Publications that Cite EPA's CO-Benefits Risk Assessment (COBRA) Health Impacts Screening and Mapping Tool

Publication type	Date Published	Location	Summary	URL	Citation
Article	February 2019	Nevada, United States	Used COBRA to evaluate the health impacts of transitioning from diesel to CNG buses in Clark County, NV. Estimated \$0.98-2.48 billion per year in health benefits, 114-258 premature deaths, and >5000 avoided respiratory and cardiovascular illnesses.	https://www.mdpi.com/16 60-4601/16/5/720	Olawepo, John O., and L-W. Antony Chen. "Health Benefits from Upgrading Public Buses for Cleaner Air: A Case Study of Clark County, Nevada and the United States." International Journal of Environmental Research and Public Health 16, no. 5 (2019): 720.
Article	December 2018	United States	Used COBRA to estimate health impacts of rolling back environmental regulations on coal-fired power plants. Estimated 17,000 - 39,000 increased mortalities per year. Compared impacts by voting patterns in 2016 election.	https://www.sciencedirect. com/science/article/pii/S03 0142151830627X	Thomson, Vivian, Kelsey Huelsman, and Dominique Ong. "Coal-fired power plant regulatory rollback in the United States: Implications for local and regional public health." Energy Policy: 123: 558-568 (2018).
Article	September 2018	United States	Used COBRA to evaluate the health impacts of electricity capacity expansion models to incorporate the health impacts into optimization of electricity planning. Estimated \$1013 billion in societal costs.	https://www.sciencedirect. com/science/article/abs/pii /S0360544218317584	Rodgers, Mark D., David W. Coit, Frank A. Felder, and Annmarie Carlton. "Generation expansion planning considering health and societal damages—A simulation-based optimization approach." Energy 164 (2018): 951-963.
Report	July 2018	United States	Used COBRA to evaluate the health impacts of electricity capacity expansion models to incorporate the health impacts into optimization of electricity planning.	https://www.sciencedirect. com/science/article/pii/S00 38012117302823	Rodgers, Mark, David Coit, Frank Felder, and Annmarie Carlton. "Assessing the effects of power grid expansion on human health externalities." (2018).
Report	July 2018	United States	Added functionality similar to COBRA to Engineering, Economic, and Environmental Electricity Simulation Tool (E4ST). The authors met with Abt Associates to understand the functionality of COBRA, including the S-R Matrix and atmospheric chemistry. Estimated 352-815 premature deaths from additional emissions compared to 24-53 premature deaths when other nuclear power policies are implemented.	http://www.rff.org/files/do cument/file/RFF%20WP%20 18-18.pdf	Shawhan, Daniel, and Paul Picciano. "Retirements and Funerals: The Emission, Mortality, and Coal-Mine Employment Effects of a Two-Year Delay in Coal and Nuclear Power Plant Retirements." (2018)

www.epa.gov/cobra Page 1 of 18 Updated April 29, 2019

Publication	Date Published	Location	Summary	URL	Citation
Article	March 2018	United States	Used COBRA to estimate the projected health effects for the average reduction in SO2 and NOx in 2025 from a \$25 carbon tax. Results are on the order of 3,500–8,000 avoided cases of premature mortality and 90,000 avoided cases of exacerbated asthma. This corresponds roughly to a monetized value of \$31–71 billion in health benefits (3% discount rate), with the bulk of the benefits accruing in the upper Midwest and East Coast.	https://www.worldscientific .com/doi/pdf/10.1142/S201 0007818400031	Barron, Alexander R., Allen A. Fawcett, Marc AC Hafstead, James R. McFarland, and Adele C. Morris. "Policy insights from the EMF 32 study on US carbon tax scenarios." Climate Change Economics 9, no. 01 (2018): 1840003.
Report	March 2018	United States	Listed and described in "Methodologies for Calculating the Damage per Unit of Emissions for Pollutants that Depend on Time and Location" section. Estimated the dollar value per MWh of SO ₂ (\$52-171), NO _x (\$3-12), and PM _{2.5} (\$7-22) and the value of avoided emissions from two natural gas power plants (\$30-40/MWh).	http://policyintegrity.org/files/publications/Valuing Pollution Reductions.pdf	Shrader, Jeffrey, Burcin Unel, and Avi Zevin. "Valuing Pollution Reductions." (2018).
Report	February 2018	United States	Analyzed the health impacts of a hypothetical 15% reduction in energy consumption nationwide. Used AVERT to estimate emission reductions and COBRA to find avoided health harms per capita in states and cities with the highest being \$184/per capita in West Virginia and \$210/per capita in Pittsburgh. Also found the avoided costs of adult mortality, nonfatal heart attacks, minor restricted-activity days, infant mortality, lost work days, and respiratory-related symptoms totaling \$630,431,926.	http://efficiencyforall.org/wordpress/wp-content/uploads/2017/04/h1801.pdf	Hayes, S. and Kubes, C., Saving Energy, Saving Lives. (2018).

Publication	Date				
type	Published	Location	Summary	URL	Citation
Article	February 2018	United States	Analyzed the general equilibrium costs of climate policies that levy taxes on carbon dioxide (CO2) emissions in the United States and return the revenue in the form of lump-sum rebates and tax relief over the years 2020 to 2040 using the US regional version of the Applied Dynamic Analysis of the Global Economy (ADAGE-US) forward-looking dynamic Computable General Equilibrium (CGE) model. Used COBRA to approximate the value of cobenefits to these policies that arise from concomitant reductions in non-greenhouse gas (GHG) emissions. Found co-benefits per housing including PM2.5 cobenefits (\$547-1234), avoided mortality (\$539-1217), and avoided morbidity (\$3-12).	https://www.worldscientific .com/doi/abs/10.1142/S201 0007818400067	Woollacott, Jared. "The economic costs and co-benefits of carbon taxation: A general equilibrium assessment." Climate Change Economics 9, no. 01 (2018): 1840006.
Environ- mental Impact Statement	February 2018	New York, United States	Used COBRA to estimate how the emission reductions from implementation of 2,400 MW of offshore wind energy in New York State would affect ambient air quality and adverse health impacts throughout the coastal region. Found that the implementation of 2,400 MW of offshore wind energy would result in 8 to 18 fewer premature deaths annually and would avoid multiple adverse health outcomes in 2030 across the northeast United States.	https://tethys.pnnl.gov/pub lications/draft-generic- environmental-impact- statement-procurement- offshore-wind	New York State Department of Public Service and Ecology and Environment, Inc. "Draft Generic Environmental Impact Statement for Procurement of Offshore Wind" (2018).
Report	January 2018	New York, United States	Used COBRA to estimate how the emission reductions from implementation of 2,400 MW of offshore wind energy in New York State would affect ambient air quality and adverse health impacts throughout the coastal region. Found that the implementation of 2,400 MW of offshore wind energy would result in 8 to 18 fewer premature deaths annually and would avoid multiple adverse health outcomes in 2030 across the northeast United States.	https://www.nyserda.ny.go v/All- Programs/Programs/Offsho re-Wind/Offshore-Wind-in- New-York-State- Overview/NYS-Offshore- Wind-Master-Plan	New York State Energy Research and Development Authority. "New York State Offshore Wind Master Plan: Charting a Course to 2,400 Megawatts of Offshore Wind Energy" (January 2018).

