Environmental Hazard
Extended Data Extraction
Supplemental Document
For Draft Risk Evaluation of
Cyclic Aliphatic Bromide Cluster
(HBCD)

<table>
<thead>
<tr>
<th>CASRN</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>25637-99-4</td>
<td>Hexabromocyclododecane</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>1,2,5,6,9,10-Hexabromocyclododecane</td>
</tr>
<tr>
<td>3194-57-8</td>
<td>1,2,5,6-Tetabromocyclooctane</td>
</tr>
</tbody>
</table>

June, 2019
Table of Contents

Table 1. On-topic aquatic toxicity studies that were evaluated for HBCD .. 3
Table 2. On-topic terrestrial toxicity studies that were evaluated for HBCD .. 54
<table>
<thead>
<tr>
<th>CAS RN</th>
<th>Test Species</th>
<th>Water Type</th>
<th>Duration</th>
<th>Endpoint</th>
<th>Conc(s)</th>
<th>Test Analysis</th>
<th>Effect(s)</th>
<th>References</th>
<th>Data Quality Ratings</th>
<th>HERO ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aquatic Vegetation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Green algae (Pseudokirchneriella subcapitata)</td>
<td>Fresh</td>
<td>24-hour</td>
<td>EC<sub>10</sub> = >0.0037 mg AI/L (0.0037 is the mean of the Day 0 and Day 4 6.8 mg/L measurements)</td>
<td>0.0015, 0.0022, 0.0032, 0.0046, 0.0068 mg/L (nominal); 0.0013, 0.0022, 3.38, 0.0042, 0.0064 mg/L (measured, Day 0)</td>
<td>Static, Measured. Solvent: Dimethylformamide</td>
<td>Abundance (cell density); Population growth rate (area under growth curve)</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@author-year]</td>
<td>High</td>
<td>1928298</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Green algae (Pseudokirchneriella subcapitata)</td>
<td>Fresh</td>
<td>24-hour</td>
<td>EC<sub>50</sub> = >0.0037 mg AI/L</td>
<td>0.0015, 0.0022, 0.0032, 0.0046, 0.0068 mg/L (nominal); 0.0013, 0.0022, 3.38, 0.0042, 0.0064 mg/L (measured, Day 0)</td>
<td>Static, Measured. Solvent: Dimethylformamide</td>
<td>Abundance (cell density); Population growth rate (area under growth curve)</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Green algae (Pseudokirchneriella subcapitata)</td>
<td>Fresh</td>
<td>24-hour</td>
<td>EC<sub>10</sub> = >0.0037 mg AI/L</td>
<td>0.0015, 0.0022, 0.0032, 0.0046, 0.0068 mg/L (nominal); 0.0013, 0.0022, 3.38, 0.0042, 0.0064 mg/L (measured, Day 0)</td>
<td>Static, Measured. Solvent: Dimethylformamide</td>
<td>Abundance (cell density); Population growth rate (area under growth curve)</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Green algae (Pseudokirchneriella subcapitata)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>EC<sub>10</sub> = >0.0037 mg AI/L</td>
<td>0.0015, 0.0022, 0.0032, 0.0046, 0.0068 mg/L (nominal); 0.0013, 0.0022, 3.38, 0.0042, 0.0064 mg/L (measured, Day 0)</td>
<td>Static, Measured. Solvent: Dimethylformamide</td>
<td>Abundance (cell density); Population growth rate (area under growth curve)</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Green algae (Pseudokirchneriella subcapitata)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>EC<sub>50</sub> = >0.0037 mg AI/L</td>
<td>0.0015, 0.0022, 0.0032, 0.0046, 0.0068 mg/L (nominal); 0.0013, 0.0022, 3.38, 0.0042, 0.0064 mg/L (measured, Day 0)</td>
<td>Static, Measured. Solvent: Dimethylformamide</td>
<td>Abundance (cell density); Population growth rate (area under growth curve)</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Green algae (Pseudokirchneriella subcapitata)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>EC₉₀ = >0.0037 mg AI/L</td>
<td>0.0015, 0.0022, 0.0032, 0.0046, 0.0068 mg/L (nominal); 0.0013, 0.0022, 3.38, 0.0042, 0.0064 mg/L (measured, Day 0)</td>
<td>Static, Measured. Solvent: Dimethylformamide</td>
<td>Abundance (cell density); Population growth rate (area under growth curve)</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Green algae (Pseudokirchneriella subcapitata)</td>
<td>Fresh</td>
<td>72-hour</td>
<td>EC₉₀ = >0.0037 mg AI/L</td>
<td>0.0015, 0.0022, 0.0032, 0.0046, 0.0068 mg/L (nominal); 0.0013, 0.0022, 3.38, 0.0042, 0.0064 mg/L (measured, Day 0)</td>
<td>Static, Measured. Solvent: Dimethylformamide</td>
<td>Abundance (cell density); Population growth rate (area under growth curve)</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Green algae (Pseudokirchneriella subcapitata)</td>
<td>Fresh</td>
<td>72-hour</td>
<td>EC₅₀ = >0.0037 mg AI/L</td>
<td>0.0015, 0.0022, 0.0032, 0.0046, 0.0068 mg/L (nominal); 0.0013, 0.0022, 3.38, 0.0042, 0.0064 mg/L (measured, Day 0)</td>
<td>Static, Measured. Solvent: Dimethylformamide</td>
<td>Abundance (cell density); Population growth rate (area under growth curve)</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Green algae (Pseudokirchneriella subcapitata)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>EC₅₀ = >0.0037 mg AI/L</td>
<td>0.0015, 0.0022, 0.0032, 0.0046, 0.0068 mg/L (nominal); 0.0013, 0.0022, 3.38, 0.0042, 0.0064 mg/L (measured, Day 0)</td>
<td>Static, Measured. Solvent: Dimethylformamide</td>
<td>Abundance (cell density); Population growth rate (area under growth curve)</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Green algae (Pseudokirchneriella subcapitata)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>EC₅₀ = >0.0037 mg AI/L</td>
<td>0.0015, 0.0022, 0.0032, 0.0046, 0.0068 mg/L (nominal); 0.0013, 0.0022, 3.38, 0.0042, 0.0064 mg/L (measured, Day 0)</td>
<td>Static, Measured. Solvent: Dimethylformamide</td>
<td>Abundance (cell density); Population growth rate (area under growth curve)</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Green algae (Pseudokirchneriella subcapitata)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>EC₅₀ = >0.0037 mg AI/L</td>
<td>0.0015, 0.0022, 0.0032, 0.0046, 0.0068 mg/L (nominal); 0.0013, 0.0022, 3.38, 0.0042, 0.0064 mg/L (measured, Day 0)</td>
<td>Static, Measured. Solvent: Dimethylformamide</td>
<td>Abundance (cell density); Population growth rate (area under growth curve)</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Green algae (Pseudokirchneriella subcapitata)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>NOEC = >0.0037 mg AI/L</td>
<td>0.0015, 0.0022, 0.0032, 0.0046, 0.0068 mg/L (nominal); 0.0013, 0.0022, 3.38, 0.0042, 0.0064 mg/L (measured, Day 0)</td>
<td>Static, Measured. Solvent: Dimethylformamide</td>
<td>Population growth rate (area under growth curve)</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Skeletonema costatum)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC₅₀ = 0.0101 mg AI/L; Seawater, Test 1</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Skeletonema costatum)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC₅₀ = 0.01 mg AI/L; Seawater, Test 2</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Skeletonema costatum)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC₅₀ = 0.0122 mg AI/L; Rila Marine Mix, Test 1</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Skeletonema costatum)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC₅₀ = 0.0118 mg AI/L; Rila Marine Mix, Test 2</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Skeletonema costatum)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC₅₀ = 0.01 mg AI/L; Instant Ocean sea salts, Test 1</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Skeletonema costatum)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC₅₀ = 0.0113 mg AI/L; Utikem seawater compound, Test 1</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Skeletonema costatum)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC₅₀ = 0.0113 mg AI/L; Utikem seawater compound, Test 2</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>Walsh, 1987, 1927837@@auth or-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Skeletonema costatum)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.0095 mg AI/L; HW Marine Mix, Test 1</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Skeletonema costatum)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.009 mg AI/L; HW Marine Mix, Test 2</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Thalassiosira pseudonana)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.07 mg AI/L; Seawater, Test 1</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Thalassiosira pseudonana)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.08 mg AI/L; Seawater, Test 2</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Thalassiosira pseudonana)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.38 mg AI/L; Rila Marine Mix, Test 1</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Thalassiosira pseudonana)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.36 mg AI/L; Rila Marine Mix, Test 2</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Thalassiosira pseudonana)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.15 mg AI/L; Instant Ocean sea salts, Test 1</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Thalassiosira pseudonana)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.14 mg AI/L; Instant Ocean sea salts, Test 2</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Thalassiosira pseudonana)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.1 mg AI/L; 40 fathoms marine mix, Test 1</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Thalassiosira pseudonana)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.1 mg AI/L; 40 fathoms marine mix, Test 2</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Thalassiosira pseudonana)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.09 mg AI/L; Utikem seawater compound, Test 1</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Thalassiosira pseudonana)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.09 mg AI/L; Utikem seawater compound, Test 2</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Thalassiosira pseudonana)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.05 mg AI/L; HW Marine Mix, Test 1</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Diatom (Thalassiosira pseudonana)</td>
<td>Salt</td>
<td>72-hour</td>
<td>EC\textsubscript{50} = 0.04 mg AI/L; HW Marine Mix, Test 2</td>
<td>Not Reported</td>
<td>Static, Measured, Solvent: Acetone</td>
<td>Population change (change in N/change in time)</td>
<td>[Walsh, 1987, 1927837@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Blue-green Algae (Spirulina subsalsa)</td>
<td>Fresh</td>
<td>168-hour</td>
<td>BCF = 350</td>
<td>0.002 mg/L</td>
<td>Static, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343690@auth or-year]</td>
<td>Unacceptable</td>
<td>2343690</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Green Algae (Scenedesmus acutus var. acutus)</td>
<td>Fresh</td>
<td>168-hour</td>
<td>BCF = 407</td>
<td>0.002 mg/L</td>
<td>Static, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343690@auth or-year]</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Blue-green Algae (Spirulina subsalsa)</td>
<td>Fresh</td>
<td>168-hour</td>
<td>BCF = 270</td>
<td>0.002 mg/L</td>
<td>Static, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343690@auth or-year]</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Green Algae (Scenedesmus acutus var. acutus)</td>
<td>Fresh</td>
<td>168-hour</td>
<td>BCF = 469</td>
<td>0.002 mg/L</td>
<td>Static, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343690@auth or-year]</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Green Algae (Scenedesmus acutus var. acutus)</td>
<td>Fresh</td>
<td>168-hour</td>
<td>BCF = 390</td>
<td>0.002 mg/L</td>
<td>Static, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343690@auth or-year]</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Blue-green Algae (Spirulina subsalsa)</td>
<td>Fresh</td>
<td>168-hour</td>
<td>BCF = 174</td>
<td>0.002 mg/L</td>
<td>Static, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343690@auth or-year]</td>
<td>Unacceptable</td>
<td></td>
</tr>
</tbody>
</table>

