

United States Environmental Protection Agency EPA Document #740-R1-8013 August 2019, *DRAFT* Office of Chemical Safety and Pollution Prevention

Draft Risk Evaluation for 1-Bromopropane (*n*-Propyl Bromide)

CASRN: 106-94-5

Supplemental Information on Human Health Benchmark Dose Modeling

August 2019

PEER REVIEW DRAFT – DO NOT CITE OR QUOTE

TABLE OF CONTENTS

TABLE OF CONTENTS	2
LIST OF TABLES	4
LIST OF FIGURES	9
ACKNOWLEDGEMENTS	
1 INTRODUCTION	
2 BENCHMARK DOSE MODELING OF NON-CANCER EFFECTS	
2.1 RENCHMARK DOSE MODELING OF NON CANCER FEELCTS FOR ACTIVE EXPOSIBLES	13
2.1 DENCHMARK DOSE MODELING OF NON-CANCER EFFECTS FOR ACUTE EXPOSURES	
2.1.1 Decreased live litter size	
2.2 BENCHMARK DOSE MODELING OF NON-CANCER EFFECTS FOR CHRONIC EXPOSURES.	
2.2.1 Increased Incidence of Vacuolization of Centrilobular Hepatocytes in Males	
2.2.2 Increased Incidence of Vacuolization of Centrilobular Hepatocytes in Males	
2.2.3 Increased Incidence of Vacuolization of Centrilobular Hepatocytes in Females	
2.2.4 Increased Incidence of Renal Pelvic Mineralization in Males	
2.2.5 Increased Incidence of Renal Pelvic Mineralization in Females	
2.2.6 Decreased Seminal Vesicle Weight	40
2.2.6.1 Decreased Relative Seminal Vesicle Weight	41
2.2.6.2 Decreased Absolute Seminal Vesicle Weight	
2.2.7 Decreased Percent Normal Sperm Morphology	
2.2.8 Decreased Percent Motile Sperm	
2.2.9 Decreased Left Cauda Epididymis Weight	
2.2.10 Decreased Fight Cauda Epidiaymis weight	
2.2.11 Increased Estrus Cycle Length	
2.2.12 Decreased Male and Female Fortility Index	
2.2.15 Decreased Implantations Sites	
2.2.14 Decreased Implantations Sties	
2.2.15 Decreased Body Weight in F1 Male Pups at PND 28	
2.2.15.2 Decreased Body Weight in F ₂ Female Pups at PND 14	
2.2.15.3 Decreased Body Weight in F2 Female Pups at PND 21	
2.2.15.4 Decreased Body Weight in F ₂ Male Pups at PND 14	77
2.2.15.5 Decreased Body Weight in F ₂ Male Pups at PND 21	
2.2.16 Decreased Brain Weight	83
2,2,16,1 Decreased Brain Weight in F ₀ Females	83
2.2.16.3 Decreased Brain Weight in F ₁ Females as Adults	
2.2.16.4 Decreased Brain Weight in F ₁ Males as Adults	
2.2.16.5 Decreased Brain Weight in F2 Females at PND 21	
2.2.16.6 Decreased Brain Weight in F ₂ Males at PND 21	
2.2.17 Decreased Hang Time	
3 BENCHMARK DOSE MODELING OF TUMORS	101
3.1 LUNG TUMORS IN FEMALE MICE	
3.1.1 Summary of Multistage Model	
3.1.1.1 Selected Frequentist Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1, 105	doses are in ppm
3.1.1.2 Selected Frequentist Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 108	, doses are in ppm
3.1.2 Summary of Frequentist Model Averaging	110
3.1.3 Summary of Bayesian Model Averaging	111
3.1.3.1 Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1, doses are in ppm	
3.1.3.2 Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1, doses are in ppm	

3.2 LARGE INTESTINE ADENOMAS IN FEMALE RATS	
3.2.1 Summary of Multistage Model	
3.2.1.1 Selected Frequentist Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1, dose 116	s are in ppm
3.2.1.2 Selected Frequentist Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1, doe 119	ses are in ppm
3.2.2 Summary of Frequentist Model Averaging	120
3.2.3 Summary of Bayesian Model Averaging	121
3.2.3.1 Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1, doses are in ppm	121
3.2.3.2 Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1, doses are in ppm	
3.3 KERATOACANTHOMA AND SQUAMOUS CELL CARCINOMAS IN MALE RATS	
3.3.1 Summary of Multistage Model	126
3.3.1.1 Selected Frequentist Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1, dose 126	s are in ppm
3.3.1.2 Selected Frequentist Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1, doi 128	ses are in ppm
3.3.2 Summary of Frequentist Model Averaging	129
3.3.3 Summary of Bayesian Model Averaging	
3.3.3.1 Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1, doses are in ppm	130
3.3.3.2 Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1, doses are in ppm	131
4 REFERENCES	

LIST OF TABLES

Table 2-2 Summary of BMD Modeling Results for Reduced Litter Size in F₀ Generation Exposed to 1-BP by Inhalation; BMRs of 1 Standard Deviation, and 5% and 1% Relative Deviation From Table 2-3 BMD Modeling Results for Reduced Litter Size in F₀ Generation Exposed to 1-BP by Inhalation; BMRs of 1 Standard Deviation, and 5% and 1% Relative Deviation From Control Table 2-4 BMD Modeling Results for Reduced Litter Size in F₀ Generation Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study with Variances Fixed at Smallest, Table 2-5. Implantation sites and incidence of post implantation loss in pregnant female rats in the Table 2-6 Summary of BMDS modeling results for incidence of post implantation loss in female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 5% extra risk. Dose groups = 0, Table 2-7 Summary of BMDS modeling results for incidence of post implantation loss in female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 1% extra risk. Dose groups = 0, Table 2-8 Summary of BMDS modeling results for incidence of post implantation loss in female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 5% extra risk. Dose groups = 0, Table 2-9 Summary of BMDS modeling results for incidence of post implantation loss in female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 1% extra risk. Dose groups = 0, Table 2-10 Summary of BMDS modeling results for incidence of post implantation loss in female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 5% extra risk. Dose groups = 0, Table 2-11 Summary of BMDS modeling results for incidence of post implantation loss in female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 1% extra risk. Dose groups = 0, Table 2-12 Incidence of Vacuolization of Centrilobular Hepatocytes Selected for Dose-Response Table 2-13 Summary of BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in Table 2-14 BMD Modeling Results for Reduced Litter Size in F_0 Generation Exposed to 1-BP by Inhalation; BMRs of 1 Standard Deviation, and 5% and 1% Relative Deviation From Control Table 2-15 Incidence of Vacuolization of Centrilobular Hepatocytes Selected for Dose-Response Table 2-16 Summary of BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in Table 2-17 BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in Male Rats Table 2-18 Incidence of Vacuolization of Centrilobular Hepatocytes Selected for Dose-Response

Table 2-19 Summary of BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in
Female F ₀ Rats Following Inhalation Exposure to 1-BP in a Two-Generation Study
Table 2-20 BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in Female Rats
Exposed to 1-BP Via Inhalation; BMR 10% Added Risk
Table 2-21 Incidence of Renal Pelvic Mineralization Selected for Dose-Response Modeling for
1-BP
Table 2-22 Summary of BMD Modeling Results for Renal Pelvic Mineralization in Male F ₀ Rats
Following Inhalation Exposure to 1-BP in a Two-Generation Study
Table 2-23 BMD Modeling Results for Renal Pelvic Mineralization in Male Rats Exposed to 1-BP
Via Inhalation; BMR 10% Added Risk
Table 2-24 Incidence of Renal Pelvic Mineralization Selected for Dose-Response Modeling for
1-BP
Table 2-25 Summary of BMD Modeling Results for Renal Pelvic Mineralization in Female F ₀ Rats
Following Inhalation Exposure to 1-BP in a Two-Generation Study
Table 2-26 BMD Modeling Results for Renal Pelvic Mineralization in Female Rats Exposed to 1-
BP Via Inhalation; BMR 10% Added Risk
Table 2-27 Relative Seminal Vesicle Weight Data Selected for Dose-Response Modeling for 1-BP
Table 2-28 Summary of BMD Modeling Results for Relative Seminal Vesicle Weight in Rats
Exposed to 1-BP by Inhalation
Table 2-29 BMD Modeling Results for Relative Seminal Vesicle Weight; BMR = 1 Standard
Deviation Change from Control Mean
Table 2-30 Absolute Seminal Vesicle Weight Data Selected for Dose-Response Modeling for 1-BP
Table 2-31 Summary of BMD Modeling Results for Seminal Vesicle Absolute Weight in Rats
Exposed to 1-BP by Inhalation
Table 2-32 BMD Modeling Results for Seminal Vesicle Absolute Weight; BMR = 1 Standard
Deviation Change from Control Mean
Table 2-33 Sperm Morphology Data Selected for Dose-Response Modeling for 1-BP46
Table 2-34 Summary of BMD Modeling Results for Sperm Morphology in the F ₀ Generation
Exposed to 1-BP by Inhalation
Table 2-35 BMD Modeling Results for Sperm Morphology in F ₀ Rats Exposed to 1-BP by
Inhalation; BMR = 1 Standard Deviation Change from Control Mean
Table 2-36 Sperm Motility Data Selected for Dose-Response Modeling for 1-BP 49
Table 2-37 Summary of BMD Modeling Results for Sperm Motility F ₀ Male Rats Following
Inhalation Exposure to 1-BP
Table 2-38 Summary of BMD Modeling Results for Sperm Motility F ₀ Male Rats Following
Inhalation Exposure to 1-BP with the Highest Dose Dropped
Table 2-39 Left Cauda Epididymis Absolute Weight Data Selected for Dose-Response Modeling
for 1-BP
Table 2-40 Summary of BMD Modeling Results for Left Cauda Epididymis Absolute Weight F ₀
Male Rats Following Inhalation Exposure to 1-BP
Table 2-41 BMD Modeling Results for Left Cauda Epididymis Absolute Weight; BMR = 1
Standard Deviation Change from Control Mean
Table 2-42 Right Cauda Epididymis Absolute Weight Data Selected for Dose-Response Modeling
for 1-BP

Table 2-43 Summary of BMD Modeling Results for Right Cauda Epididymis Absolute Weight F ₀
Male Rats Following Inhalation Exposure to 1-BP
Table 2-44 BMD Modeling Results for Right Cauda Epididymis Absolute Weight; BMR = 1
Standard Deviation Change from Control Mean
Table 2-45 Estrus Cycle Length Data Selected for Dose-Response Modeling for 1-BP 58
Table 2-46 Summary of BMD Modeling Results for Estrus Cycle Length F ₀ Female Rats
Following Inhalation Exposure to 1-BP
Table 2-47 Antral Follicle Count Data Selected for Dose-Response Modeling for 1-BP
Table 2-48 Summary of BMD Modeling Results for Antral Follical Count in Female Rats
Following Inhalation Exposure to 1-BP
Table 2-49 Fertility Index Data Selected for Dose-Response Modeling for 1-BP60
Table 2-50 Summary of BMD Modeling Results for Fertility Index of F ₀ Rats Following Inhalation
Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-51 BMD Modeling Results for Fertility Index in Rats Exposed to 1-BP Via Inhalation
BMR 10% Extra Risk
Table 2-52 Implantations Site Data Selected for Dose-Response Modeling for 1-BP62
Table 2-53 Summary of BMD Modeling Results for Implantations Sites in F ₀ Rats Following
Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-54 BMD Modeling Results for Implantation Sites in Rats Exposed to 1-BP Via Inhalation
in ppm BMR 1 Standard Deviation
Table 2-55 Pup Body Weight Data in F1 Males at PND 28 for Dose-Response Modeling 66
Table 2-56 Summary of BMD Modeling Results for Body Weight of F1 Male Rat Pups on PND 28
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-57 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation
BMR 5% Relative Deviation
Table 2-58 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation
BMR 5% Relative Deviation
Table 2-59 Pup Body Weight Data in F ₂ Females at PND 14 from Selected for Dose-Response
Modeling
Table 2-59 Summary of BMD Modeling Results for Body Weight of F_2 Female Rat Pups on PND
14 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-60 BMD Modeling Results for Body Weight of F2 Female Rat Pups on PND 14 Following
Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study with Variances Fixed at
Smallest, Pooled and Highest Values
Table 2-61 Pup Body Weight Data in F ₂ Females at PND 21 from Selected for Dose-Response
Modeling
Table 2-62 Summary of BMD Modeling Results for Body Weight of F ₂ Females on PND 21
Following Innalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-05 BMD Modeling Results for Pup Body weight in Rats Exposed to 1-BP via Innatation
BMR = 5% Relative Deviation. / 0
Table 2-04 Pup Body weight Data in F ₂ Males at PND 14 from Selected for Dose-Response
Table 2.65 Summary of PMD Modeling Desults for Dody Weight of E. Male Dat Dung on DND 14
Following Inhalation Exposure of Parental Pats to 1 RD in a Two Concretion Study 79
Table 2.66 BMD Modeling Results for Pup Rody Weight in Pats Exposed to 1 BD Via Inhelation
in ppm $BMR = 5\%$ Relative Deviation 70
Table 2-67 Pup Body Weight Data in F ₂ Males at PND 21
1000 2 071 up Doug weight Data in 12 Wates at 110D 2100

