Portable Air Cleaners, Cardiovascular Health, and Fetal Growth: Results from Randomized Studies in Canada and Mongolia

Ryan Allen, PhD
Faculty of Health Sciences
Simon Fraser University

EPA Web Summit on Indoor Air Filtration
June 13, 2019
Collaborators

Prabjit Barn
Bruce Lanphear
Lawrence McCandless
Tim Takaro
Scott Venners
Glenys Webster

Enkhjargal Gombojav
Chimeduren Ochir
Buyantushig Boldbaatar
Bolor Beejin
Gerel Naidan
Jargalsaikhan Galsuren
Bayarkhuu Legtseg

Michael Brauer
Chris Carlsten
Jennifer Hutcheon
Patricia Janssen
Barbara Karlen
Sara Leckie
Stephan van Eeden
Imelda Wong

Tsogtbaatar Byambaa

Sverre Vedral

Craig Janes
Presentation Overview

- Two randomized studies of portable HEPA filter air cleaners and health:
 - Rural Canadian community
 - Moderate concentrations from **wood stoves**
 - 7-day intervention, healthy adults
 - **Cardiovascular outcomes**
 - City in a developing country (Mongolia)
 - High concentrations from **coal stoves**
 - 7-month intervention, pregnant women
 - **Fetal growth indicators**
Portable Air Cleaners and Wood Smoke

• Smithers, British Columbia
 – Population ~5,300
 – At the time, 63% of homes in the region used wood as primary heating fuel.

Photo courtesy of Ben Weinstein
Study Design

Single-blind randomized crossover study design:

- 43 healthy adults (mean age: 43 years)
- Honeywell 50300 in living room; 18150 in bedroom
- Two consecutive 7-day monitoring periods
- Measures of oxidative stress, systemic inflammation, and endothelial (blood vessel) function
Results

- Air pollution concentrations:
 - PM$_{2.5}$ infiltration efficiency: ↓41% (0.34 → 0.20)
 - Indoor PM$_{2.5}$ concentration: ↓59% (11.2 → 4.6 µg/m3)
 - Indoor levoglucosan concentration: ↓74% (127 → 33 ng/m3)

- Health effects:
 - ↑ blood vessel function (reactive hyperemia index)
 - ↓ systemic inflammation (C-reactive protein)
 - No changes in oxidative stress markers

Allen et al., Am J Respir Crit Care Med, 2011
Rationale

- Meta-analyses of observational studies report ~10-20 gram decreases in mean birth weight per 10 µg/m³ PM$_{2.5}$
Rationale

More than 90% of people worldwide live in areas exceeding the WHO Guideline for healthy air. More than half live in areas that do not even meet WHO’s least-stringent air quality target.

Figure 2. Annual average PM$_{2.5}$ concentrations in 2017 relative to the WHO Air Quality Guideline.

- Emissions reductions should be the goal, but...
- Household-level interventions may mitigate risks in the near term
- Pregnancy represents a well-defined time period for intervention, with potential benefits over the life course

Ulaanbaatar, Mongolia

- Population ~ 1.3 million
- Air pollution:
 - Rapid population growth
 - Cold winters
 - Topography
 - Coal combustion

Allen et al., *Air Qual Atmos Health*, 2013
In Ulan Bator, winter stoves fuel a smog responsible for one in 10 deaths

Life in the Most Polluted Capital in the World

By Joseph Hincks | Photographs by Zhang Chi for TIME | Video by Zhang Chi, Aria Chen and Arpita Aneja
March 23, 2018

Burning Coal for Survival in the World’s Coldest Capital
Study Design

• **Randomized controlled trial**
 – Intervention group received 1-2 HEPA filter air cleaners for use in homes, and control group received no air cleaners (single blind; participants were aware of intervention status)
 – Coway AP-1009CH air cleaner, CADR (smoke) = 150

• **Study sample:**
 – Non-smoking, ≥ 18 years, ≤ 18 weeks pregnancy, single gestation pregnancy, residing in apartments

• **Sample size:** 540 participants recruited

• **Data collection period:** January 2014 to December 2015
Data Collection

Conception

~11 weeks

Air cleaner deployed (intervention homes)

Delivery

~31 weeks

7-day PM$_{2.5}$ measurement

Birth measurements (weight, length, head circumference)
Air Cleaner Impact on PM$_{2.5}$

7-day average PM$_{2.5}$ concentrations

-29% (-37, -21%)

Barn et al., Sci Total Environ, 2018
Air Cleaner Impact on PM$_{2.5}$

7-day average PM$_{2.5}$ concentrations

<table>
<thead>
<tr>
<th>Season</th>
<th>Control homes</th>
<th>Intervention homes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter (Dec-Feb)</td>
<td>-36% (-49, -20%)</td>
<td></td>
</tr>
<tr>
<td>Spring (Mar-May)</td>
<td>-35% (-48, -19%)</td>
<td></td>
</tr>
<tr>
<td>Summer (Jun-Aug)</td>
<td>-18% (-30, -4%)</td>
<td>-31% (-43, -18%)</td>
</tr>
<tr>
<td>Fall (Sep-Nov)</td>
<td>-31% (-43, -18%)</td>
<td></td>
</tr>
</tbody>
</table>