Publication	Date	1 1	S		Citatian
type	Published	Location	Summary	URL	Citation
Public	January	United	Used results from COBRA in developing public	https://www.edf.org/sites/	Environmental Defense Fund Comment on
Comments	2018	States	comments on the proposed Glider Vehicles Rule to	default/files/content/Appe	EPA Proposed Glider Vehicles Rule, Docket
			estimate the potential public health impacts that	ndix%20B%20-	ID EPA-HQ-OAR-2014-0827. "Appendix B: Potential Emission and Health Impacts of
			could occur should glider vehicles go unregulated. Found that controlling emissions of these vehicles	%20Emission%20and%20He alth%20Effects%20of%20Gli	Glider Kits" (Submitted January 5, 2018).
			would reduce 70-160 premature deaths and generate	der%20Vehicles.pdf	Glider Kits (Submitted January 3, 2016).
			\$0.3-1.1 billion worth of health benefits.	del %20Verilcies.pui	
			30.5-1.1 billion worth of health benefits.		
Report	December	Virginia,	Used to analyze the effects of whether Virginia linked	http://townhall.virginia.gov	Virginia Department of Planning and
Пероге	2017	United	to RGGI and established its CO2 Budget Trading	/L/GetFile.cfm?File=C:%5CT	Budget, Economic Impact Analysis (2017).
	2027	States	Program. The EPA used two sets of assumptions: the	ownHall%5Cdocroot%5C1%	Jaaget, 20011011110 1111pact, 1111a1, 1010 (2027).
			RGGI Scenario and the Virginia (VA) Scenario. Found	5C4818%5C8130%5CEIA D	
			that the RGGI Scenario would reduce mortality 5.3-12	EQ 8130 v2.pdf	
			by 2029 and the VA Scenario would reduce mortality		
			4.4-10 by 2029.		
Article	November	Ohio, United	Used to estimate the economic value of health	https://www.sciencedirect.	Baatz, Brendon, Grace Relf, and Meegan
	2017	States	effects under various scenarios of opting out of	com/science/article/pii/S10	Kelly. "Consequences of large customer
			energy efficiency programs. Found the increase	<u>40619017302440</u>	opt-out: An Ohio example" The Electricity
			health costs of opting out are \$564-\$1.3 billion in		Journal
			Ohio and \$4.1-9.3 billion in the greater region.		
Report	October	United	Used to calculate avoidable health care costs for	https://global.nature.org/co	The Nature Conservancy. McDonald, R.,
	2017	States	acute myocardial infarctions, other cardiovascular	ntent/funding-trees-for-	Aljabar, L., Aubuchon, C., Birnbaum, H.,
			diseases, asthma, and respiratory conditions to	<u>health</u>	Chadler, C., Toomey, B., Daley, J., Jimenez,
			measure the benefits of urban tree planting. Found		W., Trieschman, E., Paque, J., Zeiper, M.
			that the avoidable annual health care costs could be		"Funding Trees for Health: An Analysis of
			\$13.2 million and work loss costs could be \$11.9		Finance and Policy Actions to Enable Tree
			million (12.5 percent of the estimated annual costs		Planting for Public Health." October 2017.
			for tree planning and maintenance).		

Publication	Date				
type	Published	Location	Summary	URL	Citation
Article	August 2017	United States	Used COBRA to estimate the value of reductions to the pollutants SO2, NOx, and PM2.5, as part of use a suite of models also including EASIUR, the impact factor model developed in Penn et al. and Levy et al., Air Pollution Emission Experiments and Policy analysis model (AP2, formerly APEEP: Muller et al.), and EPA RIA benefits per-tonne estimates. Found cumulative benefits of \$29.7-112.8 billion from 3000-12,700 avoided premature mortalities.	https://www.nature.com/ar ticles/nenergy2017134	Millstein, Dev, Ryan Wiser, Mark Bolinger, and Galen Barbose. "The climate and airquality benefits of wind and solar power in the United States," Nature Energy 6. August 2017.
Disserta- tion	August 2017	United States	Used COBRA to estimate the estimate of air-pollution costs by modes of transportation. Found human health externality unit costs to be \$0.57/vehicle mile traveled and \$0.91/passenger mile traveled.	http://tigerprints.clemson.e du/all dissertations/2018/	Sun, Jianan. "External Economic Costs of Intelligent Urban Transportation Systems: A Method to Evaluate the Externalities of Comparative Technology Adoption Pathways in the Urban Mobility Service sector." Clemson University, PhD Thesis. August 2017.
Report	June 2017	Ohio, United States	Used COBRA to estimate the economic value of health effects under various scenarios of opting out of energy efficiency programs. Found the increase health costs of opting out are \$564-\$1.3 billion in Ohio and \$4.1-9.3 billion in the greater region.	https://aceee.org/sites/def ault/files/publications/rese archreports/u1706.pdf	Baatz, Brendon, Grace Relf, and Meegan Kelly. "Large Customer Opt-Out: An Ohio Example." American Council for an Energy- Efficient Economy, Report U1706. June 2017.
Disserta- tion	June 2017	Michigan, United States	Used COBRA to estimate the health impacts from reductions in SO_2 and NO_x due to energy savings from light programs in Michigan. Found benefits from avoided pollutants to be \$36-81 million.	http://scholarworks.wmich. edu/dissertations/3145/	Amough, Teryila Ephraim. "A Meta- Analysis of Energy Savings from Lighting Programs in Michigan." Western Michigan University, PhD Thesis. June 2017.
Article	April 2017	N/A	Compared InMAP outputs to outputs from WRF- Chem and COBRA. Found that COBRA performs similarly to InMAP but not as much spatial detail as WRF-Chem.	http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176131	Tessum, C. W., Hill, J. D., and Marshall, J. D. "InMAP: A model for air pollution interventions." <i>PloS one</i> . April 2017.