Table 2-68 Summary of BMD Modeling Results for Body Weight of F ₂ Male Rat Pups on PND 21
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-69 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation
in ppm BMR = 5% Relative Deviation
Table 2-70 Brain Weight Data in F ₀ Females for Dose-Response Modeling
Table 2-71 Summary of BMD Modeling Results for Brain Weight of F ₀ Females Following
Inhalation Exposure to 1-BP
Table 2-72 BMD Modeling Results for Brain Weight in F_0 Female Rats Exposed to 1-BP Via
Inhalation in ppm BMR = 1 Standard Deviation
Table 2-73 Brain Weight Data in F ₀ Males for Dose-Response Modeling
Table 2-74 Summary of BMD Modeling Results for Brain Weight of F_0 Males Following
Inhalation Exposure to 1-BP
Table 2-75 BMD Modeling Results for Brain Weight of F_0 Male Rats Following Inhalation
Exposure to 1-BP in a Two-Generation Study with Variances Fixed at Smallest, Pooled and
Highest Values
Table 2-76 Brain Weight Data in F ₁ Females as Adults from Selected for Dose-Response Modeling
Table 2-77 Summary of BMD Modeling Results for Brain Weight of F ₁ Female Rats as Adults
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-78 BMD Modeling Results for Brain Weight in F ₁ Female Rats as Adults Exposed to 1-BP
Via Inhalation BMR = 1% Relative Deviation
Table 2-79 Brain Weight Data in F ₁ Males as Adults from Selected for Dose-Response Modeling
Table 2-80 Summary of BMD Modeling Results for Brain Weight of F ₁ Male Rats as Adults
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-81 Brain Weight Data in F ₂ Females at PND 21 from Selected for Dose-Response
Modeling
Table 2-82 Summary of BMD Modeling Results for Brain Weight of F ₂ Female Rats at PND 21
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-83 BMD Modeling Results for Brain Weight in F ₂ Female Exposed to 1-BP Via Inhalation
BMR = 1% Relative Deviation
Table 2-84 Brain Weight Data in F ₂ Males at PND 21 for Dose-Response Modeling95
Table 2-85 Summary of BMD Modeling Results for Brain Weight of F ₂ Male Rats as Adults
Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study
Table 2-86 BMD Modeling Results for Brain Weight in Rats Exposed to 1-BP Via Inhalation in
ppm BMR = 1% Relative Deviation
Table 2-87 Hang Time from a Suspended Bar Data for Dose-Response Modeling for 1-BP
Table 2-88 Summary of BMD Modeling Results for Hang Time from a Suspended Bar; BMR = 1
std. dev. change from control mean
Table 2-89 BMD Modeling Results for Hang Time from a Suspended Bar; BMR = 1 Standard
Deviation Change from Control Mean
Table 3-1 Incidence of Lung Tumors in Female Mice 102
Table 3-2 Summary of BMDS 3.0 modeling results for lung tumors in female mice exposed to 1-
BP by inhalation for 2 years (NTP, 2011); BMRs = 10% and 0.1% extra and added risk, doses are
in ppm103
Table 3-3 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1 Restricted;
Extra Risk, BMR = 0.001 and 0.1 User Input105

Table 3-4 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1 Restricted;
Extra Risk, BMR = 0.001 and 0.1 Model Results
Table 3-5 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1 Restricted;
Added Risk, BMR = 0.001 and 0.1 User Input
Table 3-6 Lung Tumors in Female Mice. Selected Frequentist Multistage - Multistage 1 Restricted:
Added Risk, BMR = 0.001 and 0.1 Model Results
Table 3-7 Lung Tumors in Female Mice. Summary of Frequentist Model Averaging 110
Table 3-8 Lung Tumors in Female Mice, Bayesian Model Averaging – Extra Risk, BMR = 0.001
and 0.1 User Inputs
Table 3-9 Lung Tumors in Female Mice Bayesian Model Averaging – Extra Risk BMR = 0.001
and 0.1 Model Results
Table 3-10 Lung Tumors in Female Mice Bayesian Model Averaging – Added Risk BMR –
112
Table 3-11 Lung Tumors in Female Mice, Bayesian Model Averaging Added Risk BMP –
Table 5-11 Lung Tuniors in Female Whee, Dayesian Model Averaging – Added Risk, Divik – 0.001 and 0.1 Model Pasults 112
Table 3.12 Incidence of Large Intestine Adenomas in Female Pats
Table 3-12 Inclucice of Earge Intestine Adenomas in Female Rats
radie 3-15 Summary of DWDS 5.0 modeling results for large intestine adenomas in remain ratio $ration = 100\%$ and 0.1% every and added
right doese are in nom
Tisk, doses are in ppin
1 Destricted Extra Dick DMD 0.001 and 0.1 User legitt
T Restricted; Extra Risk, DMR = 0.001 and 0.1 User Input
Table 3-15 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage - Multistage
1 Restricted; Extra Risk, $BMR = 0.001$ and 0.1 Model Results
Table 3-16 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage - Multistage
1 Restricted; Added Risk, $BMR = 0.001$ and 0.1 User input
Table 3-1 / Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage - Multistage
1 Restricted; Added Risk, $BMR = 0.001$ and 0.1 Model Results
Table 3-18 Large Intestine Adenomas in Female Rats, Summary of Frequentist Model Averaging
Table 3-19 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Extra Risk,
$BMR = 0.001 \text{ and } 0.1 \text{ User Inputs} \dots \dots$
Table 3-20 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Extra Risk,
$BMR = 0.001 \text{ and } 0.1 \text{ Model Results } \dots $
Table 3-21 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Added Risk,
BMR = 0.001 and 0.1 User Inputs
Table 3-22 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Added Risk,
$BMR = 0.001 \text{ and } 0.1 \text{ Model Results} \dots 122$
Table 3-23 Incidence of Keratoacanthoma and Squamous Cell Carcinomas in Male Rats 123
Table 3-24 Summary of BMDS 3.0 modeling results for keratoacanthoma & squamous cell
carcinomas in male rats exposed to 1-BP by inhalation for 2 years (NTP, 2011); BMRs = 10% and
0.1% extra and added risk, doses are in ppm
Table 3-25 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected Frequentist
Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1 User Input
Table 3-26 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected Frequentist
Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1 Model Results
Table 3-27 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected Frequentist
Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 User Input

Table 3-28 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected Frequenti	st
Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 Model Results	.128
Table 3-29 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Summary of	
Frequentist Model Averaging	.129
Table 3-30 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model	
Averaging – Extra Risk, BMR = 0.001 and 0.1 User Inputs	.130
Table 3-31 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model	
Averaging – Extra Risk, BMR = 0.001 and 0.1 Model Results	.130
Table 3-32 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model	
Averaging – Added Risk, BMR = 0.001 and 0.1 User Inputs	.131
Table 3-33 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model	
Averaging – Added Risk, BMR = 0.001 and 0.1 Model Results	.131

LIST OF FIGURES

LIST OF FIGURES
Figure 2-1 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M2) Model with Modeled Variance for Reduced Litter Size in F ₀ Generation Exposed to 1-BP by Inhalation;
BMR = 5% Relative Deviation from Control Mean
Figure 2-2. Plot of incidence rate by dose with fitted curve for NCTR model for post implantation
loss in male rats exposed to 1-BP21
Figure 2-3 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
implantation loss in male rats exposed to 1-BP22
Figure 2-4 Plot of incidence rate by dose with fitted curve for NCTR model for post implantation
loss in male rats exposed to 1-BP23
Figure 2-5 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
implantation loss in male rats exposed to 1-BP24
Figure 2-6 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
implantation loss in male rats exposed to 1-BP25
Figure 2-7 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
implantation loss in male rats exposed to 1-BP
Figure 2-8 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (LogLogistic)
for Vacuolization of Centrilobular Hepatocytes in Male Rats Exposed to 1-BP Via Inhalation in
ppm; BMR 10% Added Risk28
Figure 2-9 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Multistage
3°) for Vacuolization of Centrilobular Hepatocytes in Male Rats Exposed to 1-BP Via Inhalation in
ppm; BMR 10% Added Risk31
Figure 2-10 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(LogLogistic) for Vacuolization of Centrilobular Hepatocytes in Female Rats Exposed to 1-BP Via
Inhalation in ppm; BMR 10% Added Risk34
Figure 2-11 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Multistage
3°) for Renal Pelvic Mineralization in Male Rats Exposed to 1-BP Via Inhalation in ppm; BMR
10% Added Risk
Figure 2-12 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Probit) for
Renal Pelvic Mineralization in Female Rats Exposed to 1-BP Via Inhalation in ppm; BMR 10%
Added Risk

Figure 2-13 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M4) Model with Constant Variance for Relative Seminal Vesicle Weight: BMR = 1 Standard Deviation
Change from Control Mean
Figure 2-14 Plot of Mean Response by Dose in ppm with Fitted Curve for Hill Model with
Constant Variance for Seminal Vesicle Absolute Weight: BMR = 1 Standard Deviation Change
from Control Mean
Figure 2-15 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M2) Model
with Constant Variance for Sperm Morphology in E ₀ Rats Exposed to 1-BP by Inhalation: BMR –
1 Standard Deviation Change from Control Mean
Figure 2.16 Plot of Moon Desponse by Dose in ppm with Fitted Curve for Delynomial 4º Model
with Constant Variance for L aft Cauda Enididumia Absolute Waight: PMP = 1 Standard Deviation
Change from Control Mean
Change Irolli Control Mean
Figure 2-17 Piol of Mean Response by Dose in ppm with Fitted Curve for Polynomial 4 ⁻ Model
with Constant variance for Right Cauda Epididymis Absolute weight; $BNIR = 1$ Standard
Deviation Change from Control Mean
Figure 2-18 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(LogLogistic) for Fertility Index in Rats Exposed to 1-BP Via Inhalation in ppm BMR 10% Extra
$\mathbf{F} = \mathbf{O} \mathbf{I} \mathbf{O} \mathbf{D} \mathbf{I} \mathbf{O} \mathbf{O} \mathbf{I} \mathbf{O} \mathbf{O} \mathbf{I} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} O$
Figure 2-19 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Linear) for
Implantation Sites in Rats Exposed to 1-BP Via Inhalation in ppm BMR 1 Standard Deviation64
Figure 2-20 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(Exponential (M2)) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR 5%
Relative Deviation
Figure 2-21 Plot of Mean Response by Dose with Fitted Curve for the Hill Model for Pup Body
Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR 5% Relative Deviation
Figure 2-21 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(Polynomial 2°) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 5%
Relative Deviation
Figure 2-22 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(Polynomial 2°) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 5%
Relative Deviation
Figure 2-23 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Linear) for
Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 5% Relative Deviation.
Figure 2-24 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Linear) for
Brain Weight in F_0 Female Rats Exposed to 1-BP Via Inhalation in ppm BMR = 1 Standard
Deviation
Figure 2-25 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(Exponential (M2)) for Brain Weight in F_1 Female Rats as Adults Exposed to 1-BP Via Inhalation
in ppm BMR = 1% Relative Deviation
Figure 2-26 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
(Exponential (M2)) for Brain Weight in F_2 Female Exposed to 1-BP Via Inhalation in ppm BMR =
1% Relative Deviation
Figure 2-27 Plot of Mean Response by Dose with Fitted Curve for the Selected Model (Power) for
Brain Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 1% Relative Deviation96

Figure 2-28 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M4) Model
with Modeled Variance for Hang Time from a Suspended Bar; BMR = 1 Standard Deviation
Change from Control Mean
Figure 3-1 Plot of Results for Lung Tumors in Female Mice Frequentist Multistage Degree 1
Model with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the
BMDL
Figure 3-2 Plot of Results for Large Intestine Adenomas in Female Rats Frequentist Multistage
Degree 1 Model with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for
the BMDL
Figure 3-3 Plot of Results for Keratoacanthoma and Squamous Cell Carcinomas in Male Rats
Frequentist Multistage Degree 1 Model with BMR of 10% Extra Risk for the BMD and 0.95
Lower Confidence Limit for the BMDL127

ACKNOWLEDGEMENTS

This report was developed by the United States Environmental Protection Agency (U.S. EPA), Office of Chemical Safety and Pollution Prevention (OCSPP), Office of Pollution Prevention and Toxics (OPPT).

Acknowledgements

The OPPT Assessment Team gratefully acknowledges participation or input from ORD in developing this supplemental document

INTRODUCTION 1 1

2

3 BMD modeling was performed using USEPA's BMD Software package (BMDS), in a manner

4 consistent with EPA Benchmark Dose Technical Guidance. BMRs were selected for each 5 endpoint individually. The dose metric for all endpoints was the exposure concentration in ppm.

6 Results are presented for non-cancer effects from acute exposures, then chronic exposures and

7 cancer i.e. tumors.