Aquatic Invertebrates

<table>
<thead>
<tr>
<th>CAS RN</th>
<th>Test Species</th>
<th>Water Type</th>
<th>Duration</th>
<th>End-point</th>
<th>Conc(s)</th>
<th>Test Analysis</th>
<th>Effect(s)</th>
<th>References</th>
<th>Data Quality Ratings</th>
<th>HERO ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>3194-55-6</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>3-hour</td>
<td>EC₄₀ = 1000 mg AI/L</td>
<td>0, 0.01, 0.1, 1, 10, 100, 1000 mg/L</td>
<td>Static, Nominal</td>
<td>Behavioral: Swimming</td>
<td>[BASF, 1990, 1928267@auth or-year]</td>
<td>High</td>
<td>1928267</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>3-hour</td>
<td>EC₅₀ = 1000 mg AI/L</td>
<td>0, 0, 0.01, 0.1, 1, 10, 100, 1000 mg/L</td>
<td>Static, Nominal</td>
<td>Behavioral: Swimming</td>
<td>[BASF, 1990, 1928267@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>3-hour</td>
<td>EC₁₀₀ = 1000 mg AI/L</td>
<td>0, 0, 0.01, 0.1, 1, 10, 100, 1000 mg/L</td>
<td>Static, Nominal</td>
<td>Behavioral: Swimming</td>
<td>[BASF, 1990, 1928267@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>6-hour</td>
<td>EC₅₀ = 1000 mg AI/L</td>
<td>0, 0, 0.01, 0.1, 1, 10, 100, 1000 mg/L</td>
<td>Static, Nominal</td>
<td>Behavioral: Swimming</td>
<td>[BASF, 1990, 1928267@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>6-hour</td>
<td>EC₅₀ = 1000 mg AI/L</td>
<td>0, 0, 0.01, 0.1, 1, 10, 100, 1000 mg/L</td>
<td>Static, Nominal</td>
<td>Behavioral: Swimming</td>
<td>[BASF, 1990, 1928267@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species (Daphnia magna)</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------</td>
<td>--</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>6-hour</td>
<td>EC<sub>100</sub> = 1000 mg AI/L</td>
<td>0, 0, 0.01, 0.1, 1, 10, 100, 1000 mg/L</td>
<td>Static, Nominal</td>
<td>Behavioral: Swimming</td>
<td>[BASF, 1990, 1928267@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>24-hour</td>
<td>EC<sub>0</sub> = 1000 mg AI/L</td>
<td>0, 0, 0.01, 0.1, 1, 10, 100, 1000 mg/L</td>
<td>Static, Nominal</td>
<td>Behavioral: Swimming</td>
<td>[BASF, 1990, 1928267@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>24-hour</td>
<td>EC<sub>50</sub> = 1000 mg AI/L</td>
<td>0, 0, 0.01, 0.1, 1, 10, 100, 1000 mg/L</td>
<td>Static, Nominal</td>
<td>Behavioral: Swimming</td>
<td>[BASF, 1990, 1928267@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>EC<sub>0</sub> = 1 mg AI/L</td>
<td>0, 0, 0.01, 0.1, 1, 10, 100, 1000 mg/L</td>
<td>Static, Nominal</td>
<td>Behavioral: Swimming</td>
<td>[BASF, 1990, 1928267@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>EC<sub>50</sub> = 146.34 mg AI/L</td>
<td>0, 0.01, 0.1, 1, 10, 100, 1000 mg/L</td>
<td>Static, Nominal</td>
<td>Behavioral: Swimming</td>
<td>[BASF, 1990, 1928267@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>EC<sub>100</sub> = 1000 mg AI/L</td>
<td>0, 0.01, 0.1, 1, 10, 100, 1000 mg/L</td>
<td>Static, Nominal</td>
<td>Behavioral: Swimming</td>
<td>[BASF, 1990, 1928267@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>No Mortality/Immobility Concentration</td>
<td>0, 0, 0.0018, 0.0021, 0.0023, 0.0024, 0.0032 mg/L</td>
<td>Flow-through, Measured, Solvent: Dimethylformamide (DMF)</td>
<td>Mortality, immobility</td>
<td>[Wildlife Intl LTD, 1997, 1928297@auth or-year]</td>
<td>High</td>
<td>1928297</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>EC<sub>50</sub> = 0.0032 mg AI/L</td>
<td>0, 0, 0.0018, 0.0021, 0.0023, 0.0024, 0.0032 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Mortality</td>
<td>[Wildlife Intl LTD, 1997, 1928297@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>NOEC = 0.0032 mg AI/L</td>
<td>0, 0, 0.0018, 0.0021, 0.0023, 0.0024, 0.0032 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Mortality, Immobility</td>
<td>[Wildlife Intl LTD, 1997, 1928297@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>EC<sub>50</sub> = 0.011 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Mortality; Progeny counts/numbers</td>
<td>[Wildlife Intl LTD, 1998, 1928243@auth or-year]</td>
<td>High</td>
<td>1928243</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>EC<sub>50</sub> = 0.011 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Mortality; Progeny counts/numbers</td>
<td>[Wildlife Intl LTD, 1998, 1928243@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>--------------------------</td>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>EC₅₀ > 0.011 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Mortality; Progeny counts/numbers</td>
<td>[Wildlife Intl LTD, 1998, 1928243@auth-year]</td>
<td>High</td>
<td>897521</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>7-day</td>
<td>EC₅₀ > 0.011 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Mortality; Progeny counts/numbers</td>
<td>[Wildlife Intl LTD, 1998, 1928243@auth-year]</td>
<td>High</td>
<td>897521</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>14-day</td>
<td>EC₅₀ > 0.011 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Mortality; Progeny counts/numbers</td>
<td>[Wildlife Intl LTD, 1998, 1928243@auth-year]</td>
<td>High</td>
<td>897521</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOEC = 0.011 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Mortality</td>
<td>[Wildlife Intl LTD, 1998, 1928243@auth-year]</td>
<td>High</td>
<td>897521</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOEC = 0.0056 mg AI/L; LOEC = 0.011 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Progeny counts/numbers; Growth: Weight</td>
<td>[Wildlife Intl LTD, 1998, 1928243@auth-year]</td>
<td>High</td>
<td>897521</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>21-day</td>
<td>LOEC = 0.0056 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Growth: Length</td>
<td>[Wildlife Intl LTD, 1998, 1928243@auth-year]</td>
<td>High</td>
<td>897521</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOEC = 0.0031 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Growth: Length</td>
<td>[Wildlife Intl LTD, 1998, 1928243@auth-year]</td>
<td>High</td>
<td>897521</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>21-day</td>
<td>MATC = 0.0042 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Growth: Length</td>
<td>[Wildlife Intl LTD, 1998, 1928243@auth-year]</td>
<td>High</td>
<td>897521</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOAEL = 0.0056 mg AI/L; LOAEL = 0.011 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Reproductive success (young per reproductive day); Growth: Weight</td>
<td>[Drottar, 1998, 3809169@auth-year]</td>
<td>High</td>
<td>3809169</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOAEL = 0.0031 mg AI/L; LOAEL = 0.0056 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Growth: Length</td>
<td>Drottar, 1998, 3809169@@auth or-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Water flea (Daphnia magna)</td>
<td>Fresh</td>
<td>21-day</td>
<td>MATC = 0.0042 mg AI/L</td>
<td>0, 0, 0.00087, 0.0016, 0.0031, 0.0056, 0.011 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Growth: Length</td>
<td>Drottar, 1998, 3809169@@auth or-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>1-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.00086 mg AI/L; Gill tissue</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: Dimethyl sulfoxide (DMSO)</td>
<td>7-Ethoxyresorufin O-deethylase; Glutathione (reduced glutathione); DNA damage</td>
<td>Zhang, 2014, 2528343@@auth or-year</td>
<td>High 2528343</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>3-day</td>
<td>LOAEL = 0.000086 mg AI/L; Gill tissue</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase</td>
<td>Zhang, 2014, 2528343@@auth or-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>6-day</td>
<td>LOAEL = 0.000086 mg AI/L; Gill tissue</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase; Glutathione S-transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione); Lipid peroxidation</td>
<td>Zhang, 2014, 2528343@@auth or-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>10-day</td>
<td>LOAEL = 0.000086 mg AI/L; Gill tissue</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase; Glutathione S-transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione)</td>
<td>Zhang, 2014, 2528343@@auth or-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
<td>--</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>15-day</td>
<td>LOAEL = 0.000086 mg AI/L; Gill tissue</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase; Glutathione S-transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione)</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td>3194-55-6</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>1-day</td>
<td>NOAEL = 0.0086 mg AI/L; Gill tissue</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>Glutathione S-transferase; Superoxide dismutase (SOD) enzyme activity</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td>3194-55-6</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>3-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.00086 mg AI/L; Gill tissue</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>Glutathione S-transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione); Lipid peroxidation; DNA damage</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td>3194-55-6</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>6-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.00086 mg AI/L; Gill tissue</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>DNA damage</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td>3194-55-6</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>10-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.00086 mg AI/L; Gill tissue</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>DNA damage; Lipid peroxidation</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td>3194-55-6</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>15-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.00086 mg AI/L; Gill tissue</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>DNA damage</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td>3194-55-6</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>1-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.00086 mg AI/L; Gill tissue</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>Lipid peroxidation</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>15-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.00086 mg AI/L; Gill tissue</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>Lipid peroxidation</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>1-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.00086 mg AI/L; Digestive gland</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase; Glutathione (reduced glutathione); DNA damage</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>3-day</td>
<td>LOAEL = 0.000086 mg AI/L; Digestive gland</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>6-day</td>
<td>LOAEL = 0.000086 mg AI/L; Digestive gland</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase; Glutathione S-transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione); Lipid peroxidation</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------------------------</td>
<td>------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (\textit{Venerupis philippinarum})</td>
<td>Salt</td>
<td>10-day</td>
<td>LOAEL = 0.000086 mg AI/L; Digestive gland</td>
<td>0.000086, 0.000086; 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase; Glutathione S-transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione)</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (\textit{Venerupis philippinarum})</td>
<td>Salt</td>
<td>15-day</td>
<td>LOAEL = 0.000086 mg AI/L; Digestive gland</td>
<td>0.000086, 0.000086; 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase; Glutathione S-transferase; Superoxide dismutase (SOD) enzyme activity; Glutathione (reduced glutathione)</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (\textit{Venerupis philippinarum})</td>
<td>Salt</td>
<td>1-day</td>
<td>NOAEL = 0.0086 mg AI/L; Digestive gland</td>
<td>0.000086, 0.000086; 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>Glutathione S-transferase; Superoxide dismutase (SOD) enzyme activity</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (\textit{Venerupis philippinarum})</td>
<td>Salt</td>
<td>3-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.00086 mg AI/L; Digestive gland</td>
<td>0.000086, 0.000086; 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>Glutathione S-transferase; Superoxide dismutase (SOD) enzyme activity</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (\textit{Venerupis philippinarum})</td>
<td>Salt</td>
<td>6-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.00086 mg AI/L; Digestive gland</td>
<td>0.000086, 0.000086; 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>DNA damage</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>------------------------------------</td>
<td>-----------------------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>10-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.00086 mg AI/L; Digestive gland</td>
<td>0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>DNA damage; Lipid peroxidation</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>15-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.0086 mg AI/L; Digestive gland</td>
<td>0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>DNA damage</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>1-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.0086 mg AI/L; Digestive gland</td>
<td>0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>Lipid peroxidation</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>15-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.0086 mg AI/L; Digestive gland</td>
<td>0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Not reported, Solvent: DMSO</td>
<td>Lipid peroxidation</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>3-day</td>
<td>LOAEL = 0.000086 mg AI/L</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Ferritin mRNA; Catalase mRNA; Dihydriodiol dehydrogenase mRNA; Cytochrome c oxidase subunit I mRNA; NADH: ubiquinone reductase (H(+)-translocating) mRNA</td>
<td>[Zhang, 2014, 2528343@@auth or-year]</td>
<td>Unacceptable</td>
<td>1928024</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>10-day</td>
<td>LOAEL = 0.000086 mg AI/L</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Ferritin mRNA; Catalase mRNA; Dihydrodiol dehydrogenase mRNA; C-type Lectin like mRNA; Elongation factor-1 alpha mRNA; Hemocyanin subunit 2 mRNA</td>
<td>[Zhang, 2014, 2528343@auth or-year]</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>10-day</td>
<td>NOAEL = 0.0086 mg AI/L</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Cytochrome c oxidase subunit 1 mRNA</td>
<td>[Zhang, 2014, 2528343@auth or-year]</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>10-day</td>
<td>NOAEL = 0.000086 mg AI/L; LOAEL = 0.00086 mg AI/L</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>NADH:ubiquinone reductase (H+-translocating) mRNA</td>
<td>[Zhang, 2014, 2528343@auth or-year]</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Japanese Littleneck Clam (Venerupis philippinarum)</td>
<td>Salt</td>
<td>10-day</td>
<td>NOAEL = 0.00086 mg AI/L; LOAEL = 0.0086 mg AI/L</td>
<td>0, 0.000086, 0.00086, 0.0086 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Purine nucleoside phosphorylase mRNA</td>
<td>[Zhang, 2014, 2528343@auth or-year]</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Sea urchin (Psammechinus miliaris)</td>
<td>Salt</td>
<td>72 hours post fertilization</td>
<td>NOAEL = 0.06416989 mg AI/L; Exp. A</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal</td>
<td>[Anselmo, 2011, 1274149@auth or-year]</td>
<td>High</td>
<td>1274149</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Sea urchin (Psammechinus miliaris)</td>
<td>Salt</td>
<td>72 hours post fertilization</td>
<td>NOAEL = 0.032 mg AI/L; LOAEL = 0.064 mg AI/L; Exp. B</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal</td>
<td>[Anselmo, 2011, 1274149@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Sea urchin (Psammechinus miliaris)</td>
<td>Salt</td>
<td>2-4 days post fertilization</td>
<td>NOAEL = 0.032 mg AI/L; LOAEL = 0.064 mg AI/L; Exp. A</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal</td>
<td>[Anselmo, 2011, 1274149@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Sea urchin (Psammechinus miliaris)</td>
<td>Salt</td>
<td>2-4 days post fertilization</td>
<td>NOAEL = 0.032 mg AI/L; LOAEL = 0.064 mg AI/L; Exp. B</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal</td>
<td>[Anselmo, 2011, 1274149@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Sea urchin (Psammechinus miliaris)</td>
<td>Salt</td>
<td>2-4 days post fertilization</td>
<td>EC_{50} = 0.0453 mg AI/L; Exp. B</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal</td>
<td>[Anselmo, 2011, 127414998@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Sea urchin (Psammechinus miliaris)</td>
<td>Salt</td>
<td>7-9 days post fertilization</td>
<td>NOAE_{L} = 0.0320 mg AI/L; LOAE_{L} = 0.064 mg AI/L; Exp. B</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal</td>
<td>[Anselmo, 2011, 127414998@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Sea urchin (Psammechinus miliaris)</td>
<td>Salt</td>
<td>7-9 days post fertilization</td>
<td>EC_{50} = 0.040407 mg AI/L; Exp. B</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal</td>
<td>[Anselmo, 2011, 127414998@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Sea urchin (Psammechinus miliaris)</td>
<td>Salt</td>
<td>14-16 days post fertilization</td>
<td>NOAE_{L} = 0.0325 mg AI/L; LOAE_{L} = 0.064 mg AI/L; Exp. A</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal</td>
<td>[Anselmo, 2011, 127414998@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Sea urchin (Psammechinus miliaris)</td>
<td>Salt</td>
<td>14-16 days post fertilization</td>
<td>EC_{50} = 0.056 mg AI/L; Exp. A</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal</td>
<td>[Anselmo, 2011, 127414998@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Sea urchin (Psammechinus miliaris)</td>
<td>Salt</td>
<td>14-16 days post fertilization</td>
<td>NOAE_{L} = 0.0325 mg AI/L; LOAE_{L} = 0.064 mg AI/L; Exp. A</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal</td>
<td>[Anselmo, 2011, 127414998@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Sea urchin (Psammechinus miliaris)</td>
<td>Salt</td>
<td>14-16 days post fertilization</td>
<td>EC_{50} = 0.035mg AI/L; Exp. B</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal</td>
<td>[Anselmo, 2011, 127414998@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Sea urchin (Psammechinus miliaris)</td>
<td>Salt</td>
<td>16 days post fertilization</td>
<td>NOAE_{L} = 0.032 mg AI/L; LOAE_{L} = 0.064 mg AI/L; Exp. A</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Development</td>
<td>[Anselmo, 2011, 127414998@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>16 days post fertilization</td>
<td>NOAE_{L} = 0.0058 mg AI/L; LOAE_{L} = 0.016 mg AI/L; Exp. B</td>
<td>0, 0.006, 0.016, 0.032, 0.064 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Development</td>
<td>[Anselmo, 2011, 127414998@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>96-hour</td>
<td>NOEC = 0.8 mg AI/L; LOEC = >0.8 mg/L</td>
<td>0, 0.08, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Mortality</td>
<td>[Shi, 2017, 35460576@auth-or-year]</td>
<td>High</td>
<td>3546057</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>96-hour</td>
<td>Kinetic BCF = 87,300</td>
<td>0, 0.002 mg/L</td>
<td>Renewal, Nominal</td>
<td>Residue: bioconcentration</td>
<td>[Shi, 2017, 35460576@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>96-hour</td>
<td>Steady-State BCF = 63,400</td>
<td>0, 0.002 mg/L</td>
<td>Renewal, Nominal</td>
<td>Residue; bioconcentration</td>
<td>[Shi, 2017, 3546057@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>96-hour</td>
<td>Lipid-Normalized Kinetic BCF = 78,400</td>
<td>0, 0.002 mg/L</td>
<td>Renewal, Nominal</td>
<td>Residue; bioconcentration</td>
<td>[Shi, 2017, 3546057@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>3-day</td>
