n	nL/kg-day)				
Birth <1 month	25	-	-	11	12	38	16	8	31
1 <3 months	64	92	220	28	24	63	38	11	31
3 < 6 months	95	72	184	65	10	27	79	8	19
6 < 12 months	185	47	120	190	12	36	228	12	32
1 < 2 years	216	22	66	247	17	44	317	17	48
2 <3 years	211	25	81	220	20	68	332	20	52
3 <6 years	946	21	57	430	16	47	617	17	44
6 < 11 years	295	15	42	661	11	31	1,036	12	34
11 < 16 years	180	11	27	1,171	9	23	1,236	9	25
16 < 21 years	156	11	29	1,211	11	34	1,111	11	30
>21 years	1,861	12	30	3,836	11	29	6,299	10	28
All	4,234	13	36	8,070	11	31	11,309	11	30

a CSFII analysis includes direct and indirect bottled water intake. NHANES analyses include direct water intake only.

CSFII = Continuing Survey of Food Intake by Individuals.

NHANES = National Health and Nutrition Examination Survey.

Bold italics text indicates less reliable estimates.

N =Number of observations.

Chapter 3—Ingestion of Water and Other Select Liquids

Table A-3. Comparison of Other Sources of Water Intake Estimates^a 1994–1998 Continuing Survey of Food Intake by Individuals (CFSII), National Health and Nutrition Examination Survey (NHANES) 2003–2006, and NHANES 2005–2010

1,	1		•		, 2000 20	JU6, and NH	111125 2005	2010	
	C	SFII 1994-	1998	NH	ANES 200	3-2006	NHA	NES 2005-	2010
Age Range	N	Mean	95 th	N	Mean	95 th	N	Mean	95 th
			F	Per Capita (mL/day)		•		
Birth <1 month	91	13	-	88	51	229	87	273	860
1 < 3 months	253	35	<i>367</i>	143	82	276	233	351	1,055
3 < 6 months	428	45	365	244	141	329	282	355	1,154
6 < 12 months	714	45	406	466	124	<i>770</i>	588	274	1,023
1 < 2 years	1,040	22	118	611	82	479	728	77	356
2 <3 years	1,056	39	344	571	74	459	751	93	524
3 <6 years	4,391	43	343	1,091	62	433	1,418	84	481
6 < 11 years	1,670	61	468	1,601	108	659	2,292	105	614
11 < 16 years	1,005	102	786	2,396	163	1,030	2,551	198	1,078
16 < 21 years	752	72	493	2,332	184	1,193	2,191	217	1,221
>21 years	9,207	156	1,257	8,673	282	1,831	13,552	315	1,726
All	20,607	128	1,008	18,216	237	1,480	24,673	272	1,571
			Pe	r Capita (m	L/kg-day)				
Birth <1 month	88	4	-	88	11	45	87	66	206
1 < 3 months	245	7	52	143	14	49	233	63	195
3 < 6 months	411	7	55	244	20	60	282	49	157
6 < 12 months	678	5	35	466	14	74	588	31	119
1 < 2 years	1,002	2	11	611	7	43	728	7	31
2 <3 years	994	3	23	571	6	34	751	7	40
3 < 6 years	4,112	2	19	1,091	3	22	1,418	4	24
6 < 11 years	1,553	2	16	1,601	4	23	2,292	4	21
11 < 16 years	975	2	14	2,396	3	16	2,551	3	19
16 < 21 years	743	2	8	2,332	3	17	2,191	3	18
>21 years	9,049	2	17	8,673	4	23	13,552	4	23
All	19,850	2	16	18,216	4	23	24,673	5	25
			Cor	sumer Onl	y (mL/day))			
Birth <1 month	3	-	-	41	121	246	47	611	923
1 <3 months	19	-	-	67	187	400	134	704	1,122
3 < 6 months	38	562	1,205	160	237	730	175	665	1,250
6 < 12 months	73	40 7	1,032	287	223	877	328	564	1,182
1 <2 years	98	262	899	312	155	628	310	209	642
2 <3 years	129	354	851	256	163	<i>798</i>	282	268	88 7
3 <6 years	533	396	1,019	449	155	631	525	231	721
6 < 11 years	219	448	1,090	609	270	1,065	755	331	948
11 < 16 years	151	687	1,839	1,116	367	1,467	994	513	1,526
16 < 21 years	86	613	1,923	1,039	437	2,145	760	632	2,297
>21 years	1,386	1,137	2,739	3,555	672	2,774	4,412	1,002	2,798
All	2,735	963	2,468	7,891	559	2,381	8,722	833	2,682