8

2 Benchmark Dose Modeling of Non-Cancer Effects 9

2.1 Benchmark Dose Modeling of Non-Cancer Effects for Acute 10 **Exposures**

- 11
- 12

2.1.1 Decreased Live Litter Size

13 EPA modeled the decreased live litter size observed in the 2-generation reproductive and

14 developmental study by WIL Research (2001) as one endpoint relevant for calculating risks

15 associated with acute worker and consumer scenarios. A BMR of 5% was used to address the

16 relative severity of this endpoint (U.S. EPA, 2012). This endpoint choice is a combination of

reproductive effects where a BMR 10% relative deviation would be used and developmental 17

18 effects of post implantation loss which is considered a severe effect like mortality where a BMR

19 of 1% relative deviation would be used. For comparison the modeling results with a BMR of 1

20 standard deviation and 1% relative deviation are also shown. The doses and response data used

21 for the modeling are presented in Table 2-1.

22 Table 2-1 Litter Size Data Selected for Dose-Response Modeling for 1-BP

Dose (ppm)	Number of litters	Mean litter size	Standard Deviation
0	23	14.4	2.21
100	25	13.3	3.72
250	22	12.3	4.47
500	11	8.3	4.1

23

24 The best fitting model was selected based on Akaike information criterion (AIC; lower value

25 indicates a better fit), chi-square goodness of fit p-value (higher value indicates a better fit), ratio

of the BMC:BMCL (lower value indicates less model uncertainty) and visual inspection. 26

27 Comparisons of model fits obtained are provided in Table 2-2. The best-fitting model

28 (Exponential M2), based on the criteria described above, is indicated in **bold**. For the best fitting

29 model a plot of the model is shown in Figure 2-1, the model version number, model form,

30 benchmark dose calculation, parameter estimates and estimated values are shown. Although the

- 31 means were well-modeled the variances are not well modeled by the non-homogeneous variance
- 32 model (the non-homogeneous variance model was used because the BMDS test 2 *p*-value =
- 33 0.0130). To investigate the effect of the poor modeling of the variances on the BMDL, the models
- 34 were run using the smallest dose standard deviation (2.21), highest (4.47) and pooled (3.54) for all
- dose levels and the results are summarized in Table 2-4. As shown in the last column of Table 2-4 the ratios BMDLs for the lowest to the highest variance for the two best fitting models the Linear
- the ratios BMDLs for the lowest to the highest variance for the two best fitting models the Linear
 and Exponential (M2) models are 1.15 and 1.20, respectively. Overall the adjustment of the
- 37 and Exponential (M2) models are 1.15 and 1.20, respectively. Overall the adjustment of the 38 variances from most-variable to least-variable for all of the models makes little difference on the
- 39 BMDL. This is strong evidence that the poor variance modeling for the original data is not
- 40 substantially impacting the BMDL estimates. It is reasonable to use the non-homogeneous
- 41 Exponential M2 model for the original data because it has the lowest AIC of all the model choices
- 42 for the original data and therefore a BMDL of 41 ppm (40.7 ppm rounded to two significant
- 43 figures) was selected for this endpoint.
- 44

45 Table 2-2 Summary of BMD Modeling Results for Reduced Litter Size in F₀ Generation

46 Exposed to 1-BP by Inhalation; BMRs of 1 Standard Deviation, and 5% and 1% Relative

Model ^a	Goodne fit	ess of	BMD 1SD	BMDL 1SD	BMD 5RD	BMDL 5RD	BMD 1RD	BMDL 1RD	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
Exponential (M2) Exponential (M3) ^b	0.533	291. 10	256	158	61.3	40.7	12.0	7.97	The Exponential (M2) model was selected based on
Power ^c Polynomial 3 ^{°d} Polynomial 2 ^{°e} Linear	0.433	291. 51	281	189	69.9	49.8	14.0	9.95	lowest AIC from this set of models which have adequate <i>p</i> -values, adequate fit by visual inspection and the BMDLs are < 4-fold apart considered sufficiently close.
Hill	0.722	291. 96	178	error ^g	35.8	10.4	6.36	1.69	
Exponential (M4) Exponential (M5) ^f	0.622	292. 08	181	69.4	40.4	17.8	7.48	3.23	

47 **Deviation From Control Mean.**

^a Modeled variance case presented (BMDS Test 2 p-value = 0.0130), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were -0.16, -0.05, 0.66, -0.76, respectively.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

 $^{\rm e}$ For the Polynomial 2 $^{\circ}$ model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f For the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M4) model.

^g BMDL computation failed for this model.

- 49 14:24 11/20 2015
 50 Figure 2-1 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M2)
- 50 Figure 2-11 lot of Weah Response by Dose in ppin with Fitted Curve for Exponential (N2) 51 Model with Modeled Variance for Reduced Litter Size in F₀ Generation Exposed to 1-BP
- 52 by Inhalation; BMR = 5% Relative Deviation from Control Mean.
- 53
- 54 Table 2-3 BMD Modeling Results for Reduced Litter Size in F₀ Generation Exposed to 1-
- 55 BP by Inhalation; BMRs of 1 Standard Deviation, and 5% and 1% Relative Deviation
- 56 From Control Mean.

Exponential Model. (Version: 1.10; Date: 01/12/2015)

The form of the response function is: Y[dose] = a * exp(sign * b * dose)A modeled variance is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation BMD = 61.3264 BMDL at the 95% confidence level = 40.6605

Parameter Est	timate	es								
Variable	Variable Estimate			Default Paramete	Initia r Val	ıl ues				
lnalpha	lnalpha 10.4606			6.08025						
rho		-3	.14328		-1.44	632				
а		1	4.4915		10.53	312				
b		0.00	083639	98	0.0010	2437				
с			n/a		0					
d			n/a		1					
Table of Data	and E	Estimate	d Valu	es of In	terest					
Dose		N	Obs	Mean	Est Me	an	Obs	Std Dev	Est Std Dev	Scaled Resid
0		23	14	4.4	14.49			2.21	2.8	-0.1569
100		25	1	3.3	13.33			3.72	3.19	-0.04505
250		22	12	2.3	11.76			4.47	3.88	0.6554
500		11	8	3.3	9.54			4.1	5.4	-0.7614
Likelihoods of	Inter	est								
Model	L	og(likelil	nood)	# Pa	ram's		AI	C		
A1		-143.37	86		5		296.7	571		
A2		-137.98	79		8		291.9	758		
A3		-140.91	73		6		293.8	347		
R	(-153.50	54		2		311.0	108		
2		-141.54	75		4		291.0)95		
Tests of Intere	est									
Test	-2	*log(Like Ratio	e <mark>lihood</mark>)	T	est df		<i>p</i> -val	lue		
Test 1		31.03	3		6		< 0.00	001		
Test 2		10.78	3		3		0.012	297		
Test 3		5.859)		2		0.053	343		
Test 4		1.26			2		0.53	25		

Table 2-4 BMD Modeling Results for Reduced Litter Size in F₀ Generation Following Inhalation Exposure of Parental Rats to 60 1-BP in a Two-Generation Study with Variances Fixed at Smallest, Pooled and Highest Values.

Model ^a	Smallest Standard Deviation			Po	Pooled Standard Deviation				argest Sta	ndard Devi	iation	Ratio	
	Goodnes	ss of fit	BMD _{5RD}	BMDL _{5RD}	Goodn	ess of fit	BMD _{5RD}	BMDL5RD	Goodne	ss of fit	BMD _{5RD}	BMDL _{5RD}	BMDLs Smallest
	<i>p</i> -value	AIC	(ppm)	(ppm)	<i>p</i> -value	AIC	(ppm)	(ppm)	<i>p</i> -value	AIC	(ppm)	(ppm)	to Largest Std Dev
Linear	0.279	213.92	63.5	53.5	0.605	288.69	63.5	49.2	0.729	326.11	63.5	46.6	1.15
Exponential (M2)	0.112	215.74	54.9	44.1	0.420	289.42	54.9	39.4	0.579	326.57	54.9	36.7	1.20
Exponential (M4)	0.112	215.74	54.9	42.6	0.420	289.42	54.9	34.4	0.579	326.57	54.9	29.1	1.46
Polynomial 3°	0.506	213.81	96.4	58.4	0.678	289.86	96.4	51.1	0.742	327.58	96.4	47.8	1.22
Polynomial 2°	0.393	214.09	105	57.4	0.593	289.97	105	50.8	0.672	327.65	105	47.6	1.21
Power	0.303	214.43	115	56.4	0.519	290.10	115	50.5	0.609	327.74	115	47.4	1.19
Exponential (M3)	0.239	214.75	127	56.1	0.461	290.23	127	42.6	0.559	327.82	127	38.7	1.45
Exponential (M5)	0.239	214.75	127	56.1	N/A ^b	292.23	127	42.6	0.559	327.82	127	33.0	1.70
Hill	N/A ^b	216.43	115	56.4	N/A ^b	292.10	116	50.3	N/A ^b	329.74	116	47.2	1.19

^a Constant variance case presented (BMDS Test 2 p-value = 1.000, BMDS Test 3 p-value = 1.000), no model was selected as a best-fitting model. ^b No available degrees of freedom to calculate a goodness of fit value.

63 2.1.2 Post implantation loss

64 EPA modeled the post implantation loss observed in the F₀ generation of the 2-generation

65 reproductive and developmental study by WIL Research (2001) as one endpoint relevant for

66 calculating risks associated with acute worker and consumer scenarios. Post implantation loss was

67 significantly increased in all but the lowest dose group. A BMR of 1% was used to address the

68 relative severity of this endpoint which is considered a severe effect like mortality (U.S. EPA,

 $\frac{2012}{1}$). The doses and response data used for the modeling were individual animal data and are

shown in Table 2-5.

71 Table 2-5. Implantation sites and incidence of post implantation loss in pregnant female

72 rats in the F₀ generation exposed to 0, 100, 250 ppm 1-BP by Inhalation WIL Research

73 <u>(2001</u>)

Dose (ppm)	Number of Implantation Sites	Post Implantation Loss	Dam Weight at Study Week 0 (g)
0	15	0	170
0	17	0	160
0	14	0	147
0	14	0	153
0	15	1	158
0	15	0	153
0	18	2	168
0	12	0	165
0	15	0	164
0	15	1	166
0	15	0	149
0	19	0	174
0	15	0	156
0	16	1	160
0	18	1	158
0	18	0	161
0	19	0	166
0	13	0	172
0	16	0	181
0	13	0	177
0	8	0	141
0	14	1	144
0	18	1	157
100	15	0	161
100	14	0	159
100	14	2	153
100	13	1	146
100	16	1	167
100	16	0	150
100	15	0	159

Dose (ppm)	Number of Implantation Sites	Post Implantation Loss	Dam Weight at Study Week 0 (g)
100	14	1	152
100	16	0	165
100	14	0	166
100	14	3	158
100	15	1	168
100	16	1	143
100	12	3	148
100	16	2	177
100	16	0	154
100	1	0	153
100	14	0	179
100	18	0	171
100	16	0	180
100	16	1	170
100	15	0	165
100	15	1	157
100	15	0	164
100	12	0	162
250	18	1	159
250	16	2	160
250	16	5	151
250	15	1	141
250	15	2	179
250	17	0	150
250	14	1	153
250	15	0	175
250	13	0	146
250	15	0	161
250	17	1	167
250	16	1	165
250	16	1	166
250	11	3	162
250	15	0	157
250	12	1	153
250	6	2	158
250	б	0	166
250	2	0	167
250	18	2	146
250	18	2	164
250	12	4	155
500	5	0	161
500	12	0	158

Dose (ppm)	Number of Implantation Sites	Post Implantation Loss	Dam Weight at Study Week 0 (g)
500	5	1	181
500	15	2	159
500	12	1	151
500	16	0	152
500	9	1	166
500	6	0	176
500	6	1	165
500	11	0	144
500	2	0	144

74

75 The application of nested dichotomous models to these data was possible because the incidence

76 data for post-implantation loss were available for every litter, and preferable because they can

77 account for intra-litter correlations and litter-specific covariates. A litter specific covariate that is

78 potentially related to the endpoint of concern but is not itself impacted by dose is needed for this

79 analysis. In this case, dam body weight measured at week 0 and the number of implantation sites

80 were both used as covariates and the data was modeled separately in the same format for each. In

81 this case, dam body weight measured at week 0 was selected as the preferred litter specific

82 covariate because it was not affected at any dose and is potentially related to the implantation

83 loss endpoint.

84 Incidence of implantation loss presented a clear dose trend at lower doses but leveled off at the

85 highest dose coincident with a reduction in implantation sites. The data were modeled with the

86 all doses and the highest dose dropped for the purposes of this analysis because of the

87 uncertainty associated with reduced sample size and improved model fit.

88

89 The nested modeling was performed using the nested logistic and NCTR models contained in 90 BMDS 2.7.0.4, as follows:

- nested model for extra risk of 5% and 1%, using dam weight as a litter specific covariate, 91 92 dropping the highest dose group (Table 2-6 and Table 2-7 and Figure 2-2 and Figure 2-3).
- 93 nested model for extra risk of 5% and 1%, using number of implantation sites as a litter 94 specific covariate, dropping the highest dose group (Table 2-8 and Table 2-9 and Figure 95 2-4 and Figure 2-5).
- 96 nested model for extra risk of 5% and 1%, using dam weight as a litter specific covariate, ٠ 97 including all dose groups (Table 2-10 and Table 2-11 and Figure 2-6 and Figure 2-7).