<td>NOAEL = 0.8 mg AI/L</td>
<td>0, 0, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Glutathione S-transferase mRNA; p53 mRNA</td>
<td>[Shi, 2017, 3546057@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>7-day</td>
<td>NOAEL = 0.8 mg AI/L</td>
<td>0, 0, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Glutathione S-transferase mRNA; Catalase; p53 mRNA; Superoxide dismutase mRNA</td>
<td>[Shi, 2017, 3546057@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>14-day</td>
<td>NOAEL = 0.3 mg AI/L; LOAEL = 0.8 mg AI/L</td>
<td>0, 0, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Glutathione S-transferase mRNA; 8-oxoguanine DNA glycosylase mRNA; p53 mRNA</td>
<td>[Shi, 2017, 3546057@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>3-day</td>
<td>NOAEL = 0.3 mg AI/L; LOAEL = 0.8 mg AI/L</td>
<td>0, 0, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Catalase; 8-oxoguanine DNA glycosylase mRNA; Superoxide dismutase mRNA</td>
<td>[Shi, 2017, 3546057@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>14-day</td>
<td>LOAEL = 0.3 mg AI/L</td>
<td>0, 0, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Catalase; Caspase-3 mRNA</td>
<td>[Shi, 2017, 3546057@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>7-day</td>
<td>NOAEL = 0.3 mg AI/L; LOAEL = 0.8 mg AI/L</td>
<td>0, 0, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>8-oxoguanine DNA glycosylase mRNA</td>
<td>[Shi, 2017, 3546057@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>3-day</td>
<td>LOAEL = 0.3 mg AI/L</td>
<td>0, 0, 0, 3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Caspase-3 mRNA {Shi, 2017, 3546057@@auth or-year}</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>7-day</td>
<td>LOAEL = 0.3 mg AI/L</td>
<td>0, 0, 0, 3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Caspase-3 mRNA {Shi, 2017, 3546057@@auth or-year}</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>10-day</td>
<td>NOAE = 0.8 mg AI/L; F0 generation</td>
<td>0, 0, 0.008, 0.03, 0.08, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Reproductive: Fecundity; Progeny counts/numbers; Sex ratio {Shi, 2017, 3546057@@auth or-year}</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>10-day</td>
<td>NOAE = 0.8 mg AI/L; F1 generation</td>
<td>0, 0, 0.008, 0.03, 0.08, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Reproductive: Fecundity; Progeny counts/numbers; Sex ratio {Shi, 2017, 3546057@@auth or-year}</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>20-day</td>
<td>NOEC = 0.08 mg AI/L; LOEC = 0.3 mg AI/L; F0 generation; maturation period</td>
<td>0, 0, 0, 0.008, 0.03, 0.08, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth, Developmental stage {Shi, 2017, 3546057@@auth or-year}</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>20-day</td>
<td>NOEC = 0.008 mg AI/L; LOEC = 0.03 mg AI/L; F1 generation; maturation period</td>
<td>0, 0, 0, 0.008, 0.03, 0.08, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth, Developmental stage {Shi, 2017, 3546057@@auth or-year}</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>20-day</td>
<td>NOEC = 0.008 mg AI/L; LOEC = 0.03 mg AI/L; F0 generation; nauplii phase</td>
<td>0, 0, 0, 0.008, 0.03, 0.08, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth, Developmental stage {Shi, 2017, 3546057@@auth or-year}</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>20-day</td>
<td>LOEC = 0.008 mg AI/L; F1 generation; nauplii phase</td>
<td>0, 0, 0, 0.008, 0.03, 0.08, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth, Developmental stage {Shi, 2017, 3546057@@auth or-year}</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Harpacticoid Copepod (Tigriopus japonicus)</td>
<td>Salt</td>
<td>40-day</td>
<td>NOEC = 0.8 mg AI/L</td>
<td>0, 0, 0.008, 0.03, 0.08, 0.3, 0.8 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Mortality {Shi, 2017, 3546057@@auth or-year}</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>--</td>
<td>--------------------------------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Balic Macoma Or Clam (Macoma balthica)</td>
<td>Salt</td>
<td>50-day</td>
<td>LOAE = 0.1 mg/L</td>
<td>0.01, 0.25 mg/L</td>
<td>Multiple routes, Nominal</td>
<td>Nuclear abnormality: micronuclei; frequency of dead cells; Mean number of nucleoli; binucleated cells, formation of nucleoplasmic bridges, nuclear buds, occurrence of pleomorphic and hypertrophic cells</td>
<td>[Smolarz, 2009, 1927697@@auth or-year]</td>
<td>High</td>
<td>1927697</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Amphipod (Hyalella azteca)</td>
<td>Fresh</td>
<td>28-day</td>
<td>NOEC > 1000 mg/kg dwt sediment</td>
<td>31.63, 125, 250, 500 and 1,000 mg/kg dwt sediment (Nominal concentrations)</td>
<td>Flow-through, Measured, Solvent: DMF range-finding study conducted in the presence of 2% TOC. Further study details were not provided.</td>
<td>reduced survivalability</td>
<td>[Thomas, 2003, 4269889@@auth or-year]</td>
<td>High</td>
<td>4269889</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Amphipod (Hyalella azteca)</td>
<td>Fresh</td>
<td>28-day</td>
<td>LOEC = 1000 mg/kg dwt sediment</td>
<td>31.63, 125, 250, 500 and 1,000 mg/kg dwt sediment (Nominal concentrations)</td>
<td>Flow-through, Measured, Solvent: DMF range-finding study conducted in the presence of 2% TOC. Further study details were not provided.</td>
<td>reduced survivalability</td>
<td>[Thomas, 2003, 4269889@@auth or-year]</td>
<td>High</td>
<td>4269889</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Amphipod (Hyalella azteca)</td>
<td>Fresh</td>
<td>28-day</td>
<td>NOEC = 1000 mg/kg dwt sediment</td>
<td>31.63, 125, 250, 500 and 1,000 mg/kg dwt sediment (Nominal concentrations)</td>
<td>Flow-through, Measured, Solvent: DMF range-finding study conducted in the presence of 5% TOC. Further study details were not provided.</td>
<td>reduced survivalability</td>
<td>[Thomas, 2003, 4269912@@auth or-year]</td>
<td>High</td>
<td>4269912</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Amphipod (Hyalella azteca)</td>
<td>Fresh</td>
<td>28-day</td>
<td>NOEC = 1000 mg/kg dwt sediment</td>
<td>31.63, 125, 250, 500 and 1,000 mg/kg dwt sediment (Nominal concentrations)</td>
<td>Flow-through, Measured, Solvent: DMF range-finding study conducted in the presence of 5% TOC. Further study details were not provided.</td>
<td>reduced survivalability</td>
<td>[Thomas, 2003, 4269912@@auth or-year]</td>
<td>High</td>
<td>4269912</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Worm (Lumbricus variegatus)</td>
<td>Fresh</td>
<td>28-day</td>
<td>NOEC = 3.1 mg/kg dry weight sediment</td>
<td>0.05, 0.5, 5, 50, and 500 mg/kg dry weight sediment. measured concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight.</td>
<td>28-day static test using dechlorinated tap water measured concentrations-0, nd3, 0.25, 3.25, 29.25 and 311.35 mg/kg sediment dw; 40 worms per treatment; artificial sediment: 1.8% organic carbon, grain size 100–2000 μm;</td>
<td>Total number of worms</td>
<td>{Oetken, 2001, 3809143@@author-year}</td>
<td>High</td>
<td>3809143</td>
<td></td>
</tr>
<tr>
<td>Worm (Lumbricus variegatus)</td>
<td>Fresh</td>
<td>28-day</td>
<td>LOEC = 28.7 mg/kg dry weight sediment</td>
<td>0.05, 0.5, 5, 50, and 500 mg/kg dry weight sediment. measured concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight.</td>
<td>28-day static test using dechlorinated tap water measured concentrations-0, nd3, 0.25, 3.25, 29.25 and 311.35 mg/kg sediment dw; 40 worms per treatment; artificial sediment: 1.8% organic carbon, grain size 100–2000 μm;</td>
<td>Total number of worms</td>
<td>{Oetken, 2001, 3809143@@author-year}</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worm (Lumbricus variegatus)</td>
<td>Fresh</td>
<td>28-day</td>
<td>NOEC = 28.7 mg/kg dry weight sediment</td>
<td>0.05, 0.5, 5, 50, and 500 mg/kg dry weight sediment. measured concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight.</td>
<td>28-day static test using dechlorinated tap water measured concentrations-0, nd3, 0.25, 3.25, 29.25 and 311.35 mg/kg sediment dw; 40 worms per treatment; artificial sediment: 1.8% organic carbon, grain size 100–2000 μm;</td>
<td>Large vs small worms</td>
<td>{Oetken, 2001, 3809143@@author-year}</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worm (Lumbricus variegatus)</td>
<td>Fresh</td>
<td>28-day</td>
<td>NOEC = 3.1 mg/kg dry weight sediment</td>
<td>0.05, 0.5, 5, 50, and 500 mg/kg dry weight sediment. measured concentrations were ND, 0.2, 3.1, 28.7, and 303.2 mg/kg dry weight.</td>
<td>28-day static test using dechlorinated tap water measured concentrations-0, nd3, 0.25, 3.25, 29.25 and 311.35 mg/kg sediment dw; 40 worms per treatment; artificial sediment: 1.8% organic carbon, grain size 100–2000 μm;</td>
<td>Large vs small worms</td>
<td>{Oetken, 2001, 3809143@@author-year}</td>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aquatic Vertebrates
<table>
<thead>
<tr>
<th>CAS RN</th>
<th>Test Species</th>
<th>Water Type</th>
<th>Duration</th>
<th>Endpoint</th>
<th>Conc(s)</th>
<th>Test Analysis</th>
<th>Effect(s)</th>
<th>References</th>
<th>Data Quality Ratings</th>
<th>HERO ID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1837-91-8</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>2-hour</td>
<td>NOAEL = 27.877 mg AI/L</td>
<td>0, 27.877 mg/L</td>
<td>In vitro, Nominal</td>
<td>Insulin-like growth factor 1 mRNA; Signal Transducer and Activator of Transcription protein 5</td>
<td>{Reindl, 2011, 3586425@@auth - year}</td>
<td>High</td>
<td>3586425</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Bluegill (Lepomis macrochirus)</td>
<td>Fresh</td>
<td>24-hour</td>
<td>LC₅₀ = >100 mg AI/L</td>
<td>0, 0, 10.0, 18.0, 32.0, 56.0, 100.0 mg/L</td>
<td>Static, Nominal, Solvent: Acetone</td>
<td>Mortality</td>
<td>{Great Lakes Chem Corp, 1994, 1928289@@auth - year}</td>
<td>High</td>
<td>1928289</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Bluegill (Lepomis macrochirus)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>LC₅₀ = >100 mg AI/L</td>
<td>0, 0, 10.0, 18.0, 32.0, 56.0, 100.0 mg/L</td>
<td>Static, Nominal, Solvent: Acetone</td>
<td>Mortality</td>
<td>{Great Lakes Chem Corp, 1994, 1928289@@auth - year}</td>
<td>High</td>
<td>1928289</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Bluegill (Lepomis macrochirus)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>LC₅₀ = >100 mg AI/L</td>
<td>0, 0, 10.0, 18.0, 32.0, 56.0, 100.0 mg/L</td>
<td>Static, Nominal, Solvent: Acetone</td>
<td>Mortality</td>
<td>{Great Lakes Chem Corp, 1994, 1928289@@auth - year}</td>
<td>High</td>
<td>1928289</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Bluegill (Lepomis macrochirus)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>NOEC = >100 mg AI/L</td>
<td>0, 0, 10.0, 18.0, 32.0, 56.0, 100.0 mg/L</td>
<td>Static, Nominal, Solvent: Acetone</td>
<td>Mortality</td>
<td>{Great Lakes Chem Corp, 1994, 1928289@@auth - year}</td>
<td>High</td>
<td>1928289</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Bluegill (Lepomis macrochirus)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>NR-ZERO = >100 mg AI/L</td>
<td>0, 0, 10.0, 18.0, 32.0, 56.0, 100.0 mg/L</td>
<td>Static, Nominal, Solvent: Acetone</td>
<td>Abnormal behavior</td>
<td>{Great Lakes Chem Corp, 1994, 1928289@@auth - year}</td>
<td>High</td>
<td>1928289</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>72-hour</td>
<td>NOAEL = 32 mg AI/L</td>
<td>0, 32 mg/L</td>
<td>Static, Nominal</td>
<td>Thyroxine</td>
<td>{Thienpont, 2011, 1062065@@auth - year}</td>
<td>Low</td>
<td>1062065</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Bluegill (Lepomis macrochirus)</td>
<td>Fresh</td>
<td>24-hour</td>
<td>LC₅₀ = >100 mg AI/L</td>
<td>0, 0, 10.0, 18.0, 32.0, 56.0, 100.0 mg/L</td>
<td>Static, Nominal</td>
<td>Mortality</td>
<td>{Great Lakes Chem Corp, 1994, 1928289@@auth - year}</td>
<td>Unacceptable</td>
<td>1928289</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Bluegill (Lepomis macrochirus)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>LC_{50} = >100 mg AI/L</td>
<td>0, 0, 10.0, 18.0, 32.0, 56.0, 100.0 mg/L</td>
<td>Static, Nominal</td>
<td>Mortality</td>
<td>{Great Lakes Chem Corp, 1994, 1928289@@auth or-year}</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Bluegill (Lepomis macrochirus)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>LC_{50} = >100 mg AI/L</td>
<td>0, 0, 10.0, 18.0, 32.0, 56.0, 100.0 mg/L</td>
<td>Static, Nominal</td>
<td>Mortality</td>
<td>{Great Lakes Chem Corp, 1994, 1928289@@auth or-year}</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Bluegill (Lepomis macrochirus)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>NOEC = 100 mg AI/L</td>
<td>0, 0, 10.0, 18.0, 32.0, 56.0, 100.0 mg/L</td>
<td>Static, Nominal</td>
<td>Abnormal behavior</td>
<td>{Great Lakes Chem Corp, 1994, 1928289@@auth or-year}</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Bluegill (Lepomis macrochirus)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>NR-ZERO = 100 mg AI/L</td>
<td>0, 0, 10.0, 18.0, 32.0, 56.0, 100.0 mg/L</td>
<td>Static, Nominal</td>
<td>Mortality</td>
<td>{Great Lakes Chem Corp, 1994, 1928289@@auth or-year}</td>
<td>Unacceptable</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>24-hour</td>
<td>LC_{50} = >0.0025 mg AI/L</td>
<td>0, 0, 0.00075, 0.0015, 0.0023, 0.0023, 0.0025 mg/L</td>
<td>Flow-through, Measured. Solvent: DMF</td>
<td>Mortality</td>
<td>{Wildlife Intl LTD, 1997, 1928298@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>48-hour</td>
<td>LC_{50} = >0.0025 mg AI/L</td>
<td>0, 0, 0.00075, 0.0015, 0.0023, 0.0023, 0.0025 mg/L</td>
<td>Flow-through, Measured. Solvent: DMF</td>
<td>Mortality</td>
<td>{Wildlife Intl LTD, 1997, 1928298@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>72-hour</td>
<td>LC_{50} = >0.0025 mg AI/L</td>
<td>0, 0, 0.00075, 0.0015, 0.0023, 0.0023, 0.0025 mg/L</td>
<td>Flow-through, Measured. Solvent: DMF</td>
<td>Mortality</td>
<td>{Wildlife Intl LTD, 1997, 1928298@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>LC_{50} = >0.0025 mg AI/L</td>
<td>0, 0, 0.00075, 0.0015, 0.0023, 0.0023, 0.0025 mg/L</td>
<td>Flow-through, Measured. Solvent: DMF</td>
<td>Mortality</td>
<td>{Wildlife Intl LTD, 1997, 1928298@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>NOEC = 0.0025 mg AI/L</td>
<td>0, 0, 0.00075, 0.0015, 0.0023, 0.0023, 0.0025 mg/L</td>
<td>Flow-through, Measured</td>
<td>Mortality</td>
<td>{Wildlife Intl LTD, 1997, 1928298@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>NR-ZERO = >0.0025 mg AI/L</td>
<td>0, 0, 0.00075, 0.0015, 0.0023, 0.0023, 0.0025 mg/L</td>
<td>Flow-through, Measured, Solvent: DMF</td>
<td>Mortality</td>
<td>[Wildlife Intl LTD, 1997, 1928298@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Not reported</td>
<td>47-hour</td>
<td>NOAEL = 0.128 mg AI/L</td>
<td>0, 0.001, 0.013, 0.128 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Hatching rate</td>
<td>{Wu, 2013, 1927533@@auth or-year}</td>
<td>High</td>
<td>1927533</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Not reported</td>
<td>47-hour</td>
<td>NOAEL = 0.013 mg AI/L; LOAEL = 0.128 mg AI/L</td>
<td>0, 0.001, 0.013, 0.128 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Heart rate</td>
<td>{Wu, 2013, 1927533@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Not reported</td>
<td>59-hour</td>
<td>LOAEL = 0.001 mg AI/L</td>
<td>0, 0.001, 0.013, 0.128 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Heart rate</td>
<td>{Wu, 2013, 1927533@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Not reported</td>
<td>71-hour</td>
<td>LOAEL = 0.001 mg AI/L</td>
<td>0, 0.001, 0.013, 0.128 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Heart rate; T-box 5a mRNA; Homeobox protein Nkx-2.5 mRNA</td>
<td>{Wu, 2013, 1927533@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Not reported</td>
<td>71-hour</td>
<td>NOAEL = 0.001 mg AI/L; LOAEL = 0.013 mg AI/L</td>
<td>0, 0.001, 0.013, 0.128 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Cardiac arrhythmia</td>
<td>{Wu, 2013, 1927533@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Not reported</td>
<td>71-hour</td>
<td>NOAEL = 0.128 mg AI/L; LOAEL = 0.128 mg/L</td>
<td>0, 0.001, 0.013, 0.128 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>ATPase, Ca++ transporting, cardiac muscle, slow twitch 2a mRNA; Troponin T type 2a (cardiac) mRNA; myH6 expression; End-diastolic Volume; Stroke volume; Caspase 3; Actin, alpha, cardiac muscle 1a mRNA; Myosin, heavy chain 6, cardiac muscle, alpha mRNA; Cardiac output; End-systolic Volume; Mortality; Abnormal; whole malformation rate</td>
<td>{Wu, 2013, 1927533@@auth-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Not reported</td>
<td>71-hour</td>
<td>NOAEL = 0.013 mg AI/L; LOAEL = 0.128 mg AI/L</td>
<td>0, 0.001, 0.013, 0.128 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>ATPase, Ca++ transporting, cardiac muscle, slow twitch 2b mRNA; Ryanodine receptor 2a (cardiac) mRNA</td>
<td>{Wu, 2013, 1927533@@auth-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>44-hour</td>
<td>NOEC = 0.01 mg AI/L; LOEC = 0.1 mg AI/L</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Heart rate</td>
<td>{Du, 2012, 1927610@@auth-year}</td>
<td>High 1927610</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>68-hour</td>
<td>LOEC = 0.01 mg AI/L</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Hatching success</td>
<td>{Du, 2012, 1927610@@auth-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>92-hour</td>
<td>NOEC = 0.1 mg AI/L; LOEC = 1 mg AI/L</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Heart rate</td>
<td>{Du, 2012, 1927610@@auth-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------------------------------</td>
<td>------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>92-hour</td>
<td>NOEC = 0.01 mg A/I; LOEC = 0.1 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Length</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>92-hour</td>
<td>LOEC = 0.01 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Mortality</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>116-hour</td>
<td>LOEC = 0.01 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal Malformation rate</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>116-hour</td>
<td>NOEC = 0.01 mg A/I; LOEC = 0.1 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Reactive oxygen species; Caspase 3; Caspase 9</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>44-hour</td>
<td>NOEC = 0.01 mg A/I; LOEC = 0.1 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Heart rate</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>68-hour</td>
<td>NOEC = 0.01 mg A/I; LOEC = 0.1 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Hatching success</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>92-hour</td>
<td>NOEC = 0.01 mg A/I; LOEC = 0.1 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Length; Heart rate; Mortality</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>116-hour</td>
<td>LOEC = 0.01 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal Malformation rate</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>116-hour</td>
<td>NOEC = 0.01 mg A/I; LOEC = 0.1 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Reactive oxygen species</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>116-hour</td>
<td>NOEC = 0.1 mg A/I; LOEC = 1 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Caspase 3; Caspase 9</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>44-hour</td>
<td>NOEC = 0.1 mg A/I; LOEC = 1 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Heart rate</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>68-hour</td>
<td>NOEC = 0.01 mg A/I; LOEC = 0.1 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Hatching success</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>92-hour</td>
<td>NOEC = 0.01 mg A/I; LOEC = 0.1 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Heart rate</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>92-hour</td>
<td>NOEC = 0.1 mg A/I; LOEC = 1 mg A/I</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Length; Mortality</td>
<td>{Du, 2012, 1927610@auth.or-year}</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>