Publication type	Date Published	Location	Summary	URL	Citation
Report	January 2017	United States	Does not use COBRA, but explains that this inventory of emissions from agriculture and livestock could be coupled with an air quality screening tool such as COBRA to evaluate potential changes in human health from changes in emissions concentrations.	https://energy.gov/sites/pr od/files/2017/02/f34/2016 billion ton report volume 2 chapter 9.pdf	U.S. Department of Energy. January 2017. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. R.A. Efroymson, M.H. Langholtz, K.E. Johnson, and B.J. Stokes (Leads), ORNL/TM-2016/727. Oak Ridge National Laboratory, Oak Ridge, TN.
Report	January 2017	United States	Used COBRA to estimate how changes in NOx and SO2 affect ambient PM2.5. Found the health impacts of the Regional Greenhouse Gas Initiative to be 300-830 lives saved, 8,200 asthma attacks avoided, 39,000 lost work days avoided, and \$5.7 billion in health savings and other benefits.	https://www.abtassociates. com/insights/publications/r eport/analysis-of-the- public-health-impacts-of- the-regional-greenhouse- gas	Abt Associates (2017). Analysis of the Public Health Impacts of the Regional Greenhouse Gas Initiative.
Working Paper	November 2016	United States	Analyzed COBRA as a tool to measure the impacts of energy efficiency in buildings. Found that COBRA had an interactive approach, with a policy scope, was used at the design stage of policy, and had a targeting city focus.	http://www.sustainablesids .org/wp- content/uploads/2016/12/ UNEP-Tools-Energy- Efficient-Buildings-2016.pdf	Petrichenko, K., Aden, N., & Tsakiris, A. (2016). Tools for Energy Efficiency in Buildings. A Guide for policy-makers and experts. Working paper, C2E2, Copenhagen and WRI, Washington DC For further information or to provide feedback, please contact Ksenia Petrichenko.
Article	September 2016	United States	Used COBRA to calculate reduced morbidity and mortality outcomes and total monetary value from net emissions changes due to state RPS programs. Found reduced air pollution provide \$5.2 billion in health and environmental benefits.	http://www.sciencedirect.c om/science/article/pii/S030 1421516303408	Barbose, Galen, et al. "A retrospective analysis of benefits and impacts of US renewable portfolio standards." Energy Policy 96 (2016): 645-660.

Publication	Date				
type	Published	Location	Summary	URL	Citation
Working Paper	September 2016	N/A	Referenced COBRA as "an example of a framework for air quality improvements that can be used to quantify changes in air quality and the resulting calculated health outcomes in both epidemiological and monetary terms. COBRA as well as other work from the US EPA suggests that measures for producing both local air quality and associated GHG co-benefits offer compelling value for health and wellbeing that can be pursued irrespective of a climate change agenda. As understanding grows and data become more readily available, frameworks and analyses can consider additional co-benefits such as ecosystem benefits or avoided material damages, as well as potential economic opportunities to develop and deploy innovative clean technologies (US EPA 2004)."	http://eprints.lse.ac.uk/688 76/1/Cobenefits Of Urban Climate Action.pdf	Floater, Graham, et al. "Co-benefits of urban climate action: a framework for cities." (2016).
Article	September 2016	N/A	Analyzed COBRA as part of a survey of tools to measure ambient air pollution health risks. This paper discusses the differences between tools for factors such as information source, format, and technical complexity.	https://www.ncbi.nlm.nih.g ov/pubmed/26742852	Anenberg, Susan C., Anna Belova, Jørgen Brandt, Neal Fann, Sue Greco, Sarath Guttikunda, Marie-Eve Heroux et al. "Survey of ambient air pollution health risk assessment tools." <i>Risk Analysis</i> (2015).
Article	July 2016	United States	Used COBRA to analyze the social costs of PM2.5 pollution in 3,000 U.S. counties. Found the marginal social costs for SO_2 ($$10^4/t$), NOx ($$10^3-10^4/t$) and NH ₃ ($$10^{3.5}-10^{4.5}/t$).	http://www.sciencedirect.c om/science/article/pii/S135 2231016303090	Heo, J., Adams, P. J., & Gao, H. O. (2016). Reduced-form modeling of public health impacts of inorganic PM 2.5 and precursor emissions. <i>Atmospheric Environment</i> , 137, 80-89.
Report	July 2016	Ohio, United States	COBRA was used to model health impacts from each power plant in Ohio using estimated primary PM2.5 and historic NOx and SO2 emissions. Found that PM _{2.5} emissions from power plants account for 940-2130 premature deaths/year and Clean Power Plan implementation would reduce health burdens \$8.1-18.2 billion.	https://www.psehealthyen ergy.org/wp- content/uploads/2017/04/C PP.OH 1.pdf	PSE Healthy Energy. The Clean Power Plan in Ohio: Analyzing power generation for health and equity. July 2016.