98 Table 2-6 Summary of BMDS modeling results for incidence of post implantation loss in

99 female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 5% extra risk.

	Goodnes	s of fit	BMD ₀₅	BMDL ₀₅	
Model ^a	<i>p</i> -value	AIC	(ppm)	(ppm)	Basis for Model Selection
Litter-specific covariate = dam weig	Litter-specific covariate = dam weight; intra-litter correlations estimated ^b				
Nlogistic (b. seed ^c = 1541098366)	0.468	412.675	181	112	correlations estimated and
NCTR (b. seed = 1541098374)	0.469	412.658	182	90.8	without use of covariates had
Litter-specific covariate used; intra-	litter correlatio	ns assumed	to be zero		lowest AICs, the NCTR model was
Nlogistic (b. seed = 1541098367)	0.15	411.498	184	123	selected based on lowest AIC and
NCTR (b. seed = 1541098375)	0.14	411.483	185	92.3	BMDL.
Litter-specific covariate not used; in	tra-litter correl	ations estim	ated		
Nlogistic (b. seed = 1541098368)	0.507	410.84	173	107	
NCTR (b. seed = 1541098375)	0.513	410.84	174	86.8	
Litter-specific covariate not used; in	tra-litter correl	ations assun	ned to be zero		
Nlogistic (b. seed = 1541098368)	0.136	410.377	177	118	
NCTR (b. seed = 1541098376)	0.124	410.377	177	88.7	

100 **Dose groups = 0, 100, 250 ppm.**

^aBecause the individual animal data were available, the BMDS nested dichotomous models were fitted, with the selected model in bold. All values are rounded to 3 significant figures except for AIC values.

^bThe implantation size was also used as a covariate. See Table 2-8.

^cb. seed: bootstrap seed.

101

NCTR Model, with BMR of 5% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

102 14:52 11/01 2018

- 103 Figure 2-2. Plot of incidence rate by dose with fitted curve for NCTR model for post
- 104 implantation loss in male rats exposed to 1-BP

105 Table 2-7 Summary of BMDS modeling results for incidence of post implantation loss in

106 female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 1% extra risk.

2056 groups 0, 100, 20	° ppm				
	Goodne	ess of fit	BMD ₀₁	BMDL ₀₁	
Model ^a	<i>p</i> -value	AIC	(ppm)	(ppm)	Basis for Model Selection
Litter-specific covariate = dam wei	ght; intra-lit	ter correlat	ions estimated	ıb	The models without intra-litter
Nlogistic (b. seed ^c = 1541098369)	0.482	412.675	48.9	21.5	correlations estimated and without
NCTR (b. seed = 1541098377)	0.489	412.658	48.5	24.3	use of covariates had lowest AICs,
Litter-specific covariate used; intra	-litter correl	lations assu	med to be zero)	the Nlogistic model was selected
Nlogistic (b. seed = 1541098369)	0.146	411.498	47.5	23.6	based on lowest AIC and BMDL.
NCTR (b. seed = 1541098377)	0.144	411.483	47.1	23.5	
Litter-specific covariate not used; i	ntra-litter co	orrelations e	estimated		
Nlogistic (b. seed = 1541098370)	0.507	410.84	45.5	20.6	
NCTR (b. seed = 1541098378)	0.485	410.84	45.0	22.5	
Litter-specific covariate not used; i	ntra-litter co	orrelations a	issumed to be	zero	
Nlogistic (b. seed = 1541098371)	0.123	410.377	46.6	22.7	
NCTR (b. seed = 1541098379)	0.124	410.377	46.0	23.0	

107 **Dose groups = 0, 100, 250 ppm.**

^aBecause the individual animal data were available, the BMDS nested dichotomous models were fitted, with the selected model in bold. All values are rounded to 3 significant figures except for AIC values.

^bThe implantation size was also used as a covariate. See Table 2-9.

^cb. seed: bootstrap seed.

108

Nested Logistic Model, with BMR of 1% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

109 14:52 11/01 2018

- 110 Figure 2-3 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
- 111 implantation loss in male rats exposed to 1-BP

112 Table 2-8 Summary of BMDS modeling results for incidence of post implantation loss in

female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 5% extra risk.

	Goodne	ess of fit	BMD ₀₅	BMDL ₀₅	
Model ^a	<i>p</i> -value	AIC	(ppm)	(ppm)	Basis for Model Selection
Litter-specific covariate = implanta	tion size; in	tra-litter cor	rrelations estin	nated ^b	The models without intra-litter
Nlogistic (b. seed ^c = 1541548812)	0.579	412.889	160	105	correlations estimated and without
NCTR (b. seed = 1541548820)	0.602	412.488	153	76.7	use of covariates had lowest AICs,
Litter-specific covariate used; intra	-litter correl	ations assu	med to be zero)	the NCTR model was selected
Nlogistic (b. seed = 1541548812)	0.214	411.236	159	111	based on lowest AIC and BMDL.
NCTR (b. seed = 1541548821)	0.242	410.586	151	75.5	
Litter-specific covariate not used; in	ntra-litter co	orrelations e	estimated		
Nlogistic (b. seed = 1541548813)	0.497	410.84	173	107	
NCTR (b. seed = 1541548821)	0.489	410.84	174	86.8	
Litter-specific covariate not used; in	ntra-litter co	orrelations a	issumed to be	zero]
Nlogistic (b. seed = 1541548814)	0.123	410.377	177	118	
NCTR (b. seed = 1541548822)	0.108	410.377	177	88.7	

114 **Dose groups = 0, 100, 250 ppm**

^aBecause the individual animal data were available, the BMDS nested dichotomous models were fitted, with the selected model in bold. All values are rounded to 3 significant figures except for AIC values.

^bThe implantation size was used as a covariate and yielded the same model selection results as dam weight. See Table 2-6. ^cb. seed: bootstrap seed.

115

NCTR Model, with BMR of 5% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

116 19:00 11/06 2018

- 118 implantation loss in male rats exposed to 1-BP
- 119

120 Table 2-9 Summary of BMDS modeling results for incidence of post implantation loss in

121 female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 1% extra risk.

 Dose groups - 0, 100, 250	o ppm.				
	Goodne	ss of fit	BMD ₀₁	BMDL ₀₁	
Model ^a	<i>p</i> -value	AIC	(ppm)	(ppm)	Basis for Model Selection
Litter-specific covariate = implanta	tion size; in	tra-litter coi	rrelations estin	nated ^b	The models without intra-litter
Nlogistic (b. seed ^c = 1541548814)	0.574	412.889	33.5	20.2	correlations estimated and without
NCTR (b. seed = 1541548823)	0.597	412.488	32.3	16.1	use of covariates had lowest AICs,
Litter-specific covariate used; intra	-litter correl	ations assu	med to be zero)	the Nlogistic model was selected
Nlogistic (b. seed = 1541548815)	0.209	411.236	31.3	21.4	based on lowest AIC and BMDL.
NCTR (b. seed = 1541548824)	0.237	410.586	31.7	15.8	
Litter-specific covariate not used; in	ntra-litter co	orrelations e	estimated		
Nlogistic (b. seed = 1541548815)	0.505	410.84	45.5	20.6	
NCTR (b. seed = 1541548824)	0.506	410.84	45.0	22.5	
Litter-specific covariate not used; in	ntra-litter co	orrelations d	issumed to be	zero	
Nlogistic (b. seed = 1541548816)	0.128	410.377	46.6	22.7	
NCTR (b. seed = 1541548825)	0.117	410.377	46.0	23.0	

122 **Dose groups = 0, 100, 250 ppm.**

^aBecause the individual animal data were available, the BMDS nested dichotomous models were fitted, with the selected model in bold. All values are rounded to 3 significant figures except for AIC values.

^bThe implantation size was used as a covariate and yielded the same model selection results as dam weight. See Table 2-7. ^cb. seed: bootstrap seed.

123

19:00 11/06 2018

- 125 Figure 2-5 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
- 126 implantation loss in male rats exposed to 1-BP

127 Table 2-10 Summary of BMDS modeling results for incidence of post implantation loss in

- 128 female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 5% extra risk.
- 129 **Dose groups = 0, 100, 250, 500 ppm.**

	Goodne	ess of fit	BMD ₀₅	BMDL ₀₅	
Model ^a	<i>p</i> -value	AIC	(ppm)	(ppm)	Basis for Model Selection
Litter-specific covariate = dam weig	ght; intra-lit	ter correlat	ions estimated	ıb	The models with intra-litter
Nlogistic (b. seed ^c = 1541532427)	0.422	462.473	278	146	correlations estimated and without
NCTR (b. seed = 1541532435)	0.421	464.371	295	148	use of covariates had p-value ≥ 0.1
Litter-specific covariate used; intra	-litter correl	lations assu	med to be zero)	and lowest AICs, the Nlogistic
Nlogistic (b. seed = 1541532428)	0.0903	460.235	293	179	model was selected.
NCTR (b. seed = 1541532436)	0.093	460.173	296	148	
Litter-specific covariate not used; in	ntra-litter co	orrelations e	estimated		
Nlogistic (b. seed = 1541532428)	0.496	460.864	229	135	
NCTR (b. seed = 1541532437)	0.491	461.038	233	116	
Litter-specific covariate not used; intra-litter correlations assumed to be zero					
Nlogistic (b. seed = 1541532429)	0.0743	459.416	255	166	
NCTR (b. seed = 1541532438)	0.0797	459.649	261	131	

^aBecause the individual animal data were available, the BMDS nested dichotomous models were fitted, with the selected model in bold. All values are rounded to 3 significant figures except for AIC values.

^bThe dam weight at week 0 was used as a covariate.

^cb. seed: bootstrap seed.

130

Nested Logistic Model, with BMR of 5% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

131 14:27 11/06 2018

132 Figure 2-6 Plot of incidence rate by dose with fitted curve for Nlogistic model for post

- 133 implantation loss in male rats exposed to 1-BP
- 134

135 Table 2-11 Summary of BMDS modeling results for incidence of post implantation loss in

136 female rats exposed to 1-BP by Inhalation (WIL Research, 2001); BMR = 1% extra risk.

	Goodne	ss of fit	BMDad		
Model ^a	<i>p</i> -value	AIC	(ppm)	(ppm)	Basis for Model Selection
Litter-specific covariate = dam weig	ght; intra-lit	ter correlati	ons estimated	1	The models with intra-litter
Nlogistic (b. seed ^c = 1541532430)	0.428	462.473	53.3	28.1	correlations estimated and without
NCTR (b. seed = 1541532438)	0.398	464.371	57.9	28.9	use of covariates had p-value ≥ 0.1
Litter-specific covariate used; intra	-litter correl	ations assu	med to be zero)	and lowest AICs, the Nlogistic
Nlogistic (b. seed = 1541532430)	0.095	460.235	56.2	34.4	model was selected.
NCTR (b. seed = 1541532439)	0.0967	460.173	58.0	29.0	
Litter-specific covariate not used; in	ntra-litter co	orrelations e	stimated		
Nlogistic (b. seed = 1541532431)	0.496	460.864	43.9	25.9	
NCTR (b. seed = 1541532440)	0.487	461.038	45.6	22.8	
Litter-specific covariate not used; in	ntra-litter co	orrelations a	ssumed to be	zero	
Nlogistic (b. seed = 1541532431)	0.0723	459.416	48.9	32.0	
NCTR (b. seed = 1541532441)	0.0743	459.649	51.2	25.6	

137 **Dose groups = 0, 100, 250, 500 ppm**

^aBecause the individual animal data were available, the BMDS nested dichotomous models were fitted, with the selected model in bold. All values are rounded to 3 significant figures except for AIC values.

^bThe dam weight at week 0 was used as a covariate.

^cb. seed: bootstrap seed.

138

Nested Logistic Model, with BMR of 1% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

- 139 14:27 11/06 2018
- 140 Figure 2-7 Plot of incidence rate by dose with fitted curve for Nlogistic model for post
- 141 implantation loss in male rats exposed to 1-BP

143 143 144 2.2 Benchmark Dose Modeling of Non-Cancer Effects for Chronic Exposures

- 145 EPA selected multiple endpoints for quantitative dose-response analysis with <u>BMDS</u> and
- 146 calculating risks associated with chronic worker scenarios including: include liver toxicity,
- 147 kidney toxicity, neurotoxicity, reproductive toxicity, and developmental toxicity. The doses,
- response data and BMD modeling results are presented below by effect.