Test Analysis

- **Data Quality Ratings**

- **References**

- **Hero ID**
<table>
<thead>
<tr>
<th>CAS RN</th>
<th>Test Species</th>
<th>Water Type</th>
<th>Duration</th>
<th>Endpoint</th>
<th>Conc(s)</th>
<th>Test Analysis</th>
<th>Effect(s)</th>
<th>References</th>
<th>Data Quality Ratings</th>
<th>HERO ID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>116-hour</td>
<td>NOEC = 0.01 mg AI/L; LOEC = 0.1 mg AI/L</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal, Malformation rate</td>
<td>{Du, 2012, 1927610@auth-or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>116-hour</td>
<td>NOEC = 0.1 mg AI/L; LOEC = 1 mg AI/L</td>
<td>0, 0.01, 0.1, 1.0 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Reactive oxygen species; Caspase 3; Caspase 9</td>
<td>{Du, 2012, 1927610@auth-or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>92-hour</td>
<td>LOAEL = 0.05 mg AI/L</td>
<td>0, 0.05, 0.1, 0.5, 1.0 mg/L</td>
<td>Aquatic-not reported, Nominal, Solvent: DMSO</td>
<td>Heart rate; bax mRNA; Mortality</td>
<td>{Deng, 2009, 1927716@auth-or-year}</td>
<td>High</td>
<td>1927716</td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>92-hour</td>
<td>NOAEL = 0.05 mg AI/L; LOAEL = 0.1 mg AI/L</td>
<td>0, 0.05, 0.1, 0.5, 1.0 mg/L</td>
<td>Aquatic-not reported, Nominal, Solvent: DMSO</td>
<td>Growth: Length; Reactive oxygen species; Caspase-3 mRNA expression profile; Caspase-9 mRNA expression profile; Growth: Abnormal malformation rate</td>
<td>{Deng, 2009, 1927716@auth-or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>3194-55-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>92-hour</td>
<td>NOAEL = 0.5 mg AI/L; LOAEL = 1 mg AI/L</td>
<td>0, 0.05, 0.1, 0.5, 1.0 mg/L</td>
<td>Aquatic-not reported, Nominal, Solvent: DMSO</td>
<td>p53 mRNA; E3 ubiquitin-protein ligase; Bcl-2-binding component 3 mRNA; Bcl-2 mRNA; Apoptotic protease-activating factor 1 mRNA; Caspase-3 mRNA induction; Caspase-9 mRNA induction</td>
<td>{Deng, 2009, 1927716@auth-or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>LOAEL = 0.002 mg AI/L</td>
<td>0, 0.002, 0.01, 0.1, 0.5, 2.5, 10 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Hatch delay</td>
<td>{Hu, 2009, 1927732@auth-or-year}</td>
<td>High</td>
<td>1927732</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>NOAEL = 10 mg AI/L</td>
<td>0, 0.002, 0.01, 0.1, 0.5, 2.5, 10 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Mortality</td>
<td>{Hu, 2009, 1927732@auth-or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>NOAEL = 0.1 mg AI/L; LOAEL = 0.5 mg AI/L</td>
<td>0, 0.002, 0.01, 0.1, 0.5, 2.5, 10 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Malondialdehyde</td>
<td>{Hu, 2009, 1927732@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>96-hour</td>
<td>NOAEL = 0.002 mg AI/L; LOAEL = 0.01 mg AI/L</td>
<td>0, 0.002, 0.01, 0.1, 0.5, 2.5, 10 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Heat shock protein 70</td>
<td>{Hu, 2009, 1927732@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>5-day</td>
<td>NR-ZERO = 0.000017-0.0003 mg AI/L</td>
<td>0, 0, 0.000017-0.0003 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Mortality</td>
<td>{Lower, 2008, 3618094@@auth or-year}</td>
<td>High</td>
<td>3618094</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>5-day</td>
<td>NOAEL = 0.00005 mg AI/L; Exp. 1</td>
<td>0, 0.000005, 0.00005 mg/L</td>
<td>Flow-through, Nominal, Solvent: Methanol</td>
<td>Growth: Length; Growth: Weight; Gonadosomatic index</td>
<td>{Lower, 2008, 3618094@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>5-day</td>
<td>NOAEL = 0.00005 mg AI/L; Exp. 2</td>
<td>0, 0, 0.000005, 0.00005 mg/L</td>
<td>Flow-through, Nominal, Solvent: Methanol</td>
<td>Growth: Length; Growth: Weight; Gonadosomatic index</td>
<td>{Lower, 2008, 3618094@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>5-day</td>
<td>NOAEL = 0.000017-0.0003 mg AI/L</td>
<td>0, 0, 0.000017-0.0003 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Condition index: 5-day freshwater dosing period, 3-day transfer to salt water; Sodium potassium ATPase; 5-day freshwater dosing period, 3-day transfer to salt water; Thyroxine; 5-day freshwater dosing period, 3-day transfer to salt water; Triiodothyronine; 5-day freshwater dosing period, 3-day transfer to salt water</td>
<td>{Lower, 2008, 3618094@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>5-day</td>
<td>NOAEL = 0.00005 mg AI/L</td>
<td>0, 0.000005, 0.00005 mg/L</td>
<td>Flow-through, Nominal, Solvent: Methanol</td>
<td>Trans-epithelial voltage gradient; Accessory reproductive fluid; Testosterone</td>
<td>{Lower, 2008, 3618094}@auth-or-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>5-day</td>
<td>LOAEL = 0.00005 mg AI/L</td>
<td>0, 0.000005, 0.00005 mg/L</td>
<td>Flow-through, Nominal, Solvent: Methanol</td>
<td>11-Ketotestosterone; 17,20beta-Dihydroxy-4-pregnen-3-one</td>
<td>{Lower, 2008, 3618094}@auth-or-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>30-day</td>
<td>NOEC = 0.000011</td>
<td>0, 0.000011 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Mortality, Growth: length; Condition Factor</td>
<td>{Lower, 2008, 3618094}@auth-or-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>30-day</td>
<td>LOEC = 0.000011</td>
<td>0, 0.000011 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Gill Na+/K+ ATPase activity; Plasma T4 enzyme activity</td>
<td>{Lower, 2008, 3618094}@auth-or-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Chinese Rare Minnow (Gobiocypris rarurus)</td>
<td>Fresh</td>
<td>14-day</td>
<td>NOAEL = 0.5 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1, 0.5 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Pentyresorufin O-deethylase; Reactive oxygen species; 7-Ethoxyresorufin O-deethylase; Thiobarbituric acid reactive substances; Protein carbonyls; DNA damage; Superoxide dismutase (SOD) enzyme activity; Glutathione disulfide (oxidized glutathione)</td>
<td>{Zhang, 2008, 1927768}@auth-or-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Chinese Rare Minnow (Gobiocypris rarurus)</td>
<td>Fresh</td>
<td>28-day</td>
<td>NOAEL = 0.1 mg AI/L; LOAEL = 0.5 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1, 0.5 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Pentyresorufin O-deethylase; 7-Ethoxyresorufin O-deethylase; Superoxide dismutase (SOD) enzyme activity</td>
<td>{Zhang, 2008, 1927768}@auth-or-year</td>
<td>High</td>
<td>1927768</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Chinese Rare Minnow (Gobiocypris rarus)</td>
<td>Fresh</td>
<td>42-day</td>
<td>NOAEL = 0.01 mg AI/L; LOAEL = 0.1 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1, 0.5 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Pentylresorufin O-deethylase; 7-Ethoxyresorufin O-deethylase; Thiobarbituric acid reactive substances</td>
<td>[Zhang, 2008, 1927768@@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Chinese Rare Minnow (Gobiocypris rarus)</td>
<td>Fresh</td>
<td>28-day</td>
<td>NOAEL = 0.01 mg AI/L; LOAEL = 0.1 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1, 0.5 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Reactive oxygen species; Protein carbonyls; DNA damage; Glutathione disulfide (oxidized glutathione)</td>
<td>[Zhang, 2008, 1927768@@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Chinese Rare Minnow (Gobiocypris rarus)</td>
<td>Fresh</td>
<td>42-day</td>
<td>NOAEL = 0.001 mg AI/L; LOAEL = 0.01 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1, 0.5 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Reactive oxygen species; Protein carbonyls; DNA damage; Superoxide dismutase (SOD) enzyme activity</td>
<td>[Zhang, 2008, 1927768@@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Chinese Rare Minnow (Gobiocypris rarus)</td>
<td>Fresh</td>
<td>28-day</td>
<td>NOAEL = 0.5 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1, 0.5 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Thiobarbituric acid reactive substances</td>
<td>[Zhang, 2008, 1927768@@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Chinese Rare Minnow (Gobiocypris rarus)</td>
<td>Fresh</td>
<td>42-day</td>
<td>LOAEL = 0.001 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1, 0.5 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Glutathione disulfide (oxidized glutathione)</td>
<td>[Zhang, 2008, 1927768@@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Chinese Rare Minnow (Gobiocypris rarus)</td>
<td>Fresh</td>
<td>42-day</td>
<td>34 mg/kg</td>
<td>0.001mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Residue; whole body HBCD concentration, wet weight</td>
<td>[Zhang, 2008, 1927768@@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Chinese Rare Minnow (Gobiocypris rarus)</td>
<td>Fresh</td>
<td>42-day</td>
<td>654 mg/kg</td>
<td>0.5 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Residue; whole body HBCD concentration, wet weight</td>
<td>[Zhang, 2008, 1927768@@auth-or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>7-day</td>
<td>NOAEL = 0.000011 mg AI/L</td>
<td>0, 0.000011 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Triiodothyronine; Thyroxine; Sodium potassium ATPase</td>
<td>{Lower, 2007, 1927956@@auth or-year}</td>
<td>High</td>
<td>1927956</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>14-day</td>
<td>NOAEL = 0.000011 mg AI/L</td>
<td>0, 0.000011 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Triiodothyronine; Thyroxine; Sodium potassium ATPase</td>
<td>{Lower, 2007, 1927956@@auth or-year}</td>
<td>High</td>
<td>1927956</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOAEL = 0.000011 mg AI/L</td>
<td>0, 0.000011 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Triiodothyronine; Thyroxine; Sodium potassium ATPase</td>
<td>{Lower, 2007, 1927956@@auth or-year}</td>
<td>High</td>
<td>1927956</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>28-day</td>
<td>NOAEL = 0.000011 mg AI/L</td>
<td>0, 0.000011 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Triiodothyronine; Sodium potassium ATPase</td>
<td>{Lower, 2007, 1927956@@auth or-year}</td>
<td>High</td>
<td>1927956</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>28-day</td>
<td>LOAEL = 0.000011 mg AI/L</td>
<td>0, 0.000011 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Thyroxine;</td>
<td>{Lower, 2007, 1927956@@auth or-year}</td>
<td>High</td>
<td>1927956</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>7-day</td>
<td>LOAEL = 0.000011 mg AI/L</td>
<td>0, 0.000011 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Smell/Sniff</td>
<td>{Lower, 2007, 1927956@@auth or-year}</td>
<td>High</td>
<td>1927956</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>17-day</td>
<td>LOAEL = 0.000011 mg AI/L</td>
<td>0, 0.000011 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Smell/Sniff</td>
<td>{Lower, 2007, 1927956@@auth or-year}</td>
<td>High</td>
<td>1927956</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>29-day</td>
<td>LOAEL = 0.000011 mg AI/L</td>
<td>0, 0.000011 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Smell/Sniff</td>
<td>{Lower, 2007, 1927956@@auth or-year}</td>
<td>High</td>
<td>1927956</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Atlantic salmon (Salmo salar)</td>
<td>Fresh</td>
<td>30-day</td>
<td>NOAEL = 0.000011 mg AI/L</td>
<td>0, 0.000011 mg/L</td>
<td>Flow-through, Measured, Solvent: Methanol</td>
<td>Mortality; Growth: Length; Growth: Weight; Condition index.</td>
<td>{Lower, 2007, 1927956@@auth or-year}</td>
<td>High</td>
<td>1927956</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>5-day</td>
<td>LOAEL = <500 mg AI/kg bdwt</td>
<td>0, < 500 mg/kg bdwt</td>
<td>Intraperitoneal, Nominal</td>
<td>Cytochrome P450</td>
<td>{Ronisz, 2004, 1927821@@auth or-year}</td>
<td>High</td>
<td>1927821</td>
</tr>
</tbody>
</table>