Publication	Date				
type	Published	Location	Summary	URL	Citation
Report	July 2016	Pennsylvania , United States	COBRA was used to model health impacts from each power plant in Pennsylvania using estimated primary PM2.5 and historic NOx and SO2 emissions. Found that power plant emissions contribute to 1,000-2,300 premature deaths and the Clean Power Plan would reduce health burdens \$8.9-20 billion.	https://www.psehealthyen ergy.org/our- work/publications/archive/ our-air-health-and-equity- impacts-of-pennsylvanias- power-plants/	PSE Healthy Energy. The Clean Power Plan in Pennsylvania: Analyzing power generation for health and equity. July 2016.
Report	June 2016	California, United States	COBRA was used to estimate the health effects from reduced SO2 or NOx emissions resultant from the California Energy Commission's 2016 proposed efficiency standards for computers, computer monitors, and signage displays. Estimated health benefits to be \$4.7-10.6 million from 2018-2030.	http://www.dof.ca.gov/For ecasting/Economics/Major Regulations/Major_Regulati ons_Table/documents/SRIA APPEFF_2016_All.pdf	Roland-Host, David; Evans, Samuel; Han Springer, Cecilia; Emmer, Tessa; Prepared for California Energy Commission. "Standardized Regulatory Impact Assessment: Computers, Computer Monitors, and Signage Displays." June 2016.
Article	May 2016	United States	Used COBRA as part of a reduced-form model to estimate the mortality costs per tonne of PM2.5 inorganic air pollution. Estimated the aggregate social costs to be \$1.0 trillion.	http://pubs.acs.org/doi/abs/10.1021/acs.est.5b06125	Heo, J., Adams, P. J., & Gao, H. O. (2016). Public Health Costs of Primary PM2. 5 and Inorganic PM2. 5 Precursor Emissions in the United States. <i>Environmental science & technology</i> , <i>50</i> (11), 6061-6070.
Public Comments	May 2016	District of Columbia, United States	COBRA was used to estimate the effect of reduced air pollution on premature deaths and economic growth due to improved health outcomes. Found clean energy measures will prevent 27-60 premature deaths and increase regional economic growth by \$253-572 million from better health outcomes.	http://chesapeakeclimate.o rg/wp/wp- content/uploads/2016/05/C CAN_B21- 0650 testimony DC- RPS.pdf	Chesapeake Climate Action Network. Comments on B21-0650 – Renewable Portfolio Standard Expansion Amendment Act of 2016.
Article	May 2016	United States	COBRA was used to quantify the health and economic impacts of extra NOx emissions attributable to non-compliant Volkswagen vehicles in the U.S. Found extra NOx emissions for one year equal 5-50 premature deaths, 247-1061 episodes of respiratory symptoms, 3-14 cardiovascular hospital emissions, 3-13 emergency asthma visits, 687-17,526 work days with restricted activity, and economic costs of \$43,479-432,268,502.	http://www.mdpi.com/166 0-4601/13/9/891/html	Hou, Lifang; Zhang, Kai; Luthin, Moira A.; Baccarelli, Andrea A. (2016). Public Health Impact and Economic Costs of Volkswagen's Lack of Compliance with the United States' Emission Standards. <i>Int. J.</i> <i>Environ. Res. Public Health.</i> 13(9): 891.

Publication	Date				
type	Published	Location	Summary	URL	Citation
Report	May 2016	United States	COBRA was used to estimate air quality benefits of the 20 GW of solar power installed by the end of	https://www.nrel.gov/docs/ fy16osti/65628.pdf	Wiser, Ryan, Trieu Mai, Dev Millstein, Jordan Macknick, Alberta Carpenter, Stuart
		States	2014 by region or state. Found emissions reductions	171003(1703020.)01	Cohen, Wesley Cole, Bethany Frew, and
			would result in \$420-1,590 million per year in		Garvin Heath. On the Path to Sunshot: The
			benefits, higher in regions with high population		Environmental and Public Health Benefits
			densities and greater power-sector emissions (e.g.,		of Achieving High Penetrations of Solar
			Great-Lakes-Mid-Atlantic).		Energy in the United States. Lawrence
			Great-Lakes wild Atlanticy.		Berkeley National Laboratory (LBNL) and
					National Renewable Energy Laboratory
					(NREL). Powered by SunShot U.S.
					Department of Energy. May 2016.
Report	January	United	Used COBRA to calculate reduced morbidity and	https://emp.lbl.gov/sites/all	U.S. Department of Energy's Lawrence
Пероге	2016	States	mortality outcomes and total monetary value from	/files/lbnl-1003961.pdf	Berkeley National Laboratory (Berkeley
	2010	States	net emission changes. Found health and	7 mes/18 m 1803361.pur	Lab) and National Renewable Energy
			environmental benefits (primarily from SO2, NOx,		Laboratory (NREL) January 2016 "A
			and PM2.5 reductions) to be between \$4-10 billion.		Retrospective Analysis of the Benefits and
			Additional benefits include avoiding 160-290		Impacts of U.S. Renewable Portfolio
			emergency room visits for asthma, 195-310 hospital		Standards, released January 2016"
			emissions for respiratory and cardiovascular		https://emp.lbl.gov/sites/all/files/lbnl-
			symptoms, 40-560 non-fatal heart attacks and		1003961.pdf
			38,000-64,000 lost work days.		
Report	January	United	COBRA was used to calculate reduced morbidity and	http://www.nrel.gov/docs/f	Wiser, R., G. Barbose, J. Heeter, T. Mai, L.
	2016	States	mortality outcomes and total monetary value from	<u>y16osti/65005.pdf</u>	Bird, M. Bolinger, A. Carpenter, G. Heath,
			net emissions changes due to state RPS programs.		D. Keyser, J. Macknick, A. Mills, and D.
			Found health and environmental benefits (primarily		Millstein. 2016. A Retrospective Analysis of
			from SO2, NOx, and PM2.5 reductions) to be		the Benefits and Impacts of U.S. Renewable
			between \$4-10 billion. Additional benefits include		Portfolio Standards. Lawrence Berkeley
			avoiding 160-290 emergency room visits for asthma,		National Laboratory and National
			195-310 hospital emissions for respiratory and		Renewable Energy Laboratory. NREL/TP-
			cardiovascular symptoms, 40-560 non-fatal heart		6A20-65005.
			attacks and 38,000-64,000 lost work days.		
Conference	November	United	COBRA was used to estimate the health co-benefits	https://apha.confex.com/ap	Bast, E. (2015, November). Analyzing the
proceeding	2015	States	from different scenarios of renewable energy	ha/143am/webprogram/Pa	health co-benefits of renewable energy
			deployment in the United States by converting	<u>per336283.html</u>	deployment in the United States. In 2015
			changes in air pollutant emissions to changes		APHA Annual Meeting & Expo (Oct. 31-
			population health outcomes.	<u> </u>	<i>Nov. 4, 2015)</i> . APHA.