149

- 2.2.1 Increased Incidence of Vacuolization of Centrilobular Hepatocytes in Males
- 150 Increased incidence of vacuolization of centrilobular hepatocytes was observed in males of the
- 151 F_0 generation of the reproductive and developmental study by WIL Laboratories (2001).
- 152 Dichotomous models were used to fit dose response data. A BMR of 10% added risk was
- 153 choosen per EPA Benchmark Dose Technical Guidance (U.S. EPA, 2012). The doses and
- response data used for the modeling are presented in Table 2-12.
- 155

Table 2-12 Incidence of Vacuolization of Centrilobular Hepatocytes Selected for Dose Response Modeling for 1-BP

Dose (ppm)	Number of animals	Incidence
0	25	0
100	25	0
250	25	7
500	25	22
750	25	24

158

159 The BMD modeling results for vacuolization of centrilobular hepatocytes are summarized in

160Table 2-13. The best fitting model was the LogLogistic based on Akaike information criterion

161 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

162 indicates a better fit) and visual inspection. For the best fitting model a plot of the model is

163 shown in Figure 2-8. The model version number, model form, benchmark dose calculation,

164 parameter estimates and estimated values are shown below in Table 2-14.

166Table 2-13 Summary of BMD Modeling Results for Vacuolization of Centrilobular

Hepatocytes in Male F₀ Rats Following Inhalation Exposure to 1-BP in a Two-Generation
 Study

Model ^a	Goodne	ess of fit	BMD10PctAdd	BMDL10PctAdd	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
LogLogistic	0.939	60.974	188	143	LogLogistic model was selected
LogProbit	0.907	60.980	185	142	based on the lowest AIC from this set of models which have
Gamma	0.691	61.912	178	130	adequate <i>p</i> -values (excluding
Multistage 2°	0.538	63.187	129	98.5	adequate fit by visual inspection
Weibull	0.360	64.026	158	110	and the BMDLs are < 1.5-fold
Logistic	0.146	65.548	186	142	close.
Probit	0.0542	66.345	177	133	
Quantal-Linear	0.0025	81.794	41.1	32.2	

^a Selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were 0, -0.45, 0.12, 0.15, -0.41, respectively.

169

17:49 12/09 2015

- 171 Figure 2-8 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 172 (LogLogistic) for Vacuolization of Centrilobular Hepatocytes in Male Rats Exposed to 1-
- 173 BP Via Inhalation in ppm; BMR 10% Added Risk.
- 174

175 Table 2-14 BMD Modeling Results for Reduced Litter Size in F₀ Generation Exposed to 1-

176 BP by Inhalation; BMRs of 1 Standard Deviation, and 5% and 1% Relative Deviation 177 From Control Mean

177 From Control Mean.

Logistic Model. (Version: 2.14; Date: 2/28/2013) The form of the probability function is: P[response] = background+(1-background)/[1+EXP(intercept-slope*Log(dose))]

Slope parameter is restricted as slope >= 1

Benchmark Dose Computation.

BMR = 10% Added risk BMD = 187.639 BMDL at the 95% confidence level = 143.489

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
background	0	0
intercept	-2.4067E+01	-2.0600E+01
slope	4.17795	3.60147

Analysis of Deviance Table

Model	Log(likelihood)	# Param's	Deviance	Test d.f.	<i>p</i> -value
Full model	-28.2	5			
Fitted model	-28.49	2	0.58301	3	0.9
Reduced model	-85.19	1	113.996	4	<.0001

AIC: = 60.9741

Dose	Est. Prob.	Expected	Observed	Size	Scaled Resid
0	0	0	0	25	0
100	0.0079	0.199	0	25	-0.45
250	0.2693	6.731	7	25	0.12
500	0.8696	21.74	22	25	0.15
750	0.9732	24.33	24	25	-0.41

178

179

2.2.2 Increased Incidence of Vacuolization of Centrilobular Hepatocytes in Males

180 Increased incidence of vacuolization of centrilobular hepatocytes was observed in males of the

181 ClinTrials study (1997). Dichotomous models were used to fit dose response data. A BMR of

182 10% added risk was choosen per EPA <u>Benchmark Dose Technical Guidance</u> (U.S. EPA, 2012).

183 The doses and response data used for the modeling are presented in Table 2-15.

184

Table 2-15 Incidence of Vacuolization of Centrilobular Hepatocytes Selected for Dose Response Modeling for 1-BP

Dose (ppm)	Number of animals	Incidence
0	15	0
100	15	0
200	15	0
400	15	3
800	15	6

187

- 188 The BMD modeling results for vacuolization of centrilobular hepatocytes are summarized in
- 189 Table 2-16. The best fitting model was the LogLogistic based on Akaike information criterion
- 190 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value
- 191 indicates a better fit) and visual inspection. For the best fitting model a plot of the model is
- 192 shown in Figure 2-9. The model version number, model form, benchmark dose calculation,
- 193 parameter estimates and estimated values are shown below in Table 2-17.

Table 2-16 Summary of BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in Male Rats Following Inhalation Exposure to 1-BP

Model ^a	Goodne	ess of fit	BMD10PctAdd	BMDL10PctAdd	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Multistage 3°	0.955	38.189	346	226	Multistage 3° model was
Multistage 2°	0.898	39.202	289	198	selected based on the lowest AIC from this set of models
LogProbit	0.951	39.678	345	225	which have adequate <i>p</i> -value,
Gamma	0.919	39.874	349	227	and the BMDLs are < 1.5-fold
LogLogistic	0.903	40.003	349	224	apart considered sufficiently
Weibull	0.872	40.180	351	222	
Probit	0.773	40.585	370	275	
Logistic	0.662	41.195	382	290	

^a Selected model in bold; scaled residuals for selected model for doses 0, 100, 200, 400, and 600 ppm were 0, -0.2, -0.56, 0.54, - 0.18, respectively.

197 19:16 12/09 2015

- 198 Figure 2-9 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 199 (Multistage 3°) for Vacuolization of Centrilobular Hepatocytes in Male Rats Exposed to 1-
- 200 BP Via Inhalation in ppm; BMR 10% Added Risk.
- 201

Table 2-17 BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in Male Rats Exposed to 1-BP Via Inhalation; BMR 10% Added Risk.

Multistage Model. (Version: 3.4; Date: 05/02/2014)

The form of the probability function is: P[response] = background + (1-background)*[1-EXP(-beta1*dose^1-beta2*dose^2...)]

Benchmark Dose Computation.

BMR = 10% Added risk BMD = 345.704 BMDL at the 95% confidence level = 226.133

Variable		Estimate		I Pa	Default Initial rameter Values		
Background		0		0			
Beta(1)		0		0			
Beta(2)		(C	1.4788E-06			
Beta(3)		2.550	2E-09		0		
Analysis of De	viance	e Table	I			~	
Model	Log(li	ikelihood)	# Param	ı's	Deviance	Test d.f.	<i>p</i> -value
Full model	-	-17.6	5				
			1				0.01
Fitted model	-	18.09	1		0.986987	4	0.91
Fitted model Reduced model	-	18.09 27.52	1		0.986987 19.8363	4	0.91
Fitted model Reduced model AIC: = 38.189 Goodness of Fi	- - - 24	18.09 27.52 le	1		0.986987 19.8363	4	0.91
Fitted model Reduced model AIC: = 38.189 Goodness of Fi Dose	- -2 04 it Tab Est	18.09 27.52 le . Prob.	1 1 Expected	1	0.986987 19.8363 Observed	4 4 Size	0.91 0 Scaled Resid
Fitted model Reduced model AIC: = 38.189 Goodness of Fi Dose 0	- 	18.09 27.52 le . Prob. 0	1 1 Expected 0	d	0.986987 19.8363 Observed 0	4 4 Size 15	0.91 0 Scaled Resid 0
Fitted model Reduced model AIC: = 38.189 Goodness of Fi Dose 0 100		18.09 27.52 le . Prob. 0 .0025	1 1 Expected 0 0.038	1	0.986987 19.8363 Observed 0 0	4 4 Size 15 15	0.91 0 Scaled Resid 0 -0.2
Fitted model Reduced model AIC: = 38.189 Goodness of Fi Dose 0 100 200		18.09 27.52 le . Prob. 0 .0025 .0202	1 1 Expected 0 0.038 0.303	1	0.986987 19.8363 Observed 0 0 0	4 4 Size 15 15 15	0.91 0 Scaled Resid 0 -0.2 -0.56
Fitted model Reduced model AIC: = 38.189 Goodness of Fi Dose 0 100 200 400		18.09 27.52 le . Prob. 0 .0025 .0202 .1506	1 1 Expected 0 0.038 0.303 2.259	1	0.986987 19.8363 Observed 0 0 0 0 3	4 4 Size 15 15 15 15	0.91 0 Scaled Resid 0 -0.2 -0.56 0.54

204

205 206

2.2.3 Increased Incidence of Vacuolization of Centrilobular Hepatocytes in Females

Increased incidence of vacuolization of centrilobular hepatocytes was observed in females of the
 F₀ generation of the reproductive and developmental study by WIL Laboratories (2001).
 Dichotomous models were used to fit dose response data. A BMR of 10% added risk was

210 choosen per EPA <u>Benchmark Dose Technical Guidance</u> (U.S. EPA, 2012). The doses and

211 response data used for the modeling are presented in Table 2-18.

213 Table 2-18 Incidence of Vacuolization of Centrilobular Hepatocytes Selected for Dose-

214 **Response Modeling for 1-BP**

Dose (ppm)	Number of animals	Incidence
0	25	0
100	25	0
250	25	0
500	25	6
750	25	16

215

- 216 The BMD modeling results for vacuolization of centrilobular hepatocytes are summarized in
- 217 Table 2-19. The best fitting model was the LogProbit based on Akaike information criterion
- 218 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value
- 219 indicates a better fit) and visual inspection. For the best fitting model a plot of the model is
- shown in Figure 2-10. The model version number, model form, benchmark dose calculation,
- 221 parameter estimates and estimated values are shown below in .

222 Table 2-19 Summary of BMD Modeling Results for Vacuolization of Centrilobular

- 223 Hepatocytes in Female F₀ Rats Following Inhalation Exposure to 1-BP in a Two-
- 224 Generation Study

Model ^a	Goodne	ess of fit	BMD10PctAdd	BMDL10PctAdd	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
LogProbit	0.988	64.438	415	322	LogProbit model was selected
Gamma	0.965	64.648	416	320	based on the lowest AIC from this set of models which have
LogLogistic	0.945	64.843	415	320	adequate <i>p</i> -values (excluding
Weibull	0.879	65.283	411	310	by visual inspection and the
Probit	0.826	65.496	423	335	BMDLs are 1.5-fold apart
Logistic	0.661	66.491	431	347	considered sufficiently close.
Multistage 2°	0.410	68.583	279	228	
Quantal-Linear	0.0134	80.285	153	109	

^a Selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were 0, 0, -0.29, 0.19, -0.11, respectively.

- 17:56 12/09 2015
 Figure 2-10 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 228 (LogLogistic) for Vacuolization of Centrilobular Hepatocytes in Female Rats Exposed to 1-
- 229 BP Via Inhalation in ppm; BMR 10% Added Risk.
- 230

Table 2-20 BMD Modeling Results for Vacuolization of Centrilobular Hepatocytes in Female Rats Exposed to 1-BP Via Inhalation; BMR 10% Added Risk.

Probit Model. (Version: 3.3; Date: 2/28/2013)

The form of the probability function is: P[response] = Background + (1-Background) * CumNorm(Intercept+Slope*Log(Dose)),where CumNorm(.) is the cumulative normal distribution function

Slope parameter is not restricted

Benchmark Dose Computation.

BMR = 10% Added risk BMD = 415.388 BMDL at the 95% confidence level = 322.058

variable	Estin	mate	Default Initial Parameter Values		
background	(0	0		
intercept	-1.830	5E+01	-7.9627E+00		
slope	2.82	2354	1.1917		
Model	Log(likelihood)	# Param'	s Deviance	Test d.f.	<i>p</i> -value
Full model	-30.11	5			
	20.22	-			0.00
Fitted model	-30.22	2	0.213311	3	0.98
Fitted model Reduced model	-30.22 -58.16	2	0.213311 56.0935	3	<.0001
Fitted model Reduced model AIC: = 64.438	-30.22 -58.16	2	0.213311 56.0935	4	<.0001
Aitted model Reduced model AIC: = 64.438 Goodness of Fi Dose	-30.22 -58.16 22 it Table Est. Prob.	2 1 Expected	0.213311 56.0935 Observed	3 4 Size	0.98 <.0001
Fitted model Reduced model AIC: = 64.438 Goodness of Fi Dose	-30.22 -58.16 22 it Table Est. Prob. 0	2 1 Expected 0	0.213311 56.0935 Observed 0	3 4 Size 25	0.98 <.0001 Scaled Resid
Fitted model Reduced model AIC: = 64.438 Goodness of Fi Dose	-30.22 -58.16 22 it Table Est. Prob. 0 0	2 1 Expected 0 0	0.213311 56.0935 Observed 0 0	3 4 Size 25 25	0.98 <.0001 Scaled Resid 0 0
Fitted model Reduced model AIC: = 64.438 Goodness of Fi Dose D	-30.22 -58.16 22 it Table Est. Prob. 0 0 0 0.0033	2 1 Expected 0 0 0.083	0.213311 56.0935 0bserved 0 0 0 0	3 4 Size 25 25 25 25	0.98 <.0001 Scaled Resid 0 0 -0.29
Fitted model Reduced model IC: = 64.438 Foodness of Fi Dose 0 00 250 500	-30.22 -58.16 22 it Table Est. Prob. 0 0 0 0.0033 0.2242	2 1 Expected 0 0 0 0.083 5.605	0.213311 56.0935 Observed 0 0 0 0 6	3 4 Size 25 25 25 25 25	0.98 <.0001 Scaled Resid 0 -0.29 0.19

233

234

2.2.4 Increased Incidence of Renal Pelvic Mineralization in Males

Increased incidence of renal pelvic mineralization was observed in males of the F₀ generation of
 the reproductive and developmental study by WIL Laboratories (2001). Dichotomous models
 were used to fit dose response data. A BMR of 10% added risk was choosen per EPA
 Benchmark Dose Technical Guidance (U.S. EPA, 2012). The doses and response data used for

the modeling are presented in Table 2-21.