PEER REVIEW DRAFT- DO NOT CITE OR QUOTE
<table>
<thead>
<tr>
<th>CAS RN</th>
<th>Test Species</th>
<th>Water Type</th>
<th>Duration</th>
<th>End-point</th>
<th>Conc(s)</th>
<th>Test Analysis</th>
<th>Effect(s)</th>
<th>References</th>
<th>Data Quality Ratings</th>
<th>HERO ID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>5-day</td>
<td>NOAEL = <500 mg AI/kg bdwt</td>
<td>0 50, < 500 mg/kg bdwt</td>
<td>Intraperitoneal, Nominal</td>
<td>DNA Adducts; 7-Ethoxyresorufin O-deethylase; Glutathione S-transferase</td>
<td>{Ronisz, 2004, 1927821@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>5-day</td>
<td>NOAEL = <500 mg AI/kg bdwt; Exp. 1</td>
<td>0, 50, < 500 mg/kg bdwt</td>
<td>Intraperitoneal, Nominal</td>
<td>Liver somatic index; Glutathione reductase</td>
<td>{Ronisz, 2004, 1927821@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>5-day</td>
<td>NOAEL = <500 mg AI/kg bdwt; Exp. 2</td>
<td>0, < 500 mg/kg bdwt</td>
<td>Intraperitoneal, Nominal</td>
<td>Liver somatic index; Glutathione reductase; Catalase</td>
<td>{Ronisz, 2004, 1927821@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>28-day</td>
<td>NOAEL = 50 mg AI/kg bdwt; LOAEL = <500 mg AI/kg bdwt</td>
<td>0, 50, < 500 mg/kg bdwt</td>
<td>Intraperitoneal, Nominal</td>
<td>Glutathione reductase; Catalase; Glutathione S-transferase</td>
<td>{Ronisz, 2004, 1927821@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>28-day</td>
<td>NOAEL = <500 mg AI/kg bdwt</td>
<td>0, 50, < 500 mg/kg bdwt</td>
<td>Intraperitoneal, Nominal</td>
<td>Glutathione reductase; Catalase; Glutathione S-transferase</td>
<td>{Ronisz, 2004, 1927821@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>5-day</td>
<td>LOAEL = 50 mg/kg bdwt; Exp. 1</td>
<td>0, 50, < 500 mg/kg bdwt</td>
<td>Intraperitoneal, Nominal</td>
<td>Catalase</td>
<td>{Ronisz, 2004, 1927821@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>5 days post fertilization</td>
<td>LOAEL = 0.005 mg AI/L</td>
<td>0, 0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Heart rate</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td>2343684</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8 days post fertilization</td>
<td>LOAEL = 0.005 mg AI/L</td>
<td>0, 0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Heart rate; Uncharacterized arginine/ serine-rich coiled-coil 1 mRNA</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>5 days post fertilization</td>
<td>NOAEL = 0.02 mg AI/L; LOAEL = 0.05 mg AI/L</td>
<td>0, 0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth; Abnormal; SV-BA distance</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka</td>
<td>Salt</td>
<td>8 days post fertilization</td>
<td>NOAEL = 0.005 mg AI/L; LOAEL = 0.02 mg AI/L</td>
<td>0, 0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal; SV-BA distance; Coiled coil domain containing 106 protein mRNA; Uncharacterized transmembrane and coiled-coil domain family 3 mRNA</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka</td>
<td>Salt</td>
<td>5 days post fertilization</td>
<td>NOAEL = 0.05 mg AI/L; LOAEL = 0.2 mg AI/L</td>
<td>0, 0.02, 0.05, 0.2 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Caspase 3; Interleukin-1 beta</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka</td>
<td>Salt</td>
<td>8 days post fertilization</td>
<td>NOAEL = 0.05 mg AI/L; LOAEL = 0.2 mg AI/L</td>
<td>0, 0.02, 0.05, 0.2 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Caspase 3; Caspase 8; Caspase 9; p53 mRNA; Interleukin-1 beta</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka</td>
<td>Salt</td>
<td>5 days post fertilization</td>
<td>NOAEL = 0.2 mg AI/L</td>
<td>0, 0.02, 0.05, 0.2 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Caspase 8; Caspase 9</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka</td>
<td>Salt</td>
<td>5 days post fertilization</td>
<td>NOAEL = 0.02 mg AI/L; LOAEL = 0.05 mg AI/L</td>
<td>0, 0.02, 0.05, 0.2 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>p53 mRNA; Tumor necrosis factor-alpha</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka</td>
<td>Salt</td>
<td>First fry</td>
<td>NOAEL = 0.05 mg AI/L; LOAEL = 0.2 mg AI/L</td>
<td>0, 0.02, 0.05, 0.2 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>p53 mRNA; Interleukin-1 beta; Tumor necrosis factor-alpha</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka</td>
<td>Salt</td>
<td>8 days post fertilization</td>
<td>NOAEL = 0.2 mg AI/L</td>
<td>0, 0.02, 0.05, 0.2 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Tumor necrosis factor-alpha</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka</td>
<td>Salt</td>
<td>6 days post fertilization</td>
<td>NOAEL = 0.005 mg AI/L; LOAEL = 0.02 mg AI/L</td>
<td>0, 0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>8-Oxo-2’-deoxyguanosine</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8 days post fertilization</td>
<td>LOAEL = 0.05 mg AI/L</td>
<td>0, 0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Uncharacterized polycomb protein mRNA; Uncharacterized short-chain de-hydrogenase/reductase family mRNA; 40S ribosomal protein SA mRNA; Brain-type fatty acid binding protein mRNA</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8 days post fertilization</td>
<td>NOAEL = 0.02 mg AI/L; LOAEL = 0.05 mg AI/L</td>
<td>0, 0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Ribose-phosphate pyrophosphate kinase mRNA; Uncharacterized bromodomain and WD repeat domain containing 3 mRNA; Uncharacterized parvalbumin beta-like mRNA; Ubiquitin-conjugating protein (E2)-like mRNA</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8 days post fertilization</td>
<td>NOAEL = 0.005 mg AI/L; LOAEL = 0.02 mg AI/L</td>
<td>0, 0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Uncharacterized myosin regulatory light chain mRNA</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8 days post fertilization</td>
<td>LOAEL = 0.005 mg AI/L</td>
<td>0, 0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Choriogenin L mRNA</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8 days post fertilization</td>
<td>LOAEL = 0.02 mg AI/L</td>
<td>0, 0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Vitellogenin 2 mRNA</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8 days post fertilization</td>
<td>NOAEL = 0.05 mg AI/L</td>
<td>0, 0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Vitellogenin-like protein</td>
<td>{Hong, 2014, 2343684@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>17 days post fertilization</td>
<td>NOAEL = 0.02 mg AI/L; LOAEL = 0.05 mg AI/L</td>
<td>0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Growth: Abnormal; malformations</td>
<td>[Hong, 2014, 2343684@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>17 days post fertilization</td>
<td>NOAEL = 0.05 mg AI/L</td>
<td>0.005, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Mortality; Hatching success; Hatchout time</td>
<td>[Hong, 2014, 2343684@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>5-day post fertilization</td>
<td>NOAEL = 0.0084-0.0163 mg AI/L; LOAEL = 0.0165-0.0324 mg AI/L</td>
<td>0.00084-0.0163, 0.0165-0.0324, 0.1212-0.1568 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Heart rate</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8-day post fertilization</td>
<td>LOAEL = 0.0084-0.0163 mg AI/L</td>
<td>0.0084-0.0163, 0.0165-0.0324, 0.1212-0.1568 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Heart rate</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8-day post fertilization</td>
<td>NOAEL = 0.0165-0.0324 mg AI/L; LOAEL = 0.1212-0.1568 mg AI/L</td>
<td>0.00084-0.0163, 0.0165-0.0324, 0.1212-0.1568 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Growth, abnormal. SV-BA distance; Interleukin 1 beta mRNA; Tumor necrosis factor mRNA</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8-day post fertilization</td>
<td>LOAEL = 0.0084-0.0163 mg AI/L</td>
<td>0.0084-0.0163, 0.0165-0.0324, 0.1212-0.1568 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Caspase 3</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8-day post fertilization</td>
<td>NOAEL = 0.0084-0.0163 mg AI/L; LOAEL = 0.1212-0.1568 mg AI/L</td>
<td>0.0084-0.0163, 0.0165-0.0324, 0.1212-0.1568 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Caspase 8; Caspase 9</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8-day post fertilization</td>
<td>NOAEL = 0.0084-0.0163 mg AI/L; LOAEL = 0.1212-0.1568 mg AI/L</td>
<td>0.0084-0.0163, 0.0165-0.0324, 0.1212-0.1568 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>p53 mRNA</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>>8-<17-day post fertilization</td>
<td>NOAEL = 0.0017-0.0324 mg AI/L; LOAEL = 0.1212-0.1568 mg AI/L</td>
<td>0.0084-0.0163, 0.0165-0.0324, 0.1212-0.1568 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>p53 mRNA, newly hatched larvae; Interleukin 1 beta mRNA, newly hatched larvae; Tumor necrosis factor mRNA; newly hatched larvae</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
<td>------------</td>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>6-day post fertilization</td>
<td>NOAEL = 0.0017-0.0324 mg A/L; LOAEL = 0.1212-0.1568 mg A/L</td>
<td>0.0084-0.0163, 0.0165-0.0324, 0.1212-0.1568 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>8-Oxo-2'-deoxyguanosine</td>
<td>{Hong, 2015, 3350507@@auth year}</td>
<td>High</td>
<td>35</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>17-day post fertilization</td>
<td>NOAEL = 0.0017-0.0324 mg A/L; LOAEL = 0.1212-0.1568 mg A/L</td>
<td>0.0084-0.0163, 0.0165-0.0324, 0.1212-0.1568 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Growth; Abnormal; Malformation rate</td>
<td>{Hong, 2015, 3350507@@auth year}</td>
<td>High</td>
<td>35</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>17-day post fertilization</td>
<td>NOAEL = 0.0017-0.0324 mg A/L; LOAEL = 0.1212-0.1568 mg A/L</td>
<td>0.0084-0.0163, 0.0165-0.0324, 0.1212-0.1568 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Mortality; Hatching rate</td>
<td>{Hong, 2015, 3350507@@auth year}</td>
<td>High</td>
<td>35</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>5-day post fertilization</td>
<td>LOAEL = 0.1326-0.1845 mg A/L</td>
<td>0.0082-0.0145, 0.0205-0.0341, 0.1326-0.1845 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Heart rate</td>
<td>{Hong, 2015, 3350507@@auth year}</td>
<td>High</td>
<td>35</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>6-day post fertilization</td>
<td>LOAEL = 0.0082-0.0145 mg A/L</td>
<td>0.0082-0.0145, 0.0205-0.0341, 0.1326-0.1845 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Heart rate</td>
<td>{Hong, 2015, 3350507@@auth year}</td>
<td>High</td>
<td>35</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>6-day post fertilization</td>
<td>NOAEL = 0.021-0.0341 mg A/L; LOAEL = 0.1326-0.1845 mg A/L</td>
<td>0.0082-0.0145, 0.0205-0.0341, 0.1326-0.1845 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Growth, abnormal. SV-BA distance; p53 mRNA; Tumor necrosis factor mRNA</td>
<td>{Hong, 2015, 3350507@@auth year}</td>
<td>High</td>
<td>35</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>6-day post fertilization</td>
<td>LOAEL = 0.0082-0.0145 mg A/L</td>
<td>0.0082-0.0145, 0.01326-0.1845 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Caspase 3; Caspase 9</td>
<td>{Hong, 2015, 3350507@@auth year}</td>
<td>High</td>
<td>35</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>6-day post fertilization</td>
<td>NOAEL = 0.0082-0.0145 mg A/L</td>
<td>0.0082-0.0145, 0.1326-0.1845 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Caspase 8</td>
<td>{Hong, 2015, 3350507@@auth year}</td>
<td>High</td>
<td>35</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>6-day post fertilization</td>
<td>NOAEL = 0.0082-0.0145 mg A/L</td>
<td>0.0082-0.0145, 0.1326-0.1845 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>p53 mRNA, newly hatched larvae; Tumor necrosis factor mRNA, newly hatched larvae</td>
<td>{Hong, 2015, 3350507@@auth year}</td>
<td>High</td>
<td>35</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>6-day post fertilization</td>
<td>NOAEL = 0.0082-0.0145 mg A/L</td>
<td>0.0082-0.0145, 0.0205-0.0341, 0.1326-0.1845 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Interleukin 1 beta mRNA</td>
<td>{Hong, 2015, 3350507@@auth year}</td>
<td>High</td>
<td>35</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>>8-<17-day post fertilization</td>
<td>NOAEL = 0.1326-0.1845 mg AI/L</td>
<td>0, 0.0082-0.0145, 0.0205-0.0341, 0.1326-0.1845 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Interleukin 1 beta mRNA, newly hatched larvae</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>6-day post fertilization</td>
<td>NOAEL = 0.021-0.0341 mg AI/L; LOAEL = 0.1326-0.1845 mg AI/L</td>
<td>0, 0.0082-0.0145, 0.0205-0.0341, 0.1326-0.1845 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>8-Oxo-2-deoxyguanosine</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>17-day post fertilization</td>
<td>NOAEL = 0.1326-0.1845 mg AI/L</td>
<td>0, 0.0082-0.0145, 0.0205-0.0341, 0.1326-0.1845 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Growth: Abnormal, Malformation rate; Mortality; Hatching rate</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>5-day post fertilization</td>
<td>LOAEL = 0.0097-0.0141 mg AI/L</td>
<td>0, 0.0097-0.0141, 0.0237-0.0375, 0.1252-0.1684 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Heart rate</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8-day post fertilization</td>
<td>LOAEL = 0.0097-0.0141 mg AI/L</td>
<td>0, 0.0097-0.0141, 0.0237-0.0375, 0.1252-0.1684 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Heart rate</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8-day post fertilization</td>
<td>NOAEL = 0.024-0.0375 mg AI/L; LOAEL = 0.1252-0.1684 mg AI/L</td>
<td>0, 0.0097-0.0141, 0.0237-0.0375, 0.1252-0.1684 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Growth; Abnormal; SV-BA length; Tumor necrosis factor mRNA</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8-day post fertilization</td>
<td>LOAEL = 0.0097-0.0141 mg AI/L</td>
<td>0, 0.0097-0.0141, 0.1252-0.1684 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Caspase 3</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8-day post fertilization</td>
<td>NOAEL = 0.0097-0.0141 mg AI/L; LOAEL = 0.1252-0.1684 mg AI/L</td>
<td>0, 0.0097-0.0141, 0.1252-0.1684 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Caspase 8; Caspase 9</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>8-day post fertilization</td>
<td>NOAEL = 0.0097-0.0141 mg AI/L; LOAEL = 0.0237-0.0375 mg/AI/L</td>
<td>0, 0.0097-0.0141, 0.0237-0.0375, 0.1252-0.1684 mg/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>p53 mRNA; Interleukin 1 beta mRNA</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>>8-<17-day post fertilization</td>
<td>NOAEL = 0.024-0.0375 mg AI/L; LOAEL = 0.1252-0.1684 mg AI/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>p53 mRNA, newly hatched larvae; Interleukin 1 beta mRNA, newly hatched larvae; Tumor necrosis factor mRNA, newly hatched larvae</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td>134237</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>6-day post fertilization</td>
<td>NOAEL = 0.024-0.0375 mg AI/L; LOAEL = 0.1252-0.1684 mg AI/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>8-Oxo-2'-deoxyguanosine</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td>134237</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>17-day post fertilization</td>
<td>NOAEL = 0.024-0.0375 mg AI/L; LOAEL = 0.1252-0.1684 mg AI/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Growth; Abnormal, Malformation rate</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td>134237</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Indian Medaka (Oryzias melastigma)</td>
<td>Salt</td>
<td>17-day post fertilization</td>
<td>NOAEL = 0.1252-0.1684 mg AI/L</td>
<td>Renewal, Measured, Solvent: DMSO</td>
<td>Mortality; Hatch rate</td>
<td>[Hong, 2015, 3350507@@auth or-year]</td>
<td>High</td>
<td>134237</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>NOAEL = 0.01 mg AI/L; LOAEL = 0.1 mg AI/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Cyp1b1 mRNA; 7-Ethoxyresorufin O-deethylase; Cytochrome P1A messenger RNA; Aryl hydrocarbon receptor 1b mRNA</td>
<td>[Du, 2015, 3350537@@auth or-year]</td>
<td>High</td>
<td>3350537</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>21-day</td>
<td>LOAEL = 0.001 mg AI/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Cyp1b1 mRNA</td>
<td>[Du, 2015, 3350537@@auth or-year]</td>
<td>High</td>
<td>3350537</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>NOAEL = 0.001 mg AI/L; LOAEL = 0.01 mg AI/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Cytochrome P450, family 1, subfamily C, polypeptide 1 mRNA; Aryl hydrocarbon receptor 1a mRNA; Aryl hydrocarbon receptor 2 mRNA</td>
<td>[Du, 2015, 3350537@@auth or-year]</td>
<td>High</td>
<td>3350537</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAS RN</th>
<th>Test Species</th>
<th>Water Type</th>
<th>Duration</th>
<th>End-point</th>
<th>Conc(s)</th>
<th>Test Analysis</th>
<th>Effect(s)</th>
<th>References</th>
<th>Data Quality Ratings</th>
<th>HERO ID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOAEL = 0.001 mg AI/L; LOAEL = 0.01 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Cytochrome P450, family 1, subfamily C, polypeptide 1 mRNA; 7-Ethoxyresorufin O-deethylase; Cytochrome P1A messenger RNA; Aryl hydrocarbon receptor 1a mRNA; Aryl hydrocarbon receptor 1b mRNA; Aryl hydrocarbon receptor 2 mRNA</td>
<td>{Du, 2015, 3350537@@auth-year}</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOAEL = 0.1 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Liver somatic index; Mortality</td>
<td>{Du, 2015, 3350537@@auth-year}</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>NOAEL = 0.001 mg AI/L; LOAEL = 0.01 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Cyp1b1 mRNA; Cytochrome P450, family 1, subfamily C, polypeptide 1 mRNA; Aryl hydrocarbon receptor 1a mRNA; Aryl hydrocarbon receptor 2 mRNA</td>
<td>{Du, 2015, 3350537@@auth-year}</td>
<td>High</td>
<td>134237-51-7</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOAEL = 0.001 mg AI/L; LOAEL = 0.01 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Cyp1b1 mRNA; Cytochrome P450, family 1, subfamily C, polypeptide 1 mRNA; Cytochrome P1A messenger RNA; Aryl hydrocarbon receptor 1b mRNA</td>
<td>{Du, 2015, 3350537@@auth-year}</td>
<td>High</td>
<td>134237-51-7</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>NOAEL = 0.01 mg AI/L; LOAEL = 0.1 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase; Cytochrome P1A messenger RNA; Aryl hydrocarbon receptor 1b mRNA</td>
<td>{Du, 2015, 3350537@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOAEL = 0.01 mg AI/L; LOAEL = 0.1 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase; Aryl hydrocarbon receptor 2 mRNA</td>
<td>{Du, 2015, 3350537@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOAEL = 0.1 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Aryl hydrocarbon receptor 1a mRNA; Liver somatic index; Mortality</td>
<td>{Du, 2015, 3350537@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>NOAEL = 0.001 mg AI/L; LOAEL = 0.01 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Cyp1b1 mRNA; Cytochrome P450, family 1, subfamily C, polypeptide 1 mRNA; Aryl hydrocarbon receptor 1a mRNA; Aryl hydrocarbon receptor 1b mRNA</td>
<td>{Du, 2015, 3350537@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOAEL = 0.001 mg AI/L; LOAEL = 0.01 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Cyp1b1 mRNA; Cytochrome P450, family 1, subfamily C, polypeptide 1 mRNA; Aryl hydrocarbon receptor 1a mRNA; Aryl hydrocarbon receptor 1b mRNA; Aryl hydrocarbon receptor 2 mRNA</td>
<td>{Du, 2015, 3350537@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>NOAEL = 0.1 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase; Aryl hydrocarbon receptor 2 mRNA</td>
<td>{Du, 2015, 3350537@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOAEL = 0.01 mg AI/L; LOAEL = 0.1 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>7-Ethoxyresorufin O-deethylase; Cytochrome P1A messenger RNA</td>
<td>{Du, 2015, 3350537@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>NOAEL = 0.01 mg AI/L; LOAEL = 0.1 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Cytochrome P1A messenger RNA</td>
<td>{Du, 2015, 3350537@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>21-day</td>
<td>NOAEL = 0.1 mg AI/L</td>
<td>0, 0.001, 0.01, 0.1 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Liver somatic index; Mortality</td>
<td>{Du, 2015, 3350537@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>NOAEL = 0.02284 mg AI/kg</td>
<td>0.00084, 0.02284 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Triiodothyronine; Thyroxine; Thyroid gland epithelial cell height; Liver somatic index</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td>1403364</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>14-day</td>
<td>NOAEL = 0.02284 mg AI/kg</td>
<td>0.00084, 0.02284 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Triiodothyronine; Thyroxine; 7-Ethoxyresorufin O-deethylase; T4 outer ring deiodinase enzyme activity; Thyroid gland epithelial cell height; Liver somatic index</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>56-day</td>
<td>LOAEL = 0.02284 mg AI/kg</td>
<td>0.00084, 0.02284 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Triiodothyronine; Thyroxine; T4 outer ring deiodinase enzyme activity; Thyroid gland epithelial cell height</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>---------------------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>LOAEL = 0.02284 mg AI/kg</td>
<td>0.00084, 0.02284 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>7-Ethoxyresorufin O-deethylase</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>56-day</td>
<td>NOAEL = 0.02284 mg AI/kg</td>
<td>0.00084, 0.02284 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>7-Ethoxyresorufin O-deethylase; Liver somatic index; Uridine diphasate glucuronyl transferase UDP glucuronyl transferase</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>168-day*(112-day depuration period after 56-day exposure)</td>
<td>NOAEL = 0.02284 mg AI/kg</td>
<td>0.00084, 0.02284 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Growth: Weight</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>NOAEL = 0.01184 mg AI/kg</td>
<td>0, 0.01184 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Triiodothyronine; Thyrxine; Thyroid gland epithelial cell height; Liver somatic index</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>14-day</td>