Publication	Date				
type	Published	Location	Summary	URL	Citation
Article	September	Utah, United	Used COBRA to estimate the benefits associated with	http://link.springer.com/art	Moscardini, Leo and Arthur J. Caplan
	2015	States	a seasonal gas tax to reduce vehicle trips in Cache	icle/10.1007/s10640-015-	(2015) "Controlling Episodic Air Pollution
			Valley, Utah. Estimated the total health benefit to be	<u>9968-z</u>	with a Seasonal Gas Tax: The Case of Cache
			\$782,750.		Valley, Utah." Environmental and Resource
					Economics
White	July 2015	New York,	COBRA was used to estimate the marginal cost in	http://www3.dps.ny.gov/W	New York Department of Public Service.
Paper		United	health effects of SO2 or NOx emissions. The authors	/PSCWeb.nsf/96f0fec0b45a	Staff White Paper on Benefit-Cost Analysis
		States	ran a scenario for each pollutant by specifying a	3c6485257688006a701a/26	in the Reforming Energy Vision Proceeding
			reduction of a fixed amount of emissions from the	be8a93967e604785257cc40	(14-M-0101). July 2015.
			COBRA control case for electricity generating units in	066b91a/\$FILE/Staff_BCA_	
			NY. Found the dollar/MWh value for SO ₂ , NO _x , and	Whitepaper Final.pdf	
			CO ₂ for 2017-2035. 2035 estimates are \$42-78/MWh.		
Article	March	N/A	References COBRA as a computational tool to	http://www.sciencedirect.c	Bridges, A.; Felder, F.A.; McKelvey, K.;
	2015		evaluate energy policy and planning alternatives in	om/science/article/pii/S221	Niyogi, I. (2015). Uncertainty in energy
			order to determine which scenarios are most likely to	<u>4629614001364</u>	planning: Estimating the health impacts of
			meet climate and energy goals.		air pollution from fossil fuel electricity
					generation. Energy Research & Social
					Science 6, 74-77.
Report	February	California,	Used COBRA model for the Energy Commission's first	https://efiling.energy.ca.go	REVISED STANDARDIZED REGULATORY
	2015	United	"Standardized Regulator Impact Assessment" for	v/Lists/DocketLog.aspx?doc	IMPACT ASSESSMENT OF 2014 PROPOSED
		States	appliance efficiency standards division. Estimated	ketnumber=15-AAER-01	APPLIANCE EFFICIENCY REGULATIONS:
			proposed standards would avoid \$1.0-2.3 million in		Regulations for Toilets, Urinals, Faucets,
			health impacts in the first year. By 2025, the range		Dimming Ballasts, Air Filters, and Heat-
			increases to \$5.8 -14.8 million.		Pump Water-Chilling Packages
Book	January	N/A	COBRA was used to value the avoided health impacts	http://www.routledge.com/	Link, A.N., O'Connor, A.C., & Scott, T.J.
	2015	'	from the reduction in air quality pollutants from	books/details/97811388111	(2015). Battery Technology for Electric
			electric drive vehicles.	02/	Vehicles: Public Science and Private
					Innovation. Abingdon, UK: Routledge.
Article	January	N/A	Results from InMAP, a comprehensive air quality	http://www.geosci-model-	C. W. Tessum, J. D. Hill, and J. D. Marshall.
	2015		model for estimating the air pollution health impacts	dev-	(2015). InMAP: a new model for air
			of emission reductions and other potential	discuss.net/8/9281/2015/g	pollution interventions. Geosci. Model Dev.
			interventions, were compared against COBRA	mdd-8-9281-2015.pdf	Discuss., 8, 9281–9321. Doi:
			because it is an existing reduced-form model.		10.5194/gmdd-8-9281-2015.
	L	l			/0

Publication	Date				
type	Published	Location	Summary	URL	Citation
Working	November	N/A	Explained COBRA's use in calculating morbidity	http://www.theicct.org/site	Chambliss, S. et al. (2014). Morbidities
Paper	2014		endpoints including mortality, chronic bronchitis,	s/default/files/publications/	Calculation: Guidelines and Walkthrough.
			non-fatal heart attaches, respiratory hospital	ICCT morbidities 20141112	The International Council on Clean
			admissions, and acute bronchitis, among others.	<u>.pdf</u>	Transportation. Working Paper 2014-10.
Working	November	United	Used COBRA to measure the health impacts from	https://www.edf.org/sites/	Laitner, J.A.; McDonnell, M.T. (2014).
Paper	2014	States	current electricity generation infrastructure. SO ₂ and	default/files/edf laitner-	Energy Efficiency as a Pollution Control
			NOx pollutant were expected to add \$125 billion to	mcdonnell-energy-	Technology and a Net Job Creator under
			health care costs in 2013, leading to 18,000	efficiency-as-a-pollution-	Section 111(d) Carbon Pollution Standards
			premature deaths, 27,000 cases of acute bronchitis,	control-technology.pdf	for Existing Power Plants. Working paper
			240,000 episodes of respiratory distress, and 2.3		prepared for the Environmental Defense
			million lost work days.		Fund.
Report	August	United	Used COBRA to evaluate the health impacts of energy	https://energy.gov/sites/pr	O'Connor, Alan C., and Ross J. Loomis.
	2014	States	efficiency and renewable energy research and	od/files/2015/05/f22/evalu	"Evaluating Realized Impacts of DOE/EERE
			development programs. Found avoided incidences	ating realized rd mpacts	R&D Programs." (2014).
			and monetary benefits of adult and infant mortality,	<u>9-22-14.pdf</u>	
			heart attacks, hospital admissions, respiratory		
			symptoms, and work loss days, resulting in \$17.7-		
			45.2 million in benefits.		
Report	April 2014	United	Used COBRA to measure the health impacts of four	http://climateandenergy.or	American Council for an Energy-Efficient
		States	state policies to improve energy efficiency. Found	g/resources/ACEEE111drole	Economy. (2014). Change Is in the Air: How
			ACEEE scenario would avoid over 147,000 asthma	ofefficiency.pdf	States Can Harness Energy Efficiency to
			attacks, 5000 premature deaths, and \$100 million		Strengthen the Economy and Reduce
			due to lost work days.		Pollution.
Master's	January	Utah, United	COBRA was used to estimate Cache County's	http://digitalcommons.usu.	Moscardini, Leo A., "Estimating the
Thesis	2014	States	potential public health savings from a seasonal gas	edu/etd/3870	Effectiveness of a Seasonal Gas Tax for
			tax. Found benefits to be \$479,403-1,086,075.		Controlling Episodic PM2.5 Concentrations
					in Cache County, Utah" (2014). All
					Graduate Theses and Dissertations. Paper
					3870.
Report	December	United	Used COBRA to quantify and monetize the value of	https://www1.eere.energy.	Link, Albert N., et al. "Benefit-Cost
	2013	States	changes in the incidence of avoided adverse health	gov/analysis/pdfs/2013 bca	Evaluation of US DOE Investment in Energy
			events associated with emissions reductions. Found	vto edvs.pdf	Storage Technologies for Hybrid and
			avoided incidences and economic value for mortality,		Electric Cars and Trucks." (2013).
			respiratory and cardiovascular measures, and work		
			loss days, total \$1.76-45.2 million.		