Barn et al., Sci Total Environ, 2018
Air Cleaner Impact on PM$_{2.5}$

7-day average PM$_{2.5}$ concentrations

First week of deployment

-40% (-48, -31%)

~ 5 months after deployment

-15% (-27, 0%)

Barn et al., Sci Total Environ, 2018
Trial Profile

Randomized (n=540)

Allocated to control (n=272)
- Received allocated control (n=267)
- Did not receive allocated control (n=5)

Lost to follow up (n=19)
- 13 withdrew consent
- 6 moved out of study area

Followed until the end of pregnancy (n=253)

Excluded (n=30)
- 24 spontaneous abortions
- 5 stillbirths
- 1 chromosomal abnormality

Analysed (n=223)
- 222 live births
- 1 neonatal death

Allocated to intervention (n=268)
- Received allocated intervention (n=265)
- Did not receive allocated intervention (n=3)

Lost to follow up (n=9)
- 3 withdrew consent
- 6 moved out of study area

Followed until the end of pregnancy (n=259)

Excluded (n=19)
- 10 spontaneous abortions
- 8 stillbirths
- 1 chromosomal abnormality (also a neonatal death)

Analysed (n=240)
- 237 live births
- 3 neonatal deaths

Barn et al., Environ Int, 2018
Select Cohort Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Control (n = 223)</th>
<th>Intervention (n = 240)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median (25%-75%)</td>
<td>or N (%)</td>
</tr>
<tr>
<td></td>
<td>or N (%)</td>
<td></td>
</tr>
<tr>
<td>Mother’s age at enrollment, yr</td>
<td>28 (25 – 33)</td>
<td>30 (25 – 33)</td>
</tr>
<tr>
<td>Gestational age at enrollment, weeks</td>
<td>11 (9 – 12)</td>
<td>11 (9 – 13)</td>
</tr>
<tr>
<td>Mother completed university</td>
<td>179 (80%)</td>
<td>191 (80%)</td>
</tr>
<tr>
<td>Married / common-law</td>
<td>184 (83%)</td>
<td>191 (80%)</td>
</tr>
<tr>
<td>Pre-pregnancy BMI, kg/m²</td>
<td>21.7 (19.6 – 23.9)</td>
<td>21.4 (19.8 – 24.0)</td>
</tr>
<tr>
<td>Smoked at any time during pregnancy</td>
<td>19 (9%)</td>
<td>20 (8%)</td>
</tr>
<tr>
<td>Lived w/ smoker at any time during pregnancy</td>
<td>112 (50%)</td>
<td>115 (48%)</td>
</tr>
<tr>
<td>Caesarean delivery</td>
<td>88 (39%)</td>
<td>86 (36%)</td>
</tr>
<tr>
<td>Female child</td>
<td>108 (48%)</td>
<td>109 (45%)</td>
</tr>
<tr>
<td>Birth weight, grams</td>
<td>3450 (3150 – 3800)</td>
<td>3550 (3200 – 3800)</td>
</tr>
</tbody>
</table>

Barn et al., *Environ Int*, 2018
Unexpected Intervention Effects

• The intervention was associated with:
 – A lower risk of spontaneous abortion:
 \[\text{OR} = 0.38 \ (95\% \ CI: \ 0.18, \ 0.82) \]
 – A higher risk of preterm birth:
 \[\text{OR} = 2.37 \ (95\% \ CI: \ 1.11, \ 5.07) \]

• The intervention may have enabled fetuses to survive long enough to be born preterm

Barn et al., Environ Int, 2018
Intervention Effects on Fetal Growth

- The intervention was not significantly associated with average birth weight among all births: 18 g (95% CI: -84, 120 g)
 - After adjusting for differences in pre-term birth, the intervention was associated with an increase in mean birth weight: 84 g (95% CI: -1, 170 g)
- Among full-term births, the intervention was associated with an increase in mean weight: 85 g (95% CI: 3, 167 g)
Summary

• Short-term use of portable HEPA filter air cleaners may improve cardiovascular health indicators
 – Supported by several more recent studies
 – Implications for effects in other systems in the body

• Long-term use reduced concentrations in a high-pollution setting, but efficacy decreased over time
 – “Air cleaner fatigue” – noise, concerns about electricity costs

• Some evidence of improved fetal growth among women who used air cleaners during pregnancy

• When possible, our goal should be to reduce emissions
 – Household interventions may mitigate risks
 – Pregnancy is a well-defined time to intervene
Thank You

- Study participants
- Research staff
- Dr. Prabjit Barn
- Funding agencies