Exploring the Vertical Distribution of Wildland Fire Smoke in CMAQ

Joseph L. Wilkins, PhD

Computational Exposure Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA

Presentation at the 2019 International Emissions Inventory Conference on Aug 2, 2019
Disclaimer: The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA.
Motivation

Worldwide

~300k annual deaths
~300 M ha burned

Continental U.S.

~8k annual deaths
~2 M ha burned
~ billions in cost

Numbers have grown by 50% in 20 years

1 M ha = 104 km², 1 ha = 2.47 acres
Fire Detection Techniques

Pre 1980’s
- Watch Towers

Post 1980’s
- Airplanes

Current
- Remote Sensing
The Fire Modeling Process

Input
Detection

Framework
Math & Stuff

Output
Prediction
Current Status

- Plume Rise-in-line module in CMAQ needs updating (10+ years old)
- Post CMAQv5.3 development users selectable plume rise modules.
- More obs (Lidar and Satellite) validations — plume tops and fire detections.

Test three sensitivities:
- Grid spacing (12km vs 4km)
- Briggs vs alt. algorithms (SOFIEV and PBL + 500m)
- Temporal allocation (diurnal vs 4hr).
Episode information

<table>
<thead>
<tr>
<th>Episode</th>
<th>Prescribed fire</th>
<th>Wild fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Konza Prairie Biological Station in Flint Hills, Kansas</td>
<td>Stanislaus National Forest in California</td>
</tr>
<tr>
<td>Detection method</td>
<td>Mini Micro Pulse Lidar</td>
<td>CALIOP and GOES</td>
</tr>
<tr>
<td>Acres burned</td>
<td>1500 ha total (83 ha)</td>
<td>104K ha total (6,562 ha)</td>
</tr>
</tbody>
</table>

Image

![Image 1](image1.png)
![Image 2](image2.png)

References

Wilkins et al., in prep
Peterson et al., 2014 BAMS
Episode information

Plume structure

MiniMPL

Konza 3/16/2017

Prescribed
Plume vert dist
Non uniform
Top @ 1100 m

CALIOP

Rim Fire 8/21/2013

Wildfire
Plume vert dist.
Uniform
Top @ 6502 m
MiniMPL – plume top heights

Height (m)

Model hour (LST)
MiniMPL – plume top heights

Temporal

- Lidar
- K8 BRIGGS12KM4HR
- BASE12

MB -155.7

Spatial

- K8 BRIGGS4KM12HR

MB 87.4

Both

- K8 BRIGGS4KM4HR

MB 271
MiniMPL – plume top heights

Sofiev-Temporal

Sofiev-Spatial

PBL500

![Graphs showing plume top heights for MiniMPL, Sofiev-Temporal, Sofiev-Spatial, and PBL500.](graph.png)
CALIOP – plume top heights
CALIOPI – plume top heights

Sofiev

Plume Height (m)

Time (UTC)

PBL500

Plume Height (m)

Time (UTC)
Preliminary conclusions

• Temporal resolution (time of burn) shows most improvement overall.

• Algorithms are highly dependent on input information and design

• Nighttime plume rise needs investigation

• WF needs to be treated different than RX
Future work

A lot of work remains; the solution to a changing climate is to increase research efforts, knowledge, and action.
Acknowledgements

Thanks to co-authors and collaborators at NASA, US Forest Service, US Dep. of Agriculture, and the U.S. EPA.
<table>
<thead>
<tr>
<th>Number</th>
<th>Simulation name</th>
<th>Plume rise method description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BASE12</td>
<td>Briggs simulation using 12 hour and 12 km grid</td>
<td>Pouliot et al. 2005</td>
</tr>
<tr>
<td>2</td>
<td>BRIGGS12KMHR</td>
<td>Modified Briggs using field data for duration of fire (3 and 4 hr)</td>
<td>Luxi et al. 2018</td>
</tr>
<tr>
<td>3</td>
<td>SOFIEV12KMHR</td>
<td>Sofiev simulation using hour (3 and 4) modification and 12 km grid</td>
<td>Sofiev et al. 2012</td>
</tr>
<tr>
<td>4</td>
<td>PBL50012KM</td>
<td>Plume height top is set to the boundary layer top plus 500 m</td>
<td>Kahn et al. 2007</td>
</tr>
<tr>
<td>5</td>
<td>BRIGGS4KMHR</td>
<td>Modified Briggs using 4km grid resolution, 12, 4, and 3 hours</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>SOFIEV4KMHR</td>
<td>Modified Sofiev using 4km grid resolution, 12,4, and 3 hours</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>BRIGGS4KM12HR</td>
<td>Briggs simulation using 12 hour and 4 km grid</td>
<td>-</td>
</tr>
<tr>
<td>simulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Burn</td>
<td>BASE12</td>
<td>BRIGGS12KMHR</td>
<td>SOFIEV12KMHR</td>
</tr>
<tr>
<td>1</td>
<td>-2356.2</td>
<td>—</td>
<td>-3420.7</td>
</tr>
<tr>
<td>2</td>
<td>-2663.0</td>
<td>—</td>
<td>-3341.7</td>
</tr>
<tr>
<td>3</td>
<td>-272.4</td>
<td>-155.7</td>
<td>112.5</td>
</tr>
<tr>
<td>4</td>
<td>-449.2</td>
<td>-35.6</td>
<td>-215.5</td>
</tr>
<tr>
<td>5</td>
<td>-3586.2</td>
<td>-3405.0</td>
<td>-2975.1</td>
</tr>
</tbody>
</table>

| root mean square error | | | | | | | | |
|------------------------|-----|-----|-----|-----|-----|-----|-----|
| simulation | BASE12 | BRIGGS12KMHR | SOFIEV12KMHR | PBL50012KM | BRIGGS4KMHR | SOFIEV4KMHR | BRIGGS4KM12HR |
| 1 | 2803.9 | — | 3519.8 | 3315.2 | — | — | — |
| 2 | 3215.0 | — | 3667.1 | 2325 | — | — | — |
| 3 | 459.6 | 391.6 | 546.4 | 746.0 | 358.8 | 705.8 | 349.6 |
| 4 | 717.8 | 330.3 | 496.3 | 484.1 | 450.8 | 818.2 | 371.6 |
| 5 | 3169.5 | 3056.2 | 2715.5 | 2904.9 | 2916.5 | 2826.6 | 3091.6 |