Chapter 3—Ingestion of Water and Other Select Liquids

Table A-3. Comparison of Other Sources of Water Intake Estimates^a 1994–1998 Continuing Survey of Food Intake by Individuals (CFSII), National Health and Nutrition Examination Survey (NHANES) 2003–2006, and NHANES 2005–2010 (Continued)

	С	SFII 1994–1	1998	NH	ANES 2003	3-2006	NHA	NES 2005-	2010
Age Range	N	Mean	95 th	N	Mean	95 th	N	Mean	95 th
			Cons	umer Only	(mL/kg-day	7)			
Birth <1 month	3	-	-	41	26	51	47	148	297
1 <3 months	19	-	-	67	31	69	134	126	218
3 <6 months	38	80	200	160	33	113	175	92	176
6 < 12 months	68	44	106	287	25	98	328	64	141
1 < 2 years	95	23	84	312	14	54	310	19	58
2 <3 years	124	26	66	256	12	62	282	20	64
3 < 6 years	505	22	56	449	8	28	525	12	34
6 < 11 years	208	16	39	609	9	33	755	11	36
11 < 16 years	148	13	36	1,116	6	23	994	9	27
16 < 21 years	85	9	28	1,039	6	28	760	9	30
>21 years	1,365	15	39	3,555	9	35	4,412	13	36
All	2,657	16	41	7,891	9	35	8,722	14	43

^a Includes both direct and indirect water intake.

CSFII = Continuing Survey of Food Intake by Individuals.

N = Number of observations.

NHANES = National Health and Nutrition Examination Survey.

Bold italics text indicates less reliable estimates.

Chapter 3—Ingestion of Water and Other Select Liquids

Table A-4. Comparison of All Sources of Water Intake Estimates^a 1994–1998 Continuing Survey of Food Intake by Individuals (CFSII), National Health and Nutrition Examination Survey (NHANES) 2003–2006, and NHANES 2005–2010

N	utrition E	Examination	on Survey	(NHANES	8) 2003–20)06, and N	HANES 20	05-2010	
	CS	SFII 1994-	1998	NHA	NES 2003-	-2006	NH	ANES 2005-	-2010
Age Range	N	Mean	95 th	N	Mean	95 th	N	Mean	95 th
				Per Capita	(mL/day)				
Birth <1 month	91	301	877	88	295	954	87	464	945
1 <3 months	253	368	1,020	143	385	1,084	233	505	1,124
3 < 6 months	428	528	1,303	244	527	1,192	282	552	1,207
6 <12 months	714	530	1,278	466	461	1,126	588	576	1,168
1 <2 years	1,040	358	961	611	370	912	728	293	768
2 <3 years	1,056	437	999	571	435	1,086	751	403	1,001
3 < 6 years	4,391	514	1,200	1,091	498	1,181	1,418	413	980
6 < 11 years	1,670	600	1,409	1,601	660	1,567	2,292	555	1,389
11 < 16 years	1,005	834	1,960	2,396	885	2,595	2,551	748	2,242
16 < 21 years	752	1,020	2,665	2,332	1,177	2,999	2,191	1,033	2,741
>21 years	9,207	1,466	3,195	8,673	1,700	3,727	13,552	1,500	3,350
All	20,607	1,233	2,908	18,216	1,426	3,412	24,673	1,309	3,292
			P	Per Capita (n	nL/kg-day)				
Birth <1 month	88	89	269	88	65	195	87	110	253
1 < 3 months	245	77	246	143	6 7	194	233	89	204
3 <6 months	411	75	186	244	<i>74</i>	<i>179</i>	282	77	165
6 < 12 months	678	59	148	466	52	137	588	65	138
1 < 2 years	1,002	31	85	611	33	80	728	26	69
2 <3 years	994	31	73	571	32	<i>78</i>	751	29	71
3 < 6 years	4,112	29	69	1,091	27	63	1,418	23	54
6 < 11 years	1,553	21	50	1,601	22	52	2,292	18	47
11 < 16 years	975	16	39	2,396	16	44	2,551	13	38
16 <21 years	743	16	39	2,332	17	44	2,191	15	41
>21 years	9,049	20	44	8,673	22	50	13,552	19	44
All	19,850	21	50	18,216	22	53	24,673	20	49
			C	Consumer Or	nly mL/day				
Birth <1 month	58	511	986	54	481	996	68	597	953
1 <3 months	178	555	1,072	92	665	1,099	182	725	1,154
3 <6 months	363	629	1,330	209	660	1,215	243	666	1,251
6 < 12 months	667	567	1,303	453	477	1,128	577	590	1,182
1 <2 years	1,017	366	978	596	378	914	714	300	768
2 <3 years	1,051	439	1,001	560	441	1,087	741	408	1,001
3 <6 years	4,350	518	1,206	1,077	506	1,182	1,405	416	993
6 < 11 years	1,659	603	1,409	1,580	666	1,585	2,263	565	1,389
11 < 16 years	1,000	837	1,961	2,362	898	2,600	2,504	767	2,248
16 <21 years	740	1,039	2,674	2,269	1,208	3,015	2,129	1,068	2,808
>21 years	9,178	1,472	3,195	8,608	1,712	3,733	13,473	1,508	3,354
All	20,261	1,242	2,923	17,860	1,444	3,422	24,299	1,325	3,306
	1			1			i		

