

Reducing SF, Emissions in Electric Power Systems: Best Industry Practices

EPA has partnered with the electric power industry to identify and highlight cost-effective methods of reducing SF₆ emissions to the atmosphere. Utility experience shows that implementing and following best practices leads to emission reductions. Utilities continue to improve practices related to gas handling and prevent emissions.

Establish lifecycle approach for SF_{δ} management through company policies, protocols, and standard operating procedures.

This approach helps track SF_{δ} inventory and costs, detect and repair leaks, and properly handle, recover and recycle SF_{δ} . Established policies can be continually improved upon and expanded to incorporate other options for reducing SF_{δ} emissions.

Successful company policies and programs:

Cover all practices

Allow for innovation

Designate responsible parties

Train & empower employees

Establish procedures for gas inventory, accounting, and tracking.

Tracking procedures include:

- Labeling and inventory of gas cylinders
- Using log sheets for warehouse cylinders
- Inventory of all SF, equipment

A variety of SF₆ tracking software tools are available on the market that:

Automatically scan cylinder barcodes

real-time

Track inconsistent data and scrutinize

Forecast trends and identify chronic leaking equipment

Tracking leak history of equipment identifies priorities for repairs and replacements.

Ensure good management of SF_6 acquisitions and gas inventory.

Utilities are consolidating storage inventory and selecting a single vendor.

Vendors can support best practices by:

Optimizing cylinder size

Customizing the cylinder delivery system

Minimizing cylinder

Limiting

Maximizing gas utilization from every cylinder

Train employees annually in SF, handling and in using the necessary equipment.

Training enables employees to follow procedures properly, understand the environmental and health impacts of SF₆, and learn about emission reduction options.

Partners can

Require on-the-job training for field employees who handle SF₂.

Maintain in-house certification requirements for gas handling.

Recycle SF, gas at equipment servicing or disposal.

Using gas cart recovery equipment to off-load and transfer SF₆ for maintenance and recycling reduces emissions. It is critical to follow correct procedures when using service carts and to ensure that gas carts are properly maintained.

How can I verify that residual SF, is removed from equipment?

Use mass flow scales or weight scales

Refer to temperature/ pressure curves

Use properly functioning recovery equipment, gauges, and scales

Implement leak detection and repair strategies.

Leak detection with soap and water solutions, bagging, or thermal imaging to detect minor, chronic leaks without taking equipment out of service. Leak detection teams regularly inspect equipment to identify SF_{δ} leaks and prioritize repair or replacement. Technologies are available to provide real-time monitoring of SF_{δ} leaks and to identify components that require the most immediate repair.

Leak repair is most efficient when the equipment is tested before and after repairs, using proper SF₆ recovery procedures. Effective leak repair requires advanced planning, prioritization to target worst performers, and evaluation of whether the best approach is to replace GIE.

Upgrade equipment to reduce SF, use and leaks.

New equipment designs use less SF_6 and tighter seals to reduce leaks. Other alternative designs use alternatives to SF_6 , like fluoronitrile or fluoroketone, or vacuum based technology with CO_2 , or "Clean Air" as a base gas. While new equipment requires new maintenance procedures, training, and management adjustments, a systematic approach to anticipating equipment replacement can significantly reduce emissions.

Medium-voltage alternatives have existed for the past decade; high-voltage alternatives are increasingly available.

Decommission equipment properly.

Proper decommissioning using SF, recovery systems is important to prevent emissions. For closed-pressure systems,

Send non-reusable gas for destruction.

Evacuate SF, from all equipment including hermetically sealed pressure equipment.