Dose (ppm)	Number of animals	Incidence
0	25	1
100	25	0
250	25	1
500	25	2
750	25	6

Table 2-21 Incidence of Renal Pelvic Mineralization Selected for Dose-Response Modeling for 1-BP

243

244 The BMD modeling results for vacuolization of renal pelvic mineralization are summarized in

Table 2-22. The best fitting model was the Multistage 3° based on Akaike information criterion

246 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

indicates a better fit) and visual inspection. For the best fitting model a plot of the model is

shown in Figure 2-11. The model version number, model form, benchmark dose calculation,

249 parameter estimates and estimated values are shown below in Table 2-23.

Table 2-22 Summary of BMD Modeling Results for Renal Pelvic Mineralization in Male Fo Rats Following Inhalation Exposure to 1-BP in a Two-Generation Study

Model ^a	Goodness of fit		BMD10PctAdd	BMDL _{10PctAdd}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Multistage 3°	0.789	63.835	571	386	Multistage 3° model was
Multistage 2°	0.668	64.258	527	368	selected based on the lowest AIC from this set of models
Logistic	0.629	64.260	545	434	which have adequate <i>p</i> -values,
Probit	0.567	64.488	526	408	adequate fit by visual inspection and the BMDLs are 1.5-fold
Weibull	0.603	65.825	581	375	apart considered sufficiently
LogLogistic	0.602	65.835	579	371	ciose.
Gamma	0.597	65.856	575	371	
LogProbit	0.597	65.894	577	355]
Quantal-Linear	0.326	66.496	507	284]

^a Selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were 0.6, -0.76, 0.26, -0.18, 0.07, respectively.

253 19:03 12/09 2015

- 254 Figure 2-11 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 255 (Multistage 3°) for Renal Pelvic Mineralization in Male Rats Exposed to 1-BP Via
- 256 Inhalation in ppm; BMR 10% Added Risk.
- 257

Table 2-23 BMD Modeling Results for Renal Pelvic Mineralization in Male Rats Exposed to 1-BP Via Inhalation; BMR 10% Added Risk.

Multistage Model. (Version: 3.4; Date: 05/02/2014) The form of the probability function is: P[response] = background + (1-background)*[1-EXP(beta1*dose^1-beta2*dose^2...)]

Benchmark Dose Computation.

BMR = 10% Added risk BMD = 571.342 BMDL at the 95% confidence level = 385.532

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
Background	0.0222219	0.00963337
Beta(1)	0	0
Beta(2)	0	0
Beta(3)	5.7848E-10	5.8917E-10
		•

Analysis of De	viance Table				
Model	Log(likelihood)	# Param's	Deviance	Test d.f.	<i>p</i> -value
Full model	-29.14	5			
Fitted model	-29.92	2	1.5483	3	0.67
Reduced model	-34.85	1	11.4055	4	0.02

AIC: = 63.8352

Goodness of I	Fit Table				
Dose	Est. Prob.	Expected	Observed	Size	Scaled Resid
0	0.0222	0.556	1	25	0.6
100	0.0228	0.57	0	25	-0.76
250	0.031	0.776	1	25	0.26
500	0.0904	2.261	2	25	-0.18
750	0.234	5.849	6	25	0.07
	ł	I.			

Chi $^{2} = 1.05$ d.f = 3 *p*-value = 0.7887

260

261

2.2.5 Increased Incidence of Renal Pelvic Mineralization in Females

Increased incidence of renal pelvic mineralization was observed in females of the F₀ generation
 of the reproductive and developmental study by WIL Laboratories (2001). Dichotomous models
 were used to fit dose response data. A BMR of 10% added risk was choosen per EPA
 <u>Benchmark Dose Technical Guidance (U.S. EPA, 2012</u>). The doses and response data used for
 the modeling are presented in Table 2-24.

Table 2-24 Incidence of Renal Pelvic Mineralization Selected for Dose-Response Modeling for 1-BP

Dose (ppm)	Number of animals	Incidence
0	25	2
100	25	3
250	25	5
500	24	12
750	25	14

270

271	The BMD	modeling	results for	vacuolization	of renal	l pelvic	minera	lization	are sum	marized	in
-----	---------	----------	-------------	---------------	----------	----------	--------	----------	---------	---------	----

Table 2-25. The best fitting model was the LogProbit based on Akaike information criterion

273 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

indicates a better fit) and visual inspection. For the best fitting model a plot of the model is

- shown in Figure 2-12. The model version number, model form, benchmark dose calculation,
- 276 parameter estimates and estimated values are shown below in Table 2-26.

Table 2-25 Summary of BMD Modeling Results for Renal Pelvic Mineralization in Female F₀ Rats Following Inhalation Exposure to 1-BP in a Two-Generation Study

Model ^a	Goodne	ess of fit	BMD _{10PctAdd}	BMDL _{10PctAdd}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Probit	0.708	130.24	212	174	Probit model was selected based
Quantal-Linear	0.703	130.32	113	79.3	on the lowest AIC from this set of models which have adequate
Logistic	0.664	130.43	228	186	<i>p</i> -values, adequate fit by visual
LogProbit	0.735	131.49	195	70.4	< 3-fold apart considered
LogLogistic	0.728	131.51	187	69.9	sufficiently close.
Gamma	0.683	131.63	182	82.8	
Weibull	0.662	131.70	174	82.5	
Multistage 2°	0.610	131.86	164	81.6	

^a Selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were -0.17, -0.15, -0.16, 0.99, -0.58, respectively.

- 280 18:44 12/09 2015
- 281Figure 2-12 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- (Probit) for Renal Pelvic Mineralization in Female Rats Exposed to 1-BP Via Inhalation in
 ppm; BMR 10% Added Risk.
- 284

Table 2-26 BMD Modeling Results for Renal Pelvic Mineralization in Female Rats Exposed to 1-BP Via Inhalation; BMR 10% Added Risk.

Probit Model. (Version: 3.3; Date: 2/28/2013) The form of the probability function is: P[response] = CumNorm(Intercept+Slope*Dose), where CumNorm(.) is the cumulative normal distribution function Slope parameter is not restricted

Benchmark Dose Computation.

BMR = 10% Added risk BMD = 212.127 BMDL at the 95% confidence level = 174.256

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
background	n/a	0
intercept	-1.3432E+00	-1.3433E+00
slope	0.00218661	0.00218429

Analysis of Deviance Table

Madal		# Damanula	Derience	Treat d f	a such a
Niodel	Log(likelinood)	# Param's	Deviance	Test a.i.	<i>p</i> -value
Full model	-62.44	5			
Fitted model	-63.12	2	1.36613	3	0.71
Reduced model	-74.7	1	24.5328	4	<.0001

AIC: = 130.239

Goodness of Fi	it Table				
Dose	Est. Prob.	Expected	Observed	Size	Scaled Resid
0	0.0896	2.24	2	25	-0.17
100	0.1304	3.26	3	25	-0.15
250	0.2129	5.321	5	25	-0.16
500	0.4013	9.632	12	24	0.99
750	0.6167	15.417	14	25	-0.58

Chi^2 = 1.39 d.f = 3 *p*-value = 0.7082

287

288

2.2.6 Decreased Seminal Vesicle Weight

289 Decreased relative and absolute seminal vesicle weights were observed in (<u>Ichihara et al., 2000</u>).

290 Continuous models were used to fit dose-response data for both absolute and relative seminal

291 vesicle weights. A BMR 1 standard deviation was choosen per EPA Benchmark Dose Technical

292 <u>Guidance</u> (U.S. EPA, 2012). Both absolute and relative organ weights may be relevant for

293 reproductive organs like the seminal vesicle as described in EPA's <u>Guidelines for Reproductive</u>

294 <u>Toxicity Risk Assessment (U.S. EPA, 1996</u>). In this case by coincidence the BMDL was the 295 same (38 ppm) for both absolute and relative seminal vesicle weights and therefore this endpoint

- is refered to as absolute/relative seminal vesicle weight in the risk evaluation and the following
- text and tables. The doses, response data and BMD modeling results are presented for relative
- 297 text and tables. The doses, response data and BMD modeling results are presented for re 298 and then absolute seminal vesicle weights below
- and then absolute seminal vesicle weights below.
- 299
 2.2.6.1
 Decreased Relative Seminal Vesicle Weight
- 300 The doses and response data used for relative seminal vesicle weight are presented in Table 2-27.

Table 2-27 Relative Seminal Vesicle Weight Data Selected for Dose-Response Modeling for 1-BP

Dose (ppm)	Number of animals	Relative Weight (mg/g BW)	Standard Deviation
0	8	4.35	0.62
200	9	3.23	0.55
400	9	3.17	0.67
800	9	2.62	0.87

303

Comparisons of model fits obtained are provided in Table 2-28. Models with homogeneous

305 variance were used because the BMDS Test 2 *p*-value was 0.543. The Hill model was excluded

306 because the BMD to BMDL ratio was 7.34. Of the remaining models the best fitting model

307 (Exponential (M4)) was selected based on Akaike information criterion (AIC; lower values

308 indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a better fit) and

visual inspection. The Exponential (M4) model had an acceptable BMD to BMDL ratio of 3.2

and is indicated in bold. For the best fitting model a plot of the model is shown in Figure 2-13.

The model version number, model form, benchmark dose calculation, parameter estimates and

312 estimated values are shown below in Table 2-29.

Table 2-28 Summary of BMD Modeling Results for Relative Seminal Vesicle Weight in Rats Exposed to 1-BP by Inhalation

Model ^a	Goodnes	ss of fit	BMD10RD	BMDL _{10RD}	BMD _{1SD}	BMDL _{1SD}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	
Hill	0.298	13.857	57.2	6.72	101	13.7	For models with BMD to
Exponential (M4) Exponential (M5) ^b	0.221	14.274	73.1	21.4	124	38.1	BMDL ratios less than 5 (this excludes the Hill model), the Exponential
Exponential (M2) Exponential (M3) ^c	0.107	15.240	170	123	301	199	(M4) model was selected based on the lowest BMDL
Power ^d Polynomial 2 ^{°e} Linear ^f	0.0604	16.386	213	165	376	267	adequate goodness of fit <i>p</i> - value and adequate fit by visual inspection
Polynomial 3 ^{°g}	0.0604	16.386	213	165	376	267	(Exponetial M2 – M5) had BMDLs > 5-fold apart and not sufficiently close.

^a Constant variance case presented (BMDS Test 2 p-value = 0.543), selected model in bold; scaled residuals for selected model for doses 0, 200, 400, and 800 ppm were 0.15, -0.68, 0.92, -0.37, respectively.

^b For the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M4) model.

^c For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^d For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

 $^{\circ}$ For the Polynomial 2 $^{\circ}$ model, the *b2* coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

 $^{\rm f}$ The Linear model may appear equivalent to the Polynomial 3° model, however differences exist in digits not displayed in the table.

^g The Polynomial 3° model may appear equivalent to the Power model, however differences exist in digits not displayed in the table. This also applies to the Polynomial 2° model. This also applies to the Linear model.

315

Exponential 4 Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL Exponential 4 5 4.5 3.5 з 2.5 2 BMD BMD 100 200 300 400 500 600 700 800 0 dose

- 316 10:24 10/30 2015
- 317 Figure 2-13 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M4)
- 318 Model with Constant Variance for Relative Seminal Vesicle Weight; BMR = 1 Standard
- 319 Deviation Change from Control Mean.
- 320

Table 2-29 BMD Modeling Results for Relative Seminal Vesicle Weight; BMR = 1 Standard Deviation Change from Control Mean.

Exponential Model. (Version: 1.10; Date: 01/12/2015) The form of the response function is: Y[dose] = a * [c-(c-1) * exp(-b * dose)] A constant variance model is fit

Benchmark Dose Computation.