www.epa.gov/cobra Page 11 of 18 Updated April 29, 2019

Publication	Date				
type	Published	Location	Summary	URL	Citation
Article	February	California	Used COBRA to calculate the benefits of wind energy	https://www.sciencedirect.	McCubbin, D. and Sovacool, B.K. (2013).
	2013	and Idaho,	derived from two locations: a 580 MW wind farm at	com/science/article/pii/S03	Quantifying the health and environmental
		United	Altamont Pass, CA, and a 22 MW wind farm in	<u>0142151200969X</u>	benefits of wind power to natural gas.
		States	Sawtooth, ID. The turbines in CA will likely avoid \$560		Energy Policy 53, 429–441.
			million-\$4.38 billion in health costs and the ID		
			turbines will likely avoid \$18-104 million.		
Book	January	N/A	Analyzed COBRA as a tool for program evaluation to	https://www.e-	O'Connor, A. et al. "Estimating avoided
	2013		discuss the many factors that affect the utility of each	elgar.com/shop/handbook-	environmental emissions and
			technique and how that impacts the technological,	on-the-theory-and-practice-	environmental health benefits" Chapter 9,
			economic and societal forecasts of the programs in	of-program-evaluation	Handbook on the Theory and Practice of
			question.		Program Evaluation (2013): 247.
Article	November	United	"In this example, the original air quality modeling	http://www.sciencedirect.c	Fann, N., Baker, K. R., & Fulcher, C. M.
	2012	States	entailed a significant investment of time and	om/science/article/pii/S016	(2012). Characterizing the PM 2.5-related
			resources, but the resulting benefit per ton estimates	<u>0412012001985</u>	health benefits of emission reductions for
			enable analysts to quickly estimate benefits. In other		17 industrial, area and mobile emission
			approaches, a simplified air quality model is		sectors across the US. Environment
			developed based on the responsiveness of ambient		international, 49, 141-151.
			pollutant levels to changing emissions. These source-		
			receptor relationships are then used to calculate		
			health impacts and benefits. Though the		
			development of the air quality model is resource		
			intensive, its subsequent application to various policy		
			scenarios is not." Found the value of reducing directly		
			emitted PM _{2.5} and PM _{2.5} ranges between		
			approximately \$1300 for reducing a ton of NO _x from		
			Ocean-Going Vessels to about \$450,000 for reducing		
			a ton of directly emitted PM _{2.5} from Iron and Steel		
			facilities.		
Working	July 2012	North	Used COBRA to determine the portion of Clean	http://nicholasinstitute.duk	Hoppock, David, et al. "Benefits of early
Paper		Carolina,	Smokestacks emissions reduction benefits realized in	e.edu/climate/policydesign/	state action in environmental regulation of
		United	North Carolina under the Clean Smokestacks Act.	benefits-of-early-state-	electric utilities: North Carolina's clean
		States	Found mortality benefits from reduced SO ₂ emissions	action-in-environmental-	smokestacks act." Nicholas Institute for
			to equal \$6.365-\$16.032 million.	regulation-of-electric-	Environmental Policy Solutions, Duke
				utilities/	University: Durham, NC (2012).

Publication	Date				
type	Published	Location	Summary	URL	Citation
Article	January 2012	California, United States	Used COBRA to estimate the health impacts of plugin electric vehicles in California. Estimated the value of benefits at \$750 to \$1,500 per vehicle in an expected PEV penetration scenario and \$1,000 to \$2,500 per vehicle in an aggressive penetration scenario.	https://journals.sagepub.co m/doi/10.3141/2287-19	Witt, M. et al. (2012). Plug-in Vehicles in California: Review of Current Policies, PEV- Related Emissions Reductions for 2020, and Policy Outlook.
Book	January 2012	N/A	Used COBRA to measure the health impacts from decreases PM2.5, SO2, and NOx from public investments in energy technologies. Found adverse health incidences to be \$90,500 (on-grid centralized systems), \$11.8 million (grid-connected distributed systems), and \$28.7 million (off-grid systems).	https://www.e- elgar.com/shop/public- investments-in-energy- technology	Gallaher, Michael P., Albert N. Link, and Alan O'Connor. <i>Public Investments in Energy Technology</i> . Edward Elgar Publishing, 2012.
Article	November 2011	United States	Used COBRA to estimate the health benefits of wind power. The turbines in CA will likely avoid \$560 million-\$4.38 billion in health costs and the ID turbines will likely avoid \$18-104 million.	http://www.sciencedirect.c om/science/article/pii/S104 0619011002351	McCubbin, Donald, and Benjamin K. Sovacool. "The hidden factors that make wind energy cheaper than natural gas in the United States." <i>The Electricity Journal</i> 24.9 (2011): 84-95.
Book	January 2011	United States	Used COBRA to estimate the health costs of air pollution by mode of transportation including road, rail, air, and water. Estimated air-pollution costs by road (LDVG: 0.91¢/pmt; HDVD: ¢1.55/tm), rail (¢0.35/tm), air (¢0.39/pmt; ¢1.88/tm) and water (¢1.74/tm).	https://escholarship.org/uc /item/13n8v8gq	Delucchi, Mark, and Don McCubbin. "External costs of transport in the United States." Chapter 15 in A Handbook of Transport Economics (2011): 341.
Report	August 2010	United States	Used COBRA to calculate the health benefits of reductions in air pollutants resulting from using PV systems rather than the next best technology alternative for electricity production. Estimated environmental health benefits to be to be \$237 million.	https://energy.gov/sites/pr od/files/2015/05/f22/solar pv.pdf	O'Connor, Alan C., Ross J. Loomis, and Fern M. Braun. "Retrospective Benefit-Cost Evaluation of DOE Investment in Photovoltaic Energy Systems." <i>RTI International</i> (2010).