<td>NOAEL = 0.01184 mg AI/kg</td>
<td>0, 0.01184 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Triiodothyronine; Thyrxine; 7-Ethoxyresorufin O-deethylase; T4 outer ring deiodinase enzyme activity; Thyroid gland epithelial cell height; Liver somatic index</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>56-day</td>
<td>NOAEL = 0.01184 mg AI/kg</td>
<td>0, 0.01184 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Triiodothyronine; Thyroid gland epithelial cell height; Liver somatic index</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
<td>------------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>56-day</td>
<td>LOAEL = 0.01184 mg AI/kg</td>
<td>0, 0.01184 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Thyroxine; 7-Ethoxyresorufin O-deethylase; T4 outer ring deiodinase enzyme activity; Uridine diphosphate glucuronyl transferase</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>LOAEL = 0.01184 mg AI/kg</td>
<td>0, 0.01184 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>7-Ethoxyresorufin O-deethylase</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>168-day* (112-day depuration period after 56-day exposure)</td>
<td>NOAEL = 0.01184 mg AI/kg</td>
<td>0, 0.01184 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Growth; Weight rate</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>NOAEL = 0.02914 mg AI/kg</td>
<td>0.00047, 0.02914 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Triiodothyronine; Thyroxine; Thyroid gland epithelial cell height; Liver somatic index</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>14-day</td>
<td>NOAEL = 0.02914 mg AI/kg</td>
<td>0.00047, 0.02914 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Triiodothyronine; Thyroxine; 7-Ethoxyresorufin O-deethylase; T4 outer ring deiodinase enzyme activity; Thyroid gland epithelial cell height; Liver somatic index</td>
<td>{Palace, 2010, 1403364@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>56-day</td>
<td>NOAEL = 0.02914 mg AI/kg</td>
<td>0.00047, 0.02914 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Triiodothyronine; Thyroid gland epithelial cell height; Liver somatic index</td>
<td>{Palace, 2010, 1403364@@auth} or -year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>56-day</td>
<td>LOAEL = 0.02914 mg AI/kg</td>
<td>0.00047, 0.02914 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Thyroxine; 7-Ethoxyresorufin O-deethylase; T4 outer ring deiodinase enzyme activity; Uridine diphosphate glucuronyl transferase UDP glucuronyl transferase</td>
<td>{Palace, 2010, 1403364@@auth} or -year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>7-day</td>
<td>LOAEL = 0.02914 mg AI/kg</td>
<td>0.00047, 0.02914 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>7-Ethoxyresorufin O-deethylase</td>
<td>{Palace, 2010, 1403364@@auth} or -year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>168-day* (112-day depuration period after 56-day exposure)</td>
<td>NOAEL = 0.02914 mg AI/kg</td>
<td>0.00047, 0.02914 mg/kg</td>
<td>Food, Measured; lipid-corrected</td>
<td>Growth: Weight</td>
<td>{Palace, 2010, 1403364@@auth} or -year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>35-day</td>
<td>Steady-State BCF (edible tissue) = 6,531</td>
<td>0.00018 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone</td>
<td>Residue; Bioconcentration</td>
<td>{Wildlife Intl LTD, 2000, 1928244@@auth or-year}</td>
<td>High</td>
<td>1928244</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>35-day</td>
<td>Steady-State BCF (edible tissue) = 4,650</td>
<td>0.0018 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone</td>
<td>Residue; Bioconcentration</td>
<td>{Wildlife Intl LTD, 2000, 1928244@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>35-day</td>
<td>Steady-State BCF (non-edible tissue) = 20,726</td>
<td>0.00018 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone</td>
<td>Residue; Bioconcentration</td>
<td>{Wildlife Intl LTD, 2000, 1928244@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>35-day</td>
<td>Steady-State BCF (non-edible tissue) = 12,866</td>
<td>0.0018 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone</td>
<td>Residue; Bioconcentration</td>
<td>{Wildlife Intl LTD, 2000, 1928244@@auth or-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species & Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
<td>--</td>
<td>---------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss) Fresh</td>
<td>35-day</td>
<td>Steady-State BCF (whole body) = 13,085</td>
<td>0.00018 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone Residue; Bioconcentration</td>
<td>[Wildlife Intl LTD, 2000, 1928244@@auth or-year]</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss) Fresh</td>
<td>35-day</td>
<td>Steady-State BCF (whole body) = 8,974</td>
<td>0.0018 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone Residue; Bioconcentration</td>
<td>[Wildlife Intl LTD, 2000, 1928244@@auth or-year]</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss) Fresh</td>
<td>35-day</td>
<td>Kinetic BCF (edible tissue) = 14,039</td>
<td>0.00018 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone Residue; Bioconcentration</td>
<td>[Wildlife Intl LTD, 2000, 1928244@@auth or-year]</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss) Fresh</td>
<td>35-day</td>
<td>Kinetic BCF (edible tissue) = 9,826</td>
<td>0.0018 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone Residue; Bioconcentration</td>
<td>[Wildlife Intl LTD, 2000, 1928244@@auth or-year]</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss) Fresh</td>
<td>35-day</td>
<td>Kinetic BCF (non-edible tissue) = 30,242</td>
<td>0.00018 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone Residue; Bioconcentration</td>
<td>[Wildlife Intl LTD, 2000, 1928244@@auth or-year]</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss) Fresh</td>
<td>35-day</td>
<td>Kinetic BCF (non-edible tissue) = 23,303</td>
<td>0.0018 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone Residue; Bioconcentration</td>
<td>[Wildlife Intl LTD, 2000, 1928244@@auth or-year]</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss) Fresh</td>
<td>35-day</td>
<td>Kinetic BCF (whole body) = 21,940</td>
<td>0.00018 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone Residue; Bioconcentration</td>
<td>[Wildlife Intl LTD, 2000, 1928244@@auth or-year]</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus mykiss) Fresh</td>
<td>35-day</td>
<td>Kinetic BCF (whole body) = 16,450</td>
<td>0.0018 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone Residue; Bioconcentration</td>
<td>[Wildlife Intl LTD, 2000, 1928244@@auth or-year]</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Rainbow trout (Oncorhynchus mykiss) Fresh</td>
<td>≥ 32-day</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil Mortality; Weight; Length; Condition</td>
<td>[Palace, 2008, 1409610@@auth or-year]</td>
<td>High</td>
<td></td>
<td>1409610</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------</td>
<td>------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 34</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood</td>
<td>[Palace, 2008, 1409610@auth-or-year]</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 36</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood</td>
<td>[Palace, 2008, 1409610@auth-or-year]</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 38</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood</td>
<td>[Palace, 2008, 1409610@auth-or-year]</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 46</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: muscle tissue, intestine tissue, viscera tissue, liver tissue</td>
<td>[Palace, 2008, 1409610@auth-or-year]</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 46</td>
<td>LOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: gallbladder tissue, thyroid tissue, liver tissue, blood</td>
<td>[Palace, 2008, 1409610@auth-or-year]</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 34</td>
<td>LOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Type II iodothyronine deiodinase</td>
<td>[Palace, 2008, 1409610@auth-or-year]</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 32</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Mortality, Weight, Length, Condition</td>
<td>[Palace, 2008, 1409610@auth-or-year]</td>
<td>High</td>
<td>134237-51-7</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species (Scientific Name)</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 34</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood</td>
<td>[Palace, 2008, 1409610@auth-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 36</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood</td>
<td>[Palace, 2008, 1409610@auth-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 38</td>
<td>LOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: muscle tissue,</td>
<td>[Palace, 2008, 1409610@auth-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 38</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: muscle tissue, intestine tissue, liver tissue</td>
<td>[Palace, 2008, 1409610@auth-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 38</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood</td>
<td>[Palace, 2008, 1409610@auth-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 46</td>
<td>LOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood</td>
<td>[Palace, 2008, 1409610@auth-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 46</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery</td>
<td>[Palace, 2008, 1409610@auth/year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 32</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Mortality, Weight, Length, Condition</td>
<td>{Palace, 2008, 1409610@auth-year}</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 34</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood; Type II iodothyronine deiodinase</td>
<td>{Palace, 2008, 1409610@auth-year}</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 36</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood</td>
<td>{Palace, 2008, 1409610@auth-year}</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 38</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: muscle tissue</td>
<td>{Palace, 2008, 1409610@auth-year}</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 46</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: muscle tissue, gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood</td>
<td>{Palace, 2008, 1409610@auth-year}</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 38</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery: gallbladder tissue, thyroid tissue, intestine tissue, viscera tissue, liver tissue, blood</td>
<td>{Palace, 2008, 1409610@auth-year}</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>≥ 32-day, measured on day 46</td>
<td>NOAEL = 0.005 mg AI/kg</td>
<td>0, 0.005 mg/kg</td>
<td>Food, Nominal; Solvent: Corn oil</td>
<td>Thyroxine; % recovery, blood</td>
<td>{Palace, 2008, 1409610@auth-year}</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>--</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Common sole (Solea solea)</td>
<td>Salt</td>
<td>6-day</td>
<td>NOEC = 0.25 mg/L</td>
<td>0, 0, 0.025, 0.08, 0.25 mg/L</td>
<td>Renewal, Nominal; Solvent: DMSO</td>
<td>Hatching success</td>
<td>(Foekema, 2014, 2343709[@auth or-year])</td>
<td>High</td>
<td>2343709</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Common sole (Solea solea)</td>
<td>Salt</td>
<td>6-day</td>
<td>Internal Effect Concentration (IEC)\textsubscript{50} = >12,400 mg/kg lipid weight</td>
<td>2.280 – 12,400 mg/kg lipid weight</td>
<td>Renewal, Measured</td>
<td>Mortality; Growth: completion of metamorphosis</td>
<td>(Foekema, 2014, 2343709[@auth or-year])</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>42-day</td>
<td>NOAEL = 0.04482 mg AI/kg</td>
<td>0, 0.00486, 0.04482 mg/kg dry wt</td>
<td>Food, Measured</td>
<td>Growth: Weight; % Lipid</td>
<td>{Du, 2012, 1927579[@auth or-year]}</td>
<td>High</td>
<td>1927579</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>42-day</td>
<td>NR-ZERO = 0.04482 mg AI/kg</td>
<td>0, 0.00486, 0.04482 mg/kg dry wt</td>
<td>Food, Measured</td>
<td>Mortality</td>
<td>{Du, 2012, 1927579[@auth or-year]}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>42-day</td>
<td>BMF = 7.61</td>
<td>0.0048 mg/kg dry wt</td>
<td>Food, Measured</td>
<td>Residue: biomagnification</td>
<td>{Du, 2012, 1927579[@auth or-year]}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>42-day</td>
<td>NOAEL = 0.04748 mg AI/kg</td>
<td>0, 0.00452, 0.04748 mg/kg dry wt</td>
<td>Food, Measured</td>
<td>Growth: Weight; % Lipid</td>
<td>{Du, 2012, 1927579[@auth or-year]}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>42-day</td>
<td>NR-ZERO = 0.04748 mg AI/kg</td>
<td>0, 0.00452, 0.04748 mg/kg dry wt</td>
<td>Food, Measured</td>
<td>Mortality</td>
<td>{Du, 2012, 1927579[@auth or-year]}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>42-day</td>
<td>BMF = 11.63</td>
<td>0.00452 mg/kg dry wt</td>
<td>Food, Measured</td>
<td>Residue: biomagnification</td>
<td>{Du, 2012, 1927579[@auth or-year]}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>42-day</td>
<td>BMF = 7.34</td>
<td>0.04748 mg/kg dry wt</td>
<td>Food, Measured</td>
<td>Residue: biomagnification</td>
<td>{Du, 2012, 1927579[@auth or-year]}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>42-day</td>
<td>NOAEL = 0.04576 mg AI/kg</td>
<td>0, 0.00443, 0.04576 mg/kg dry wt</td>
<td>Food, Measured</td>
<td>Growth: Weight; % Lipid</td>
<td>{Du, 2012, 1927579[@auth or-year]}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>42-day</td>
<td>NR-ZERO = 0.04576 mg AI/kg</td>
<td>0, 0.00443, 0.04576 mg/kg dry wt</td>
<td>Food, Measured</td>
<td>Mortality</td>
<td>{Du, 2012, 1927579[@auth or-year]}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>42-day</td>
<td>BMF = 29.71</td>
<td>0.00443 mg/kg dry wt</td>
<td>Food, Measured</td>
<td>Residue: biomagnification</td>
<td>{Du, 2012, 1927579[@auth or-year]}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------------------------------</td>
<td>---------------</td>
<td>------------------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Zebrafish (Danio rerio)</td>
<td>Fresh</td>
<td>42-day</td>
<td>BMF = 12.33</td>
<td>0.04576 mg/kg dry wt</td>
<td>Food, Measured</td>
<td>Residue; biomagnification</td>
<td>{Du, 2012, 1927579}@auth or-year</td>
<td>High</td>
<td>2343723</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Three-spine Stickleback</td>
<td>Salt</td>
<td>30-day</td>
<td>NOAEL = 0.0003 mg AI/L</td>
<td>0, 0, 0.0003, 0.0003 mg/L</td>
<td>Flow-through, Nominal, Solvent: Acetone</td>
<td>DNA methylation</td>
<td>Low</td>
<td>1412194</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus</td>
<td>Fresh</td>
<td>33-day</td>
<td>NOEC = 0.0037 mg AI/L</td>
<td>0, 0, 0.00025, 0.00047, 0.00083, 0.0018, 0.0037 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone</td>
<td>Hatching success</td>
<td>{Drottar, 2001, 4796184}@auth or-year</td>
<td>Low</td>
<td>This study needs to be reviewed</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Rainbow trout (Oncorhynchus</td>
<td>Fresh</td>
<td>61-day</td>
<td>NOEC = 0.0037 mg AI/L</td>
<td>0, 0, 0.00025, 0.00047, 0.00083, 0.0018, 0.0037 mg/L</td>
<td>Flow-through, Measured, Solvent: Acetone</td>
<td>Mortality; Growth: Weight; Growth: Length; Time to Swim-up</td>
<td>{Drottar, 2001, 4796184}@auth or-year</td>
<td>Low</td>
<td>4796184</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Common Carp (Cyprinus</td>
<td>Fresh</td>
<td>60-day</td>
<td>Kinetic BCF (gill) = 237</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>{Zhang, 2014, 2343723}@auth or-year</td>
<td>High</td>
<td>2343723</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Common Carp (Cyprinus</td>
<td>Fresh</td>
<td>60-day</td>
<td>Kinetic BCF (viscera) = 584</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>{Zhang, 2014, 2343723}@auth or-year</td>
<td>High</td>
<td>2343723</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Common Carp (Cyprinus</td>
<td>Fresh</td>
<td>60-day</td>
<td>Kinetic BCF (muscle) = 221</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>{Zhang, 2014, 2343723}@auth or-year</td>
<td>High</td>
<td>2343723</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Common Carp (Cyprinus</td>
<td>Fresh</td>
<td>60-day</td>
<td>Kinetic BCF (skin) = 227</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>{Zhang, 2014, 2343723}@auth or-year</td>
<td>High</td>
<td>2343723</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Common Carp (Cyprinus</td>
<td>Fresh</td>
<td>60-day</td>
<td>Lipid-Normalized Kinetic BCF (gill) = 950</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>{Zhang, 2014, 2343723}@auth or-year</td>
<td>High</td>
<td>2343723</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Common Carp (Cyprinus</td>
<td>Fresh</td>
<td>60-day</td>
<td>Lipid-Normalized Kinetic BCF (viscera) = 1,730</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>{Zhang, 2014, 2343723}@auth or-year</td>
<td>High</td>
<td>2343723</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Common Carp (Cyprinus</td>
<td>Fresh</td>
<td>60-day</td>
<td>Lipid-Normalized Kinetic BCF (muscle) = 1,220</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>{Zhang, 2014, 2343723}@auth or-year</td>
<td>High</td>
<td>2343723</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Common Carp (Cyprinus</td>
<td>Fresh</td>
<td>60-day</td>
<td>Lipid-Normalized Kinetic BCF (skin) = 1,610</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>{Zhang, 2014, 2343723}@auth or-year</td>
<td>High</td>
<td>2343723</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Common Carp (Cyprinus</td>
<td>Fresh</td>
<td>60-day</td>
<td>Kinetic BCF (gill) = 322</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>{Zhang, 2014, 2343723}@auth or-year</td>
<td>High</td>
<td>2343723</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
<td>------------</td>
<td>----------</td>
<td>------------------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Kinetic BCF (viscera) = 642</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Kinetic BCF (muscle) = 187</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Kinetic BCF (skin) = 204</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Lipid-Normalized Kinetic BCF (gill) = 1.290</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Lipid-Normalized Kinetic BCF (viscera) = 1.900</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Lipid-Normalized Kinetic BCF (muscle) = 1.030</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Lipid-Normalized Kinetic BCF (skin) = 1.440</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Kinetic BCF (gill) = 8,580</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Kinetic BCF (viscera) = 11,500</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Kinetic BCF (muscle) = 5,570</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Kinetic BCF (skin) = 6,400</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Lipid-Normalized Kinetic BCF (gill) = 34,500</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Lipid-Normalized Kinetic BCF (viscera) = 34,200</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Lipid-Normalized Kinetic BCF (muscle) = 30,700</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723] @ author-year</td>
<td>High</td>
<td>50</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------------</td>
<td>----------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Common Carp (Cyprinus carpio)</td>
<td>Fresh</td>
<td>60-day</td>
<td>Lipid-Normalized Kinetic BCF (skin) = 45,200</td>
<td>0, 0.001 mg/L</td>
<td>Renewal, Measured</td>
<td>Residue; Bioconcentration</td>
<td>[Zhang, 2014, 2343723]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Starry, European Flounder (Platichthys flesus)</td>
<td>Brackish</td>
<td>78-day</td>
<td>NOAEL = 3000 mg/kg lipid diet with 800 mg/kg TOC sediment OR 0 mg/kg lipid diet with 8000 mg/kg TOC sediment</td>
<td>Diet (mg/kg lipid)/sediment (mg/kg total organic carbon): 0/0; 0.3/0.08; 3.0/8; 30/8; 300/80; 3000/800; 0/8000</td>
<td>Multiple routes (diet and sediment), Nominal, Solvent: Acetone</td>
<td>Thyroxine; Aromatase; 7-Ethoxyresorufin O-deethylase; Triiodothyronine; Benzylresorufin O-deethylase; Pentylresorufin O-deethylase</td>
<td>[Kuiper, 2007, 1412802]</td>
<td>High</td>
<td>1412802</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Starry, European Flounder (Platichthys flesus)</td>
<td>Brackish</td>
<td>78-day</td>
<td>NOAEL = 30 mg/kg lipid diet with 8 mg/kg TOC sediment; LOAEL = 300 mg/kg lipid diet with 80 mg/kg TOC sediment</td>
<td>Diet (mg/kg lipid)/sediment (mg/kg total organic carbon): 0/0; 0.3/0.08; 3.0/8; 30/8; 300/80; 3000/800; 0/8000</td>
<td>Multiple routes (diet and sediment), Nominal, Solvent: Acetone</td>
<td>Residue: α-HBCD concentration in muscle; β-HBCD concentration in muscle</td>
<td>[Kuiper, 2007, 1412802]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Starry, European Flounder (Platichthys flesus)</td>
<td>Brackish</td>
<td>78-day</td>
<td>NOAEL = 0.3 mg/kg lipid diet with 0.08 mg/kg TOC sediment</td>
<td>Diet (mg/kg lipid)/sediment (mg/kg total organic carbon): 0/0; 0.3/0.08; 3.0/8; 30/8; 300/80; 3000/800; 0/8000</td>
<td>Multiple routes (diet and sediment), Nominal, Solvent: Acetone</td>
<td>Residue: γ-HBCD concentration in muscle</td>
<td>[Kuiper, 2007, 1412802]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>168-day</td>
<td>BMF = 7.2</td>
<td>0.0003, 0.02284 mg/kg</td>
<td>Food, Measured; Lipid-corrected</td>
<td>Residue; biomagnification</td>
<td>[Law, 2006, 1443861]</td>
<td>Low</td>
<td>1443861</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Water Type</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>168-day (56-day exposure to treated food then 112 days untreated food)</td>
<td>BMF = 4.3</td>
<td>0.0003, 0.01184 mg/kg</td>
<td>Food, Measured; Lipid-corrected</td>
<td>Residue; biomagnification</td>
<td>{Law, 2006, 1443861@@author-year}</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Rainbow trout (Oncorhynchus mykiss)</td>
<td>Fresh</td>
<td>168-day (56-day exposure to treated food then 112 days untreated food)</td>
<td>BMF = 9.2</td>
<td>0.0003, 0.02914 mg/kg</td>
<td>Food, Measured; Lipid-corrected</td>
<td>Residue; biomagnification</td>
<td>{Law, 2006, 1443861@@author-year}</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