BMR = 1.0000 Estimated standard deviations from control BMD = 123.644

BMDL at the 95% confidence level = 38.1407

Parameter Estimates				
Variable	Estimate	Default Initial Parameter Values		
lnalpha	-0.820732	-0.863617		

rho	n/a	0
a	4.31581	4.5675
b	0.00406673	0.00345735
с	0.611025	0.546303
d	n/a	1

Fable of Data and Estimated Values of Interest							
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid	
0	8	4.35	4.32	0.62	0.66	0.1458	
200	9	3.23	3.38	0.55	0.66	-0.6845	
400	9	3.17	2.97	0.67	0.66	0.9177	
800	9	2.62	2.7	0.87	0.66	-0.3705	

Likelihoods of l	ikelihoods of Interest						
Model	Log(likelihood)	# Param's	AIC				
A1	-2.386703	5	14.77341				
A2	-1.313327	8	18.62665				
A3	-2.386703	5	14.77341				
R	-13.55019	2	31.10038				
4	-3.137185	4	14.27437				

Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	24.47	6	0.0004272
Test 2	2.147	3	0.5425
Test 3	2.147	3	0.5425
Test 6a	1.501	1	0.2205

324

2.2.6.2 Decreased Absolute Seminal Vesicle Weight

325 The doses and response data used for the modeling are presented in Table 2-30.

Dose (ppm)	Number of animals	Seminal Vesicle Absolute Weight (mg)	Standard Deviation
0	8	1.88	0.27
200	9	1.38	0.26
400	9	1.27	0.25
800	9	1.00	0.36

Table 2-30 Absolute Seminal Vesicle Weight Data Selected for Dose-Response Modeling for
 <u>1-BP</u>

329 Comparisons of model fits obtained are provided in Table 2-31. Models with homogeneous

variance were used because the BMDS Test 2 *p*-value was 0.653. The best fitting model (Hill)

331 was selected based on Akaike information criterion (AIC; lower values indicates a better fit),

332 chi-square goodness of fit *p*-value (higher value indicates a better fit) and visual inspection. The

Hill model had an acceptable BMD to BMDL ratio of 2.5 and is indicated in bold. For the best

fitting model a plot of the model is shown in Figure 2-14. The model version number, model

form, benchmark dose calculation, parameter estimates and estimated values are shown below in

Table 2-32.

Table 2-31 Summary of BMD Modeling Results for Seminal Vesicle Absolute Weight in Rats Exposed to 1-BP by Inhalation

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Hill	0.429	-47.533	97.3	38.4	The Hill model was selected
Exponential (M4) Exponential (M5) ^b	0.337	-47.235	112	58.4	based on the lowest AIC because the models with adequate goodness of fit <i>p</i> -value
Exponential (M2) Exponential (M3) ^c	0.159	-46.484	219	152	and adequate fit by visual inspection (including Hill and
Power ^d Polynomial 3 ^{oe} Polynomial 2 ^{of} Linear	0.0576	-44.450	299	222	Power, Polynomial and Linear) had BMDLs < 4-fold apart considered sufficiently close.

^a Constant variance case presented (BMDS Test 2 p-value = 0.653), selected model in bold; scaled residuals for selected model for doses 0, 200, 400, and 800 ppm were 0.07, -0.43, 0.61, -0.24, respectively.

^b For the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M4) model.

^c For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^d For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^e For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

- 340 14:19 11/30 2015
- 341 Figure 2-14 Plot of Mean Response by Dose in ppm with Fitted Curve for Hill Model with
- 342 Constant Variance for Seminal Vesicle Absolute Weight; BMR = 1 Standard Deviation
- 343 Change from Control Mean.
- 344

Table 2-32 BMD Modeling Results for Seminal Vesicle Absolute Weight; BMR = 1 Standard Deviation Change from Control Mean.

Standard Deviation Change from Control Mean.

Hill Model. (Version: 2.17; Date: 01/28/2013) The form of the response function is: Y[dose] = intercept + v*dose^n/(k^n + dose^n) A constant variance model is fit

Benchmark Dose Computation.

BMR = 1 Estimated standard deviations from the control mean BMD = 97.2583 BMDL at the 95% confidence level = 38.4029

Variable	Estimate	Default Initial Parameter Values
alpha	0.0752711	0.0834806
rho	n/a	0
intercept	1.87362	1.88
v	-1.2008	-0.88
n	1	1.5698
k	328.422	176

Dose	Ν	Obs Mea	an Est Me	ean	Obs Std Dev	Est Std Dev	Scaled Resid
0	8	1.88	1.87	7	0.27	0.27	0.0658
200	9	1.38	1.42	2	0.26	0.27	-0.428
400	9	1.27	1.21	l	0.25	0.27	0.61
800	9	1	1.02	2	0.36	0.27	-0.244
Likelihoods of	f Interest						
Model	Log(likelih	ood)	# Param's		AIC		
A1	28.0787	73	5	-4	46.157546		
A2	28.8940	36	8		41.788073		
A3	28.0787	73	5	-46.157546			
fitted	27.76653	32	4	-4	47.533065		
R	13.38732	26	2	-2	22.774652		
Tests of Intere	est						
Test	-2*log(Like Ratio	elihood)	Test df		<i>p</i> -value		
Test 1	31.013	34	6		< 0.0001		
Test 2	1.6305	53	3		0.6525		
Test 3	1.6305	53	3		0.6525		

348

2.2.7 Decreased Percent Normal Sperm Morphology

349 Decreased percent normal sperm morphology was observed in the F_0 generation of the

reproductive and developmental study by WIL Laboratories (2001). The doses and response data
 used for the modeling are presented in Table 2-33.

352

353 Table 2-33 Sperm Morphology Data Selected for Dose-Response Modeling for 1-BP

	1 8/	L	8	
Dose (ppm)	Number of animals	% normal	Standard Deviation	
0	25	99.7	0.6	
100	25	99.7	0.52	
250	25	99.3	0.83	
500	24	98.2	2.59	
750	24	90.6	8.74	

- 355 Comparisons of model fits obtained are provided in Table 2-34. The best fitting model
- 356 (Exponential (M2) with homogeneous variance because the BMDS Test 2 *p*-value was 0.144)
- 357 was selected based on Akaike information criterion (AIC; lower values indicates a better fit),
- 358 chi-square goodness of fit *p*-value (higher value indicates a better fit) and visual inspection. The
- best-fitting model is indicated in bold. For the best fitting model a plot of the model is shown in
- Figure 2-15. The model version number, model form, benchmark dose calculation, parameter
- 361 estimates and estimated values are shown below in Table 2-35.
- 362

Table 2-34 Summary of BMD Modeling Results for Sperm Morphology in the F₀ Generation Exposed to 1-BP by Inhalation

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Exponential (M2) Exponential (M3) ^b	0.787	-401.21	472	327	The Exponential (M2) model was selected based on the lowest
Power ^c Polynomial 3 ^{od} Polynomial 2 ^{oe} Linear	0.780	-401.19	473	331	AIC from this set of models which have adequate <i>p</i> -values, adequate fit by visual inspection and the BMDLs are < 1.5-fold apart considered sufficiently
Exponential (M4)	0.534	-399.30	459	230	close.
Hill	N/A ^f	-397.69	482	124	
Exponential (M5)	N/A ^f	-397.69	463	112	

^a Constant variance case presented (BMDS Test 2 p-value = 0.144), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were -0.05, 0.39, -0.53, 0.19, respectively.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^e For the Polynomial 2° model, the *b2* coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f No available degrees of freedom to calculate a goodness of fit value.

365 09:56 10/30 2015

- **Figure 2-15 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M2)**
- 367 Model with Constant Variance for Sperm Morphology in F₀ Rats Exposed to 1-BP by
- 368 Inhalation; BMR = 1 Standard Deviation Change from Control Mean.
- 369
- Table 2-35 BMD Modeling Results for Sperm Morphology in F₀ Rats Exposed to 1-BP by Inhalation; BMR = 1 Standard Deviation Change from Control Mean.

Exponential Model. (Version: 1.10; Date: 01/12/2015) The form of the response function is: Y[dose] = a * exp(sign * b * dose) A constant variance model is fit

Benchmark Dose Computation.

BMR = 1.0000 Estimated standard deviations from control BMD = 471.627

BMDL at the 95% confidence level = 326.935

Variable	Estimate	Default Initial Parameter Valu	es	
lnalpha	-5.07205	-5.07685		
rho	n/a	0		
a	1.97082	1.89939		
b	0.0000869453	0.000086769		
с	n/a	0		
d	n/a	1		

Scaled Resid

0	25	1.97	1.9	7	0.08	0.08	-0.05174	
100	25	1.96	1.9	5	0.07	0.08	0.3941	
250	25	1.92	1.93	3	0.07	0.08	-0.5332	
500	25	1.89	1.89	Ð	0.1	0.08	0.1908	
Likelihoods of Interest								
Model	Log(likelih	lood)	# Param's		AIC			
A1	203.842	26	5	-	-397.6852			
A2	206.545	52	8	-	-397.0903			
A3	203.842	26	5		-397.6852			
R	196.237	7	2		-388.4753			
2	203.602	27	3		-401.2054			
Tests of Inter	est							
Test	-2*log(Like	elihood	Test df		<i>p</i> -value			

Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	20.62	6	0.002151
Test 2	5.405	3	0.1444
Test 3	5,405	3	0.1444
Test 4	0.4799	2	0.7867

373

2.2.8 Decreased Percent Motile Sperm

A decrease in motile sperm was observed in the F_0 generation in the reproductive and

developmental study by WIL Laboratories (2001). The doses and response data used for the modeling are presented in Table 2.36

modeling are presented in Table 2-36.

378 Table 2-36 Sperm Motility Data Selected for Dose-Response Modeling for 1-BP

	Dose (ppm)	Number of animals	Mean sperm motility (% motile)	Standard Deviation
ſ	0	25	86.8	11.90
	100	25	88.8	7.22
ſ	250	25	83.4	10.41
	500	23	71.9	9.27
ſ	750	15	53.2	19.59

- 380 The BMD modeling results for sperm motility with non-homogeneous variance (BMDS test 2 p-
- value = 0.0001749) are summarized in Table 2-37. Although the means are sufficiently fit for
- 382 some models (e.g. the Polynomial 2° model has *p*-value of 0.516) the variances are not well
- modeled BMDS Test 3 p-value = 0.0426. This result suggests that due to the poor variance
- 384 modeling for the data it is not reasonable to use BMDS for this endpoint. Instead the NOAEL of
- 385 250 ppm was used.
- 386

Table 2-37 Summary of BMD Modeling Results for Sperm Motility F₀ Male Rats Following
 Inhalation Exposure to 1-BP

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection		
	<i>p</i> -value	AIC	(ppm) (ppm				
Polynomial 2°	0.516	657.83	386	346	Due to unacceptable fitting of		
Power	0.334	659.73	399	313	the variances no model was selected.		
Polynomial 3°	0.330	659.76	397	315			
Exponential (M3)	0.324	659.80	402	317			
Hill	0.139	661.73	400	323			
Polynomial 4°	0.137	661.76	397	314			
Exponential (M5)	0.133	661.80	402	317			
Linear	0.00132	671.22	237	192			
Exponential (M2) Exponential (M4) ^b	2.10E-04	675.10	226	178			

^a Modeled variance case presented (BMDS Test 2 *p*-value = 1.75E-04, BMDS Test 3 *p*-value = 0.0426), no model was selected as a best-fitting model.

^b For the Exponential (M4) model, the estimate of c was 0 (boundary). The models in this row reduced to the Exponential (M2) model.

- 390 To investigate the effect of the poor modeling of the variances on the BMDL the observed
- 391 standard deviations were considered and the standard deviation at the highest dose is much larger
- than at the other dose groups. The data set was investigated with the highest dose dropped. The
- 393 model fits with non-homogeneous variance (BMDS test 2 p-value = 0.0966) are summarized in
- Table 2-38. Although the means are sufficiently fit for some models (e.g. the Polynomial 2°
- model has *p*-value of 0.676) the variances are not well modeled BMDS Test 3 *p*-value = 0.0426.

396 Table 2-38 Summary of BMD Modeling Results for Sperm Motility F₀ Male Rats Following Inhalation Exposure to 1-BP with the Highest Dose Dropped 397

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Polynomial 3°	0.676	551.25	394	345	Due to unacceptable fitting of
Polynomial 2°	0.676	551.25	394	302	the variances no model was selected.
Hill	0.529	552.86	271	255	
Exponential (M3)	0.386	553.22	391	294	
Power	0.376	553.25	395	296	
Exponential (M5)	N/A ^b	554.86	267	253	
Linear	0.107	554.94	315	241	
Exponential (M2) ^c	0.0743	555.67	310	231	
Exponential (M4) ^d	0.0743	555.67	310	231	
Polynomial 4°	error	error	error ^e	error ^e	

^a Modeled variance case presented (BMDS Test 2 *p*-value = 0.0966, BMDS Test 3 *p*-value = 0.0426), no model was selected as a best-fitting model.

^b No available degrees of freedom to calculate a goodness of fit value.

^c The Exponential (M2) model may appear equivalent to the Exponential (M4) model, however differences exist in digits not displayed in the table.

^d The Exponential (M4) model may appear equivalent to the Exponential (M2) model, however differences exist in digits not displayed in the table.

^e BMD or BMDL computation failed for this model.