Publication	Date Published	Location	Summanu	URL	Citation
Deport		Location United	RTI International (2010): RTI, for the U.S. Department	https://www.energy.gov/sit	Citation Retrospective Benefit-Cost Evaluation of
Report	August 2010	States	of Energy (DOE), estimated health benefits associated	es/prod/files/2014/02/f7/gt	U.S. DOE Geothermal Technologies R&D
	2010	States	with two types of geothermal technologies in which	p benefit-	Program Investments: Impacts of a Cluster
			DOE has invested using COBRA. The study calculated	cost eval aug2010.pdf	of Energy Technologies
			a net reduction in PM, NOx, and SO2 associated with	cost_eval_aug2010.pul	of Energy recimologies
			geothermal energy produced by geothermal plants		
			that otherwise would have been produced by fossil		
			fuel plants. Total environmental health benefits are		
			estimated to be \$155.7 million.		
Danant	luna 2010	United	·	https://www.d.com.org.com.	Datus and active Danielit Coat Evaluation of
Report	June 2010		Used COBRA to quantify and monetize the value of	https://www1.eere.energy.	Retrospective Benefit–Cost Evaluation of
		States	changes in the incidence of avoided adverse health	gov/analysis/pdfs/wind_bc	U.S. DOE Wind Energy Program: Impact of
			events associated with emissions reductions from	report10-14-10.pdf	Selected Energy Technology Investments
			electric vehicle investments. Found \$1,107,053 in		
			avoided mortality and health care incidents.		
Report	May 2010	United	"Health benefits associated with reduced diesel fuel	https://www1.eere.energy.	May 2010 - USDOE EERE Prepared by
		States	consumption and reduced NOx, PM, and Sox	gov/analysis/pdfs/advanced	Albert Link, UNC at Greensboro Dept of
			emissions are quantified in monetary terms using the	<u>combustion report.pdf</u>	Economics, Retrospective Benefit-Cost
			COBRA." Found \$53.7 million in health benefits from		Evaluation of US DOE Vehicle Combustion
			reduce environmental emissions.		Engine R&D Investments: Impacts of a
					Cluster of Energy Technologies
Report	May 2010	Utah, United	Mentions COBRA as an option for estimating the co-	http://www.synapse-	Fisher, Jeremy, et al. "Co-Benefits of
		States	benefits of emissions reductions from energy	energy.com/sites/default/fil	energy efficiency and renewable energy in
			efficiency and renewable energy. Found mortality	es/SynapseReport.2010-	Utah." Synapse Energy Economics (2010).
			benefits to be \$7.39-7.79/MWh and mobility benefits	05.UT-EO.Utah-Co-	
			to be \$0.48/MWh.	Benefits.08-064.pdf	
Report	January	Iowa, United	Physicians for Social Responsibility, a non-profit	https://iowaenvironmentalf	Iowa Coal & Health: A Preliminary Mapping
	2010	States	organization, used COBRA to estimate the health	ocus.org/tag/iowa-coal-	Study
			benefits of a scenario in which the percentage of	health-a-preliminary-	
			Iowa's electricity generation derived from coal was	mapping-study/	
			reduced from its current level of 72% to the national		
			average of 47%. Health benefits totaled \$71.8 million,		
			of which 92.1% were derived from reduced mortality		

Publication	Date				
type	Published	Location	Summary	URL	Citation
Article	January	United	"To estimate health effects from changes in air	https://www.witpress.com/	Ruegg, R. T., and G. B. Jordan. "New
	2010	States	pollution emissions attributed to the program cluster	Secure/elibrary/papers/EEI	benefit-cost methodology for evaluating
			evaluated, the US Environmental Protection Agency's	A10/EEIA10009FU1.pdf	renewable and energy efficiency programs
			(EPA) COBRA model (Co-Benefits Risk Assessment		of the US Department of Energy." WIT
			Model, described in US EPA [6]) is used. To apply		Transactions on Ecology and the
			COBRA, it is necessary to enter the estimated		Environment 131 (2010): 95-106.
			changes in air emissions of particulate matter (PM),		
			sulphur dioxide (SO2), nitrogen oxide (NOx), and		
			volatile organic compounds (VOCs) into the model.		
			Because not all air pollutants are taken into account		
			by the model, the results obtained from using COBRA		
			for the analysis is taken as a lower bound estimate of		
			impact of health effects and their economic value.		
			Table 2 shows the health effects included in COBRA,		
			by type of effect. The model provides estimates of the incidence of each type of effect and related		
			healthcare costs.		
Article	July 2009	United	"For each power plant, we estimated the relationship	http://onlinelibrary.wiley.co	Levy, J. I., Baxter, L. K., & Schwartz, J.
Article	July 2009	States	between emissions and incremental contribution to	m/doi/10.1111/j.1539-	(2009). Uncertainty and variability in
		States	ambient concentrations using a S-R matrix. S-R matrix	6924.2009.01227.x/full	health-related damages from coal-fired
			is a reduced-form model based on the Climatological	<u>0924.2009.01227.X/1011</u>	power plants in the United States. <i>Risk</i>
			Regional Dispersion Model, a sector-averaged		Analysis, 29(7), 1000-1014.
			Gaussian dispersion model that includes wet and dry		Analysis, 23(7), 1000-1014.
			deposition and first-order chemical conversion of		
			SO2 and NOx to sulfate and nitrate particles. More		
			detail about the model is available elsewhere" Found		
			the economic valuation premature mortality to be		
			\$5.5 million.		
Report	July 2009	California,	COBRA was analyzed as part of an effort to identify	http://www.nrel.gov/docs/f	Mosey, Gail, and Laura
	, =000	United	methodological alternatives for quantifying the	y09osti/45639.pdf	Vimmerstedt. <i>Renewable electricity</i>
		States	benefits of renewable energy, including the pros and	,	benefits quantification methodology: a
			cons of the tool.		request for technical assistance from the
					California Public Utilities Commission.
					National Renewable Energy Laboratory,
					2009.
					2009.