Chapter 3—Ingestion of Water and Other Select Liquids

Table A-4. Comparison of All Sources of Water Intake Estimates^a 1994–1998 Continuing Survey of Food Intake by Individuals (CFSII), National Health and Nutrition Examination Survey (NHANES) 2003–2006, and NHANES 2005–2010 (Continued)

	CSFII 1994–1998			NHANES 2003-2006			NHANES 2005-2010		
Age Range	N	Mean	95 th	N	Mean	95 th	N	Mean	95 th
Consumer Only (mL/kg-day)									
Birth <1 month	55	153	273	54	105	211	68	141	263
1 <3 months	172	116	291	92	115	201	182	128	218
3 < 6 months	346	90	195	209	92	186	243	93	174
6 < 12 months	631	63	152	453	54	137	577	66	139
1 < 2 years	980	31	86	596	34	82	714	27	69
2 <3 years	989	31	73	560	32	<i>78</i>	741	29	72
3 < 6 years	4,072	29	70	1,077	27	63	1,405	23	54
6 < 11 years	1,542	21	50	1,580	22	52	2,263	19	48
11 < 16 years	970	16	39	2,362	16	44	2,504	14	38
16 < 21 years	732	16	39	2,269	18	45	2,129	15	41
>21 years	9,020	20	44	8,608	22	50	13,473	19	44
All	19,509	21	50	17,860	22	53	24,299	20	50

^a CSFII analysis includes direct and indirect bottled water. NHANES analysis assumes that all indirect water intake is from community water.

CSFII = Continuing Survey of Food Intake by Individuals.

N =Number of observations.

NHANES = National Health and Nutrition Examination Survey.

Bold italics text indicates less reliable estimates.

Chapter 3—Ingestion of Water and Other Select Liquids

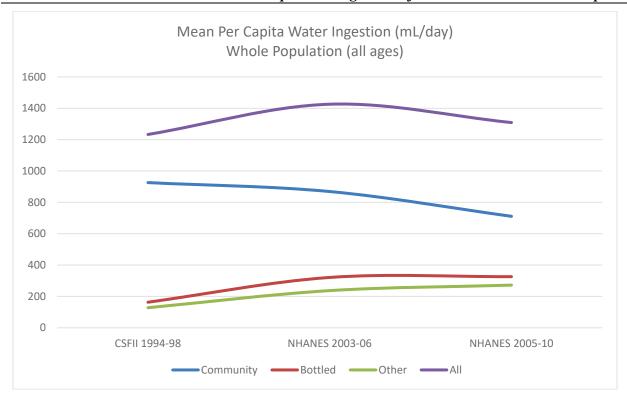


Figure A-1. Comparison of mean per capita water ingestion (mL/day), all ages: Continuing Survey of Food Intake by Individuals (CSFII) 1994–1996, 1998; National Health and Nutrition Examination Survey (NHANES) 2003–2006, and NHANES 2005–2010.

Chapter 3—Ingestion of Water and Other Select Liquids

APPENDIX B

Table B-1. Terms Used in Literature Searches

Water ingestion

Water intake

Water consumption

Direct water ingestion/intake/consumption

Indirect water ingestion/intake/consumption

Bottled water ingestion/intake/consumption

Well water ingestion/intake/consumption

Spring water ingestion/intake/consumption

Tap water ingestion/intake/consumption

Incidental water ingestion/intake/consumption

Community water ingestion/intake/consumption

Municipal water ingestion/intake/consumption

Commercial water ingestion/intake/consumption

Drinking water source

Intrinsic water ingestion/intake/consumption

Surface water ingestion/intake/consumption

Consumer only water ingestion/intake/consumption

Per capita water ingestion/intake/consumption

Liquid ingestion/intake/consumption

Chlorinated/nonchlorinated ingestion/intake/consumption

Water...and activity level

Water...and bathers

Water...and climate

Water...and health status

Water...and pregnancy

Water...and lactation

Water...and diabetes

Water...and smoking

Water...and swimming/diving

Water...and recreational activities

Fluid intake

Beverage intake

Ershow AG

Marshall T