Amphibians

<table>
<thead>
<tr>
<th>CAS RN</th>
<th>Test Species</th>
<th>Water Type</th>
<th>Duration</th>
<th>NOAEL = 6.417 mg AI/L</th>
<th>Conc(s)</th>
<th>Test Analysis</th>
<th>Effect(s)</th>
<th>References</th>
<th>Data Quality Ratings</th>
<th>HERO ID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>25637-99-4</td>
<td>African clawed frog (Xenopus laevis)</td>
<td>Fresh</td>
<td>1-day</td>
<td>0, 0.64, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Developmental: Tail resorption</td>
<td>[Schriks, 2006, 938764@@author-year]</td>
<td>Unacceptable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>African clawed frog (Xenopus laevis)</td>
<td>Fresh</td>
<td>2-day</td>
<td>0, 0.64, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Developmental: Tail resorption</td>
<td>[Schriks, 2006, 938764@@author-year]</td>
<td>Unacceptable</td>
<td>938764</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>African clawed frog (Xenopus laevis)</td>
<td>Fresh</td>
<td>3-day</td>
<td>0, 0.64, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Developmental: Tail resorption</td>
<td>[Schriks, 2006, 938764@@author-year]</td>
<td>Unacceptable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>African clawed frog (Xenopus laevis)</td>
<td>Fresh</td>
<td>4-day</td>
<td>0, 0.64, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Developmental: Tail resorption</td>
<td>[Schriks, 2006, 938764@@author-year]</td>
<td>Unacceptable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>African clawed frog (Xenopus laevis)</td>
<td>Fresh</td>
<td>5-day</td>
<td>0, 0.64, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Developmental: Tail resorption</td>
<td>[Schriks, 2006, 938764@@author-year]</td>
<td>Unacceptable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>African clawed frog (Xenopus laevis)</td>
<td>Fresh</td>
<td>6-day</td>
<td>0, 0.64, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Developmental: Tail resorption</td>
<td>[Schriks, 2006, 938764@@author-year]</td>
<td>Unacceptable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>African clawed frog (Xenopus laevis)</td>
<td>Fresh</td>
<td>8-day</td>
<td>0, 0.64 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Cell proliferation</td>
<td>[Schriks, 2006, 938764@@author-year]</td>
<td>Unacceptable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>African clawed frog (Xenopus laevis)</td>
<td>Fresh</td>
<td>8-day</td>
<td>NR-ZERO = 0.642 mg AI/L</td>
<td>0, 0.64 mg/L</td>
<td>Renewal, Nominal, Solvent: DMSO</td>
<td>Mortality</td>
<td>[Schriks, 2006, 938764@@author-year]</td>
<td>Unacceptable</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. On-topic terrestrial toxicity studies that were evaluated for HBCD

<table>
<thead>
<tr>
<th>CAS RN</th>
<th>Test Species</th>
<th>Media</th>
<th>Duration</th>
<th>Endpoint</th>
<th>Conc(s)</th>
<th>Test Analysis</th>
<th>Effect(s)</th>
<th>References</th>
<th>Data Quality Ratings</th>
<th>HERO ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>134237-52-8</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>3-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots</td>
<td>{Wu, 2012, 1927583}</td>
<td>High</td>
<td>1927583</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>7-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>{Wu, 2012, 1927583}</td>
<td>High</td>
<td>1927583</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>12-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>{Wu, 2012, 1927583}</td>
<td>High</td>
<td>1927583</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>24-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots; Histone H2AX mRNA: Relative γ-H2AX level in shoots</td>
<td>{Wu, 2012, 1927583}</td>
<td>High</td>
<td>1927583</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>72-hour</td>
<td>NOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots; Histone H2AX mRNA; Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>{Wu, 2012, 1927583@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>96-hour</td>
<td>NOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots; Histone H2AX mRNA; Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>{Wu, 2012, 1927583@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>7-hour</td>
<td>NOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in shoots</td>
<td>{Wu, 2012, 1927583@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>12-hour</td>
<td>NOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in shoots</td>
<td>{Wu, 2012, 1927583@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>72-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in shoots</td>
<td>{Wu, 2012, 1927583@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>96-hour</td>
<td>LOAEL</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in shoots; Growth: Inhibition of seed germination; Growth: Inhibition of root biomass; Growth: Inhibition of shoot biomass; Growth: Root elongation; Growth: Shoot elongation</td>
<td>[Wu, 2012, 1927583@@au thor-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>3-hour</td>
<td>NOAEL</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@@au thor-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>24-hour</td>
<td>NOAEL</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Histone H2AX mRNA: Relative γ-H2AX level in roots</td>
<td>[Wu, 2012, 1927583@@au thor-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>3-hour</td>
<td>NOAEL</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@@au thor-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>7-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@@author-year]</td>
<td>High</td>
<td>134237-51-7</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>12-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@@author-year]</td>
<td>High</td>
<td>134237-51-7</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>24-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@@author-year]</td>
<td>High</td>
<td>134237-51-7</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>72-hour</td>
<td>NOAEL</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>96-hour</td>
<td>NOAEL</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>3-hour</td>
<td>LOAEL</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in shoots</td>
<td>[Wu, 2012, 1927583@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>72-hour</td>
<td>LOAEL</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in shoots</td>
<td>[Wu, 2012, 1927583@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>96-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in shoots; Growth: Inhibition of seed germination; Growth: Inhibition of root biomass; Growth: Inhibition of shoot biomass; Growth: Root elongation; Growth: Shoot elongation</td>
<td>[Wu, 2012, 1927583@@au thor-year]</td>
<td>High</td>
<td>134237-51-7</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>3-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots;</td>
<td>[Wu, 2012, 1927583@@au thor-year]</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>7-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@@au thor-year]</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>12-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@@au thor-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>24-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@@au thor-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>72-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots, Radical relative intensity in shoots; Histone H2AX mRNA: Relative γ-H2AX level in roots</td>
<td>[Wu, 2012, 1927583@@au thor-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>96-hour</td>
<td>NOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in roots; Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@au thor-year]</td>
<td>High</td>
<td>1927583</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>96-hour</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Reactive oxygen species: Radical relative intensity in shoots; Growth: Inhibition of seed germination; Growth: Inhibition of root biomass; Growth: Shoot elongation; Growth: Shoot elongation</td>
<td>{Wu, 2012, 1927583@au thor-year}</td>
<td>High</td>
<td>1927583</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>3-hour</td>
<td>NOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Histone H2AX mRNA: Relative γ-H2AX level in roots, Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@au thor-year]</td>
<td>High</td>
<td>1927583</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Corn (Zea mays)</td>
<td>Hydroponic</td>
<td>72-hour</td>
<td>NOAEL = 0.002 mg/L</td>
<td>0, 0.002 mg/L</td>
<td>Hydroponic solution application, Nominal</td>
<td>Histone H2AX mRNA: Relative γ-H2AX level in shoots</td>
<td>[Wu, 2012, 1927583@au thor-year]</td>
<td>High</td>
<td>1927583</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Corn (Zea mays)</td>
<td>Filter paper</td>
<td>4-day</td>
<td>LOAEL = 0.002 mg/L</td>
<td>0, 0.002, 0.005, 0.01, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: Methanol</td>
<td>Growth: Root biomass; Growth: Root length; Growth: Shoot biomass; Germination</td>
<td>{Wu, 2016, 3350472@au thor-year}</td>
<td>High</td>
<td>3350472</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------</td>
<td>------------</td>
<td>----------</td>
<td>------------------</td>
<td>---------------------------------------</td>
<td>-------------------------------------</td>
<td>------------------------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Corn (Zea mays)</td>
<td>Filter paper</td>
<td>4-day</td>
<td>NOAEL = 0.002 mg/L; LOAEL = 0.005 mg/L</td>
<td>0, 0.002, 0.005, 0.01, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: Methanol</td>
<td>Growth: Shoot length; Histone H2AX mRNA: Root</td>
<td>{Wu, 2016, 3350472@au author-year}</td>
<td>High</td>
<td>62</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>Corn (Zea mays)</td>
<td>Filter paper</td>
<td>4-day</td>
<td>NOAEL = 0.005 mg/L; LOAEL = 0.01 mg/L</td>
<td>0, 0.002, 0.005, 0.01, 0.02, 0.05 mg/L</td>
<td>Renewal, Nominal, Solvent: Methanol</td>
<td>Histone H2AX mRNA: Root</td>
<td>{Wu, 2016, 3350472@au author-year}</td>
<td>High</td>
<td>62</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>1-week</td>
<td>BCF (root) =0.550</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber, Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>{Zhu, 2016, 3350492@au author-year}</td>
<td>High</td>
<td>3350492</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>1-week</td>
<td>BCF (stem) = 0.100</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber, Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>{Zhu, 2016, 3350492@au author-year}</td>
<td>High</td>
<td>3350492</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>1-week</td>
<td>BCF (leaf) = 0.157</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber, Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>{Zhu, 2016, 3350492@au author-year}</td>
<td>High</td>
<td>3350492</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>2-week</td>
<td>BCF (root) = 0.961</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber, Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>{Zhu, 2016, 3350492@au author-year}</td>
<td>High</td>
<td>3350492</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>2-week</td>
<td>BCF (stem) = 0.203</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber, Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>{Zhu, 2016, 3350492@au author-year}</td>
<td>High</td>
<td>3350492</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>2-week</td>
<td>BCF (leaf) = 0.259</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber, Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>{Zhu, 2016, 3350492@au author-year}</td>
<td>High</td>
<td>3350492</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>3-week</td>
<td>BCF (root) = 1.27</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber, Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>3-week</td>
<td>BCF (stem) = 0.284</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>3-week</td>
<td>BCF (leaf) = 0.473</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>4-week</td>
<td>BCF (root) = 1.99</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>4-week</td>
<td>BCF (stem) = 0.472</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>4-week</td>
<td>BCF (leaf) = 0.755</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-52-8</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>1-week</td>
<td>BCF (root) = 1.10</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-51-7</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>1-week</td>
<td>BCF (stem) = 0.231</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-51-7</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------</td>
<td>---------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>1-week</td>
<td>BCF (leaf) = 0.134</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>(Triticum aestivum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>2-week</td>
<td>BCF (root) = 1.36</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>(Triticum aestivum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>2-week</td>
<td>BCF (stem) = 0.315</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>(Triticum aestivum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>2-week</td>
<td>BCF (leaf) = 0.175</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>(Triticum aestivum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>3-week</td>
<td>BCF (root) = 2.07</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>(Triticum aestivum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>3-week</td>
<td>BCF (stem) = 0.514</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>(Triticum aestivum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>3-week</td>
<td>BCF (leaf) = 0.335</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>(Triticum aestivum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>4-week</td>
<td>BCF (root) = 3.08</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>(Triticum aestivum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>4-week</td>
<td>BCF (stem) = 0.842</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-51-7</td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>4-week</td>
<td>BCF (leaf) = 0.604</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-51-7</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>1-week</td>
<td>BCF (root) = 1.28</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>1-week</td>
<td>BCF (stem) = 0.286</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>1-week</td>
<td>BCF (leaf) = 0.141</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>2-week</td>
<td>BCF (root) = 1.63</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>2-week</td>
<td>BCF (stem) = 0.405</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>2-week</td>
<td>BCF (leaf) = 0.225</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td>134237-50-6</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species (Triticum aestivum)</td>
<td>Media</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>3-week</td>
<td>BCF (root) = 2.13</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>3-week</td>
<td>BCF (stem) = 0.606</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>3-week</td>
<td>BCF (leaf) = 0.337</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>4-week</td>
<td>BCF (root) = 3.21</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>4-week</td>
<td>BCF (stem) = 0.880</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>4-week</td>
<td>BCF (leaf) = 0.663</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Bioconcentration</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>1-week</td>
<td>TF = 0.177</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Translocation factor (TF: [stem]/ [root])</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat</td>
<td>Natural soil</td>
<td>2-week</td>
<td>TF = 0.206</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Translocation factor (TF: [stem]/ [root])</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>3-week</td>
<td>TF = 0.203</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Translocation factor (TF: [stem]/[root])</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>4-week</td>
<td>TF = 0.216</td>
<td>0, 0.0628 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Translocation factor (TF: [stem]/[root])</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>1-week</td>
<td>TF = 0.202</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Translocation factor (TF: [stem]/[root])</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>2-week</td>
<td>TF = 0.224</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Translocation factor (TF: [stem]/[root])</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>3-week</td>
<td>TF = 0.242</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Translocation factor (TF: [stem]/[root])</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-51-7</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>4-week</td>
<td>TF = 0.264</td>
<td>0, 0.0908 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Translocation factor (TF: [stem]/[root])</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>1-week</td>
<td>TF = 0.218</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Translocation factor (TF: [stem]/[root])</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>2-week</td>
<td>TF = 0.244</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Translocation factor (TF: [stem]/[root])</td>
<td>[Zhu, 2016, 3350492@@author-year]</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>
Terrestrial Invertebrates

<table>
<thead>
<tr>
<th>CAS RN</th>
<th>Test Species</th>
<th>Media</th>
<th>Duration</th>
<th>End-point</th>
<th>Conc(s)</th>
<th>Test Analysis</th>
<th>Effect(s)</th>
<th>References</th>
<th>Data Quality Ratings</th>
<th>HERO ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>3-week</td>
<td>TF = 0.280</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Translocation factor (TF: [stem]/[root])</td>
<td>[Zhu, 2016, 3350492]</td>
<td>High</td>
<td>2965902</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Bread Wheat (Triticum aestivum)</td>
<td>Natural soil</td>
<td>4-week</td>
<td>TF = 0.269</td>
<td>0, 0.0984 mg/kg dry soil</td>
<td>Multiple routes within environmental exposure chamber Measured, Solvent: Methylene chloride</td>
<td>Residue; Translocation factor (TF: [stem]/[root])</td>
<td>[Zhu, 2016, 3350492]</td>
<td>High</td>
<td>2965902</td>
</tr>
</tbody>
</table>

Test Analysis

Effect(s)

- Residue
- Translocation factor (TF: [stem]/[root])

References

- [Zhu, 2016, 3350492]

Data Quality Ratings

- High

HERO ID.