www.epa.gov/cobra Page 15 of 18 Updated April 29, 2019

Publication	Date				
type	Published	Location	Summary	URL	Citation
Report	January	Virginia,	Abt Associates performed an analysis of the health	https://www.abtassociates.	Assessing the Economic Impact of
	2009	United	effects impacts of a proposed coal-fired power plant	com/insights/publications/r	Dominion Virginia Power's Coal-Fired
		States	in Wise County, Virginia. The study estimated that	eport/assessing-the-	Power Plant in Wise County, Virginia
			the plant would contribute to two to five premature	economic-impact-of-	(2009), Abt Associates, Prepared for: Wise
			mortality events annually in Virginia, and five to	dominion-virginia-powers-	Energy for Virginia Coalition c/o
			fourteen premature mortality events nationwide.	<u>coal-fired</u>	Appalachian Voices
			Total annual economic impacts of health effects in		
			Virginia ranged from \$16 to \$52 million, and \$44 to		
			\$135 million nationwide.		
Working	November	United	"For a tool for calculating co-benefits, see Mulholland	http://scholarworks.umass.	Boyce, James K., and Matthew Riddle. "Cap
Paper	2007	States	(2007). For estimates of damages from releases of	edu/cgi/viewcontent.cgi?art	and dividend: how to curb global warming
			particulates, sulfur dioxide, and nitrogen oxides in	icle=1121&context=peri wo	while protecting the incomes of American
			the U.S., see Muller and Mendelsohn (2007)."	<u>rkingpapers</u>	families." (2007).
Article	May 2007	United	Used COBRA to model the public health benefits and	http://www.ncbi.nlm.nih.go	Levy, Jonathan I., Andrew M. Wilson, and
		States	the change in the spatial inequality of health risk for a	v/pmc/articles/PMC186797	Leonard M. Zwack. "Quantifying the
			number of hypothetical control scenarios for power	<u>3/</u>	efficiency and equity implications of power
			plants in the United States to determine optimal		plant air pollution control strategies in the
			control strategies. Benefits ranged from 17,000–		United States." Environmental health
			21,000 fewer premature deaths per year.		perspectives (2007): 743-750.
Memoran-	April 2007	Wisconsin,	Used COBRA to determine the public health benefits	http://dnr.wi.gov/about/nr	DATE: April 9, 2007; TO: Members of the
dum		United	of implementing the NOx RACT rule. The benefits	b/2007/April/04-07-3A1.pdf	WI Natural Resources Board ; FROM: Scott
		States	amount was compared to compliance costs. Found		Hassett, Secretary; SUBJECT: Reasonably
			the NOx RACT rule would provide \$80,000,000/year		Available Control Technology (RACT)
			in public health benefits.		program for major sources of nitrogen
					oxides (NOx) in the moderate ozone
					nonattainment;
					http://dnr.wi.gov/air/pdf/AM1705.pdf

Publication	Date				
type	Published	Location	Summary	URL	Citation
Article	February 2007	United States	"The S–R matrix is a regression-based derivation of output from the Climatological Regional Dispersion Model (CRDM) which uses assumptions similar to the Industrial Source Complex Short Term model (ISCST3). It was developed by Pechan and Associates for Abt Associates and used in past regulatory impact analyses (US Environmental Protection Agency, 1999d). S–R matrix provides a database of transfer factors that summarize the impact that mobile source PM2.5 and precursor emissions from any one county have on ambient PM2.5 concentrations in that county as well as all other counties (Abt Associates, 2003)"	http://www.sciencedirect.c om/science/article/pii/S135 2231006009654	Greco, S. L., Wilson, A. M., Spengler, J. D., & Levy, J. I. (2007). Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. <i>Atmospheric Environment</i> , <i>41</i> (5), 1011-1025.
Article	April 2006	N/A	Other options include the CoBenefits Risk Assessment (COBRA) model,34 which features built- in source-receptor atmospheric sensitivity matrices in place of atmospheric modeling by the user to allow quick estimates of the health impacts from various emission sources; the Ozone Risk Assessment Model,35 which operates in a similar fashion to BenMAP; and the Air Strategy Assessment Program, currently under development by EPA to link BenMAP with AirControlNET costing software36 for full- stream assessment of both costs and benefits of attainment options (B. Hubbell, EPA, personal communication, March 8, 2005). These and other tools, along with an improved understanding of the potential role of benefit analysis in integrated air quality management, could provide the necessary impetus for its greater incorporation in upcoming SIP development. Estimated net benefits of alternative control strategies to be between \$1.5-1.6 million.	http://www.tandfonline.co m/doi/abs/10.1080/104732 89.2006.10464524	Chestnut, Lauraine G., David M. Mills, and Daniel S. Cohan. "Cost-benefit analysis in the selection of efficient multipollutant strategies." <i>Journal of the Air & Waste Management Association</i> 56.4 (2006): 530-536.

Publication	Date				
type	Published	Location	Summary	URL	Citation
Report	November	Connecticut,	REMI, for EPA and the State of Connecticut, analyzed		Economic Impact of Oil and Natural Gas
	2004	United	the impacts of oil and natural gas conservation		Conservation Policies, Regional Economic
		States	policies in Connecticut. The study integrated		Models, Inc. (2004). Prepared for U.S. EPA
			estimates of reduced mortality and the value of		and the State of Connecticut.
			health improvements from COBRA into a simulation		
			of the impacts of these policies on the state's		
			economy.		

www.epa.gov/cobra Page 18 of 18 Updated April 29, 2019