- 2965902
<table>
<thead>
<tr>
<th>CAS RN</th>
<th>Test Species</th>
<th>Media</th>
<th>Duration</th>
<th>End-point</th>
<th>Conc(s)</th>
<th>Test Analysis</th>
<th>Effect(s)</th>
<th>References</th>
<th>Data Quality Ratings</th>
<th>HERO ID.</th>
</tr>
</thead>
<tbody>
<tr>
<td>134237-50-6</td>
<td>Earthworm (Eisenia fetida)</td>
<td>Natural soil</td>
<td>21-day</td>
<td>BAF = 21.8</td>
<td>0, 0.186 mg/g dry soil</td>
<td>Static, Measured, Solvent: Unspecified</td>
<td>Residue; Bioaccumulation</td>
<td>[Li, 2016, 3350510@@au thor-year]</td>
<td>Low</td>
<td>134237</td>
</tr>
<tr>
<td></td>
<td>Earthworm (Metaphire guillelmi)</td>
<td>Natural soil</td>
<td>21-day</td>
<td>BAF = 6.21</td>
<td>0, 0.186 mg/g dry soil</td>
<td>Static, Measured, Solvent: Unspecified</td>
<td>Residue; Bioaccumulation</td>
<td>[Li, 2016, 3350510@@au thor-year]</td>
<td>Low</td>
<td>134237</td>
</tr>
<tr>
<td>Terrestrial Vertebrates</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Culture of embryonic hepatocytes</td>
<td>24-hour</td>
<td>NOAEL = 0.06 mg/L; LOAEL = 0.6 mg/L</td>
<td>0, 0, 0.006, 0.06, 0.6, 1.9, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Cytochrome P450 2H1 mRNA; UGT- 1A9; Fatty acid-binding protein 10-A, liver basic mRNA; Cytochrome P450 3A37 mRNA</td>
<td>[Crump, 2008, 1408111@@au thor-year]</td>
<td>High</td>
<td>1408111</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Culture of embryonic hepatocytes</td>
<td>36-hour</td>
<td>NOAEL = 0.006 mg/L; LOAEL = 0.06 mg/L</td>
<td>0, 0, 0.006, 0.06, 0.6, 1.9, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Cytochrome P450 2H1 mRNA</td>
<td>[Crump, 2008, 1408111@@au thor-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Culture of embryonic hepatocytes</td>
<td>36-hour</td>
<td>NOAEL = 0.06 mg/L; LOAEL = 0.6 mg/L</td>
<td>0, 00.006, 0.06, 0.6, 1.9, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>UGT- 1A9; Fatty acid-binding protein 10-A, liver basic mRNA; Cytochrome P450 3A37 mRNA</td>
<td>[Crump, 2008, 1408111@@au thor-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Culture of embryonic hepatocytes</td>
<td>24-hour</td>
<td>NOAEL = 6.4 mg/L</td>
<td>0, 0, 0.006, 0.06, 0.6, 1.9, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Xenobiotic-sensing orphan nuclear receptor (CXR) mRNA</td>
<td>[Crump, 2008, 1408111@@au thor-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Culture of embryonic hepatocytes</td>
<td>24-hour</td>
<td>NOAEL = 1.9 mg/L; LOAEL = 6.4 mg/L</td>
<td>0, 0, 0.006, 0.06, 0.6, 1.9, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Transthyretin (pre-albumin, amyloidosis type I) mRNA; Thyroid hormone responsive spot 14 alpha mRNA</td>
<td>[Crump, 2008, 1408111@@au thor-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Culture of embryonic hepatocytes</td>
<td>36-hour</td>
<td>NOAEL = 6.4 mg/L</td>
<td>0, 0, 0.006, 0.06, 0.6, 1.9, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Trans-thyretin (pre-albumin, amyloidosis type I) mRNA</td>
<td>[Crump, 2008, 1408111@@au thor-year]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>--</td>
<td>----------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>134237-50-6</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Culture of embryonic hepatocytes</td>
<td>36-hour</td>
<td>NOAEL = 1.9 mg/L; LOAEL = 6.4 mg/L</td>
<td>0, 0, 0.006, 0.06, 0.6, 1.9, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Thyroid hormone responsive spot 14 alpha mRNA</td>
<td>[Crump, 2008, 1408111] @author-year</td>
<td>High</td>
<td>134237</td>
</tr>
<tr>
<td>134237-50-6 HBCD-Technical Mixture</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Culture of embryonic hepatocytes</td>
<td>24-hour</td>
<td>NOAEL = 0.06 mg/L; LOAEL = 0.6 mg/L</td>
<td>0, 0, 0.006, 0.06, 0.6, 1.9, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Thyroid hormone responsive spot 14 alpha mRNA; Cytochrome P450 2H1 mRNA; Cytochrome P450 3A37 mRNA</td>
<td>[Crump, 2008, 1408111] @author-year</td>
<td>High</td>
<td>134237</td>
</tr>
<tr>
<td>134237-50-6 HBCD-Technical Mixture</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Culture of embryonic hepatocytes</td>
<td>36-hour</td>
<td>NOAEL = 0.06 mg/L; LOAEL = 0.6 mg/L</td>
<td>0, 0, 0.006, 0.06, 0.6, 1.9, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Thyroid hormone responsive spot 14 alpha mRNA; Fatty acid-binding protein 10-A, liver basic mRNA; Cytochrome P450 2H1 mRNA; Cytochrome P450 3A37 mRNA</td>
<td>[Crump, 2008, 1408111] @author-year</td>
<td>High</td>
<td>134237</td>
</tr>
<tr>
<td>134237-50-6 HBCD-Technical Mixture</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Culture of embryonic hepatocytes</td>
<td>24-hour</td>
<td>NOAEL = 6.4 mg/L</td>
<td>0, 0, 0.006, 0.06, 0.6, 1.9, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>UGT-1A9</td>
<td>[Crump, 2008, 1408111] @author-year</td>
<td>High</td>
<td>134237</td>
</tr>
<tr>
<td>134237-50-6 HBCD-Technical Mixture</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Culture of embryonic hepatocytes</td>
<td>36-hour</td>
<td>NOAEL = 6.4 mg/L</td>
<td>0, 0, 0.006, 0.06, 0.6, 1.9, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>UGT-1A9; Trans-thyretin (pre-albumin, amyloidosis type I) mRNA</td>
<td>[Crump, 2008, 1408111] @author-year</td>
<td>High</td>
<td>134237</td>
</tr>
<tr>
<td>134237-50-6 HBCD-Technical Mixture</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Culture of embryonic hepatocytes</td>
<td>24-hour</td>
<td>NOAEL = 1.9 mg/L; LOAEL = 6.4 mg/L</td>
<td>0, 0, 0.006, 0.06, 0.6, 1.9, 6.4 mg/L</td>
<td>In vitro, Nominal, Solvent: DMSO</td>
<td>Trans-thyretin (pre-albumin, amyloidosis type I) mRNA; Fatty acid-binding protein 10-A, liver basic mRNA</td>
<td>[Crump, 2008, 1408111] @author-year</td>
<td>High</td>
<td>134237</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>1-day</td>
<td>NOAEL = 0.001 mg AI/kg food</td>
<td>0, 0.001 mg/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Abdominal fat</td>
<td>[Fournier, 2012, 1927629] @author-year</td>
<td>High</td>
<td>1927629</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
<td>-------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>4-day</td>
<td>NOAEL = 0.001 mg AI/kg food</td>
<td>0, 0.001 mg/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Abdominal fat</td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8-day</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>0, 0.001 mg/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Abdominal fat</td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>11-day</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>0, 0.001 mg/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Abdominal fat</td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>16-day</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>0, 0.001 mg/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Abdominal fat</td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>21-day</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>0, 0.001 mg/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Abdominal fat</td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>21-day, 1 day depuration</td>
<td>LOAEL = 0.001 mg A/kg food</td>
<td>0, 0.001 mg/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Abdominal fat</td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>21-day, 3 days depuration</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>0, 0.001 mg/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Abdominal fat</td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>21-day, 8 days depuration</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>0, 0.001 mg/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Abdominal fat</td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>21-day, 18 days depuration</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>0, 0.001 mg/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Abdominal fat</td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>1-day</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>0, 0.001 mg/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Liver</td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>4-day</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Liver</td>
<td></td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>8-day</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Liver</td>
<td></td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>11-day</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Liver</td>
<td></td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>16-day</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Liver</td>
<td></td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>21-day</td>
<td>LOAEL = 0.001 mg AI/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Liver</td>
<td></td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>21-day, 1 day depuration</td>
<td>NOAEL = 0.001 mg AI/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Liver</td>
<td></td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>21-day, 3 days depuration</td>
<td>NOAEL = 0.001 mg AI/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Liver</td>
<td></td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>21-day, 8 days depuration</td>
<td>NOAEL = 0.001 mg AI/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Liver</td>
<td></td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>21-day, 18 days depuration</td>
<td>NOAEL = 0.001 mg AI/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioaccumulation in Liver</td>
<td></td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>21-day</td>
<td>BCF (egg yolk) = 0.4</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Bioconcentration</td>
<td></td>
<td>{Fournier, 2012, 1927629@au thor-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
<td>-------</td>
<td>--------------------------</td>
<td>------------------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>134237-52-8</td>
<td>Domestic chicken (Gallus domesticus)</td>
<td>Diet</td>
<td>21-day</td>
<td>BCF (liver) = 0.3</td>
<td>0, 0.001 mg/kg food</td>
<td>Food, Nominal, Solvent: Rapeseed oil</td>
<td>Residue: Bioconcentration</td>
<td>{Fournier, 2012, 1927629@@author-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>American Kestrel (Falco sparverius)</td>
<td>Diet</td>
<td>4 weeks prior to pairing, continuing through incubation until 2 days prior to hatch</td>
<td>LOAEL (males and females) = 0.51 mg AI/kg food</td>
<td>0, 0.51 mg/kg-bw/day</td>
<td>Food, Nominal, Solvent: Safflower oil</td>
<td>Decreased activity, general: measured during courtship, measured at 5 days after pairing</td>
<td>{Marteinson, 2012, 1927590@@author-year}</td>
<td>High</td>
<td>1927590</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>American Kestrel (Falco sparverius)</td>
<td>Diet</td>
<td>4 weeks prior to pairing, continuing through incubation until 2 days prior to hatch</td>
<td>LOAEL (males) = 0.51 mg/kg-bw/day</td>
<td>0, 0.51 mg/kg-bw/day</td>
<td>Food, Nominal, Solvent: Safflower oil</td>
<td>Decreased activity, general and flying measured during brood-rearing; Courtship behavior; Reduced vocalizations, effect observed throughout courtship; Pair-bonding nesting behavior; Reduced Displays; Care of young, nest attentiveness: Reduced frequency of entry into nest-box and Decreased food retrieval</td>
<td>{Marteinson, 2012, 1927590@@author-year}</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID.</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------</td>
<td>-------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>American Kestrel (Falco sparverius)</td>
<td>Diet</td>
<td>4 weeks prior to pairing, continuing through incubation until 2 days prior to hatch</td>
<td>LOAEL (females) = 0.51 mg/kg-bw/day</td>
<td>0, 0.51 mg/kg-bw/day</td>
<td>Food, Nominal, Solvent: Safflower oil</td>
<td>Courtship behavior: Reduced vocalizations, effect observed only at 5 days after pairing; Reduced courtship displays, effect observed at 5 days after pairing; Pair-bonding nesting behavior: Increased displays; Care of young, nest attentiveness: Increased frequency of entry into nest-box and Increased food retrieval</td>
<td>Marteinson, 2012, 1927590@au thor-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>25637-99-4</td>
<td>American Kestrel (Falco sparverius)</td>
<td>Diet</td>
<td>4 weeks prior to pairing, continuing through incubation until 2 days prior to hatch</td>
<td>LOAEL = 0.51 mg/kg-bw/day</td>
<td>0, 0.51 mg/kg-bw/day</td>
<td>Food, Nominal, Solvent: Safflower oil</td>
<td>Reduced mass of first egg; Care of young, nest attentiveness; Incubation nest temperature</td>
<td>Marteinson, 2012, 1927590@au thor-year</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>Endpoint</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------------</td>
<td>-------</td>
<td>----------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>American Kestrel (Falco sparverius)</td>
<td>Diet</td>
<td>75 days: 3 weeks prior to pairing, continuing through incubation until first chick hatched</td>
<td>LOAEL = 0.51 mg AI/kg food</td>
<td>0, 0.51 mg/kg-bw/day</td>
<td>Food, Nominal, Solvent: Safflower oil</td>
<td>Residue: Accumulation in Eggs; Reproductive: Decreased time to first egg laid after pairing, decreased clutch size, decreased egg volume per clutch, decreased egg volume per pair, decreased egg mass per clutch, Decreased egg mass at mid-incubation, Increased egg weight loss at mid-incubation</td>
<td>[Fernie, 2011, 1401837-author-year]</td>
<td>High</td>
<td>1401837</td>
</tr>
<tr>
<td>25637-99-4</td>
<td>American Kestrel (Falco sparverius)</td>
<td>Diet</td>
<td>75 days: 3 weeks prior to pairing, continuing through incubation until first chick hatched</td>
<td>NOAEL = 0.51 mg AI/kg food</td>
<td>0, 0.51 mg/kg-bw/day</td>
<td>Food, Nominal, Solvent: Safflower oil</td>
<td>Lipid concentration in eggs; Reproductive: Egg shell thickness, Overall hatching success (number of hatchlings), Overall reproductive success (number of fledglings per brood/number of eggs per female), Fertility (percentage fertile eggs laid per female), Hatching success (percentage hatchlings of fertile eggs per female), Fledgling success (percentage fledglings of hatchlings per female)</td>
<td>[Fernie, 2011, 1401837-author-year]</td>
<td>High</td>
<td>1401837</td>
</tr>
<tr>
<td>CAS RN</td>
<td>Test Species</td>
<td>Media</td>
<td>Duration</td>
<td>End-point</td>
<td>Conc(s)</td>
<td>Test Analysis</td>
<td>Effect(s)</td>
<td>References</td>
<td>Data Quality Ratings</td>
<td>HERO ID</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>--</td>
<td>-----------</td>
<td>---</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>American kestrel (F. sparverius)</td>
<td>Diet exposed</td>
<td>21-day</td>
<td>LOAEL</td>
<td>15.61 ng/g ww (high exposure)</td>
<td>Food, Nominal, Solvent: Safflower oil</td>
<td>Reproduction</td>
<td>[Marteinson, 2010, 1927669]</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American kestrel (F. sparverius)</td>
<td>Diet exposed</td>
<td>21-day</td>
<td>LOAEL</td>
<td>0.51 mg/kg-day</td>
<td>HBCD dissolved in safflower oil was injected into the brains of dead cockerels daily; kestrels fed from the cockerels ad libitum and received a dose of approximately 0.51 mg/kg-day.</td>
<td>Increased testes weight in unpaired males</td>
<td>[Marteinson, 2011, 1927624]</td>
<td>High</td>
<td>1927624</td>
</tr>
</tbody>
</table>