398

399

2.2.9 Decreased Left Cauda Epididymis Weight

A decrease in left cauda epididymis absolute weight was observed in the F₀ generation in the 400

reproductive and developmental study by (WIL Research, 2001). The absolute weights are used 401 402 for BMD modeling of the epididymis as described in EPA's Guidelines for Reproductive

Toxicity Risk Assessment (U.S. EPA, 1996). The doses and response data used for the modeling 403 are presented in Table 2-39. 404

Dose (ppm)	Number of animals	Left Cauda Epididymis Weight (mg)	Standard Deviation
0	25	0.3252	0.03673
100	25	0.3242	0.03149
250	25	0.3050	0.03556
500	23	0.2877	0.03170
750	22	0.2401	0.03529

406 Table 2-39 Left Cauda Epididymis Absolute Weight Data Selected for Dose-Response 407 Modeling for 1-BP

408

409 The BMD modeling results for left cauda epididymis absolute weight with homogeneous

410 variance (BMDS test 2 *p*-value =0.911) are summarized in Table 2-40. The best fitting model

411 (Polynomial 4°) was selected based on Akaike information criterion (AIC; lower values indicates

412 a better fit), chi-square goodness of fit *p*-value (higher value indicates a better fit) and visual

413 inspection. The Polynomial 4° model had an acceptable BMD to BMDL ratio of 1.4 and is

414 indicated in bold. For the best fitting model a plot of the model is shown in Figure 2-16. The

415 model version number, model form, benchmark dose calculation, parameter estimates and

- 416 estimated values are shown below in Table 2-41.
- 417

Table 2-40 Summary of BMD Modeling Results for Left Cauda Epididymis Absolute Weight F₀ Male Rats Following Inhalation Exposure to 1-BP

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection		
	<i>p</i> -value	AIC	(ppm)	(ppm)			
Polynomial 4°	0.622	-714.88	438	313	The Polynomial 4° model was		
Polynomial 3°	0.565	-714.69	440	316	selected based on the lowest AIC from this set of models		
Polynomial 2°	0.47	-714.32	437	315	which have adequate <i>p</i> -values		
Power	0.430	-714.14	444	317	M4), adequate fit by visual		
Exponential (M3)	0.382	-713.91	446	320	inspection and the BMDLs are		
Linear	0.133	-712.23	307	256	sufficiently close.		
Hill	0.193	-712.14	444	317			
Exponential (M5)	0.166	-711.91	446	320			
Exponential (M2)	0.0636	-710.55	289	236			
Exponential (M4)	0.0636	-710.55	289	235			

^a Constant variance case presented (BMDS Test 2 p-value = 0.911), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were -0.21, 0.64, -0.65, 0.26, -0.04, respectively.

- Figure 2-16 Plot of Mean Response by Dose in ppm with Fitted Curve for Polynomial 4° 422
- Model with Constant Variance for Left Cauda Epididymis Absolute Weight; BMR = 1 423
- 424 **Standard Deviation Change from Control Mean.**
- 425

426 Table 2-41 BMD Modeling Results for Left Cauda Epididymis Absolute Weight; BMR = 1 427

Standard Deviation Change from Control Mean.

Polynomial Model. (Version: 2.20; Date: 10/22/2014) The form of the response function is: $Y[dose] = beta \ 0 + beta \ 1*dose + beta \ 2*dose^2 + ...$ A constant variance model is fit

Benchmark Dose Computation.

BMR = 1 Estimated standard deviations from the control mean BMD = 438.482 BMDL at the 95% confidence level = 313.325

Parameter Estimates								
Variable	Estimate	Default Initial Parameter Values						
alpha	0.00113284	0.0011711						
rho	n/a	0						
beta_0	0.326617	0.3252						
beta_1	-0.0000672194	0						
beta_2	0	-0.00000139519						
beta_3	-6.09563E-33	0						
beta_4	-1.13164E-13	-2.44944E-12						

Dose	Ν	Obs Mean		Obs Mean E		Est Me	Mean Obs Std Dev		Est Std Dev	Scaled Resid
0	25	0.	32	2 0.33		0.04	0.03	-0.21		
100	25	0.1	32	0.32		0.03	0.03	0.641		
250	25	0.	3	0.31		0.04	0.03	-0.649		
500	25	0.2	29	0.29		0.03	0.03	0.262		
750	25	0.2	24	0.24		0.04	0.03	-0.044		
Likelihoods of Model	f Interest	(boot	# P o	ram's		AIC				
A1	361 914	505	πIa	6	-7	410 × 11 829209				
A2	362.410	744	10		-704.821488					
A3	361.914	505	6		-711.829209					
fitted	361.438	986		4		14.877972				
R	322.608	827		2 -641.217655		41.217655				
Tests of Inter	est									
Test	-2*log(Lik Rati	elihood D)	Т	est df		<i>p</i> -value				
Test 1	79.60	79.6038		8		< 0.0001				
Test 2	0.9922	278		4		0.911				
Test 3	0.9922	278		4		0.911				
Test 4	0.9512	238		2		0.6215				

429

2.2.10 Decreased Right Cauda Epididymis Weight

430 A decrease in right cauda epididymis absolute weight was observed in the F_0 generation in the 431 reproductive and developmental study by (WIL Research, 2001). The absolute weights are used

for BMD modeling of the epididymis as described in EPA's <u>Guidelines for Reproductive</u>

433 <u>Toxicity Risk Assessment</u> (U.S. EPA, 1996). The doses and response data used for the modeling

434 are presented in Table 2-42.

Dose (ppm)	Number of animals	Left Cauda Epididymis Weight (mg)	Standard Deviation
0	25	0.3327	0.03631
100	25	0.3311	0.04453
250	25	0.3053	0.04188
500	23	0.2912	0.05206
750	22	0.2405	0.04804

Table 2-42 Right Cauda Epididymis Absolute Weight Data Selected for Dose-Response
 Modeling for 1-BP

438 The BMD modeling results for right cauda epididymis absolute weight with homogeneous

439 variance (BMDS test 2 p-value =0.455) are summarized in Table 2-43. The best fitting model

440 (Polynomial 4°) was selected based on Akaike information criterion (AIC; lower values indicates

441 a better fit), chi-square goodness of fit *p*-value (higher value indicates a better fit) and visual

inspection. The Polynomial 4° model had an acceptable BMD to BMDL ratio of 1.4 and is

indicated in bold. For the best fitting model a plot of the model is shown in Figure 2-17. The

444 model version number, model form, benchmark dose calculation, parameter estimates and

445 estimated values are shown below in Table 2-44.

Table 2-43 Summary of BMD Modeling Results for Right Cauda Epididymis Absolute Weight F₀ Male Rats Following Inhalation Exposure to 1-BP

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection	
	<i>p</i> -value	AIC	(ppm)	(ppm)		
Polynomial 4°	0.493	-646.60	485	338	The Polynomial 4° model was	
Polynomial 3°	0.442	-646.38	480	334	selected based on the lowest AIC from this set of models	
Linear	0.296	-646.32	371	303	which have adequate <i>p</i> -values,	
Polynomial 2°	0.376	-646.06	472	327	and the BMDLs are < 1.5-fold	
Power	0.340	-645.86	474	323	apart considered sufficiently	
Exponential (M3)	0.304	-645.63	473	317		
Exponential (M2)	0.196	-645.33	350	277		
Exponential (M4)	0.196	-645.33	350	270		
Hill	0.142	-643.85	474	323		
Exponential (M5)	0.123	-643.63	473	317		

^a Constant variance case presented (BMDS Test 2 p-value = 0.455), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were -0.09, 0.63, -0.9, 0.44, -0.08, respectively.

- 449 12:13 11/30 2015
- 450 Figure 2-17 Plot of Mean Response by Dose in ppm with Fitted Curve for Polynomial 4°
- 451 Model with Constant Variance for Right Cauda Epididymis Absolute Weight; BMR = 1
- 452 Standard Deviation Change from Control Mean.
- 453
- Table 2-44 BMD Modeling Results for Right Cauda Epididymis Absolute Weight; BMR =
 1 Standard Deviation Change from Control Mean

Polynomial Model. (Version: 2.20; Date: 10/22/2014)

The form of the response function is: $Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...$ A constant variance model is fit

Benchmark Dose Computation.

BMR = 1 Estimated standard deviations from the control mean

BMD = 484.978

BMDL at the 95% confidence level = 338.42

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values		
alpha	0.00195609	0.00201467		
rho	n/a	0		
beta_0	0.333498	0.3327		
beta_1	-0.0000793692	0		
beta_2	-2.2991E-28	-0.00000198872		
beta_3	-2.18866E-31	0		
beta_4	-1.03676E-13	-3.6281E-12		

Dose	Ν	Obs Mean		Est Me	Mean Obs Std Dev		Est Std Dev	Scaled Resid
0	25	0.3	33	0.33		0.04	0.04	-0.0902
100	25	0.3	33	0.33		0.04	0.04	0.627
250	25	0.	3	0.31		0.04	0.04	-0.899
500	25	0.2	29	0.29		0.05	0.04	0.437
750	25	0.2	24	0.24		0.05	0.04	-0.0754
Likelihoods of	Interest							
Model	Log(likelil	nood)	# Pa	ram's		AIC		
A1	328.007	576		6	-6	44.015151		
A2	329.833	395		10	-639.66679			
A3	328.007	576		6	-644.015151			
fitted	327.3004	407		4	-6	46.600813		
R	299.1193	376		2	-5	94.238753		
Tests of Intere	st							
Test	-2*log(Lik Ratio	elihood o)	T	est df		<i>p</i> -value		
Test 1	61.42	28		8		< 0.0001		
Test 2	est 2 3.65164		4		0.4552			
Test 3	3.651	64		4		0.4552		
	1 11 1	24		2		0 403		

2.2.11 Increased Estrus Cycle Length

457 An increase estrus cycle length was observed in the F_0 generation in the reproductive and

developmental study by (<u>WIL Research, 2001</u>). The doses and response data used for the
modeling are presented in Table 2-45.

Dose (ppm)	Number of animals	Estrus cycle Length (days)	Standard Deviation
0	25	4.2	0.49
100	25	4.5	1.05
250	25	4.7	0.9
500	23	5.5	2.17
750	22	5.6	1.79

461 Table 2-45 Estrus Cycle Length Data Selected for Dose-Response Modeling for 1-BP

The BMD modeling results for estrus cycle length with non-homogeneous variance (BMDS test 2 p-value = <0.0001) are summarized in Table 2-46. The means are not adequately fit for any of the models as shown by the goodness of fit where the model with the highest p-value is 0.0065 for the Exponential M4 and M5 models (excluding the Hill model because a BMDL could not be calculated). This result suggests that due to the poor model fit to the data it is not reasonable to use BMDS for this endpoint. Instead the NOAEL of 250 ppm was used.

468

Table 2-46 Summary of BMD Modeling Results for Estrus Cycle Length F₀ Female Rats Following Inhalation Exposure to 1-BP

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection	
	<i>p</i> -value	AIC	(ppm)	(ppm)		
Hill	0.00656	160.04	145	error ^b	Due to inadequate fit of the	
Exponential (M4) Exponential (M5) ^c	0.00650	160.05	157	79.5	models to the data means (shown by the goodness of fit <i>p</i> - value) no model was selected.	
Power ^d Polynomial 4 ^{°e} Polynomial 3 ^{°f} Polynomial 2 ^{°g} Linear	0.00169	163.13	300	205		
Exponential (M2) Exponential (M3) ^h	7.68E-04	164.81	344	244		

^a Modeled variance case presented (BMDS Test 2 p-value = <0.0001, BMDS Test 3 p-value = 0.506), no model was selected as a best-fitting model.

^b BMD or BMDL computation failed for this model.

^c For the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M4) model.

^d For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^e For the Polynomial 4^o model, the b4 and b3 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2^o model. For the Polynomial 4^o model, the b4, b3, and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^g For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^h For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^f For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

472 2.2.12 Decreased Antral Follical Count

A decreased antral follicle count was observed in the study of female reproductive function by
(Yamada et al., 2003). The doses and response data used for the modeling are presented in Table
2-47. The highest dose was not included for modeling because all the rats in the highest dose
group (800 ppm) were seriously ill and were sacrificed during the 8th week of the 12 week study.

477

478 Table 2-47 Antral Follicle Count Data Selected for Dose-Response Modeling for 1-BP

Dose (ppm)	Number of animals	Antral Follicle Count	Standard Deviation
0	8	30.1	22.4
200	9	12.6	4.82
400	9	7.44	6.52

479

480	The BMD modeling results for antral follical count with non-homogeneous variance (BMDS test
101	2π value = <0.0001) are summarized in Table 2.48. The means are not adequately fit for any of

481 2 p-value = <0.0001) are summarized in Table 2-48. The means are not adequately fit for any of 482 the models as shown by the goodness of fit where the model with the bicket r value is 0.0404 for

the models as shown by the goodness of fit where the model with the highest p-value is 0.0404 for

483 the Exponential M2 model. This result suggests that due to the poor model fit to the data it is not 484 reasonable to use BMDS for this endpoint. Instead the LOAEL of 200 ppm was used.

485

Table 2-48 Summary of BMD Modeling Results for Antral Follical Count in Female Rats Following Inhalation Exposure to 1-BP

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection	
	<i>p</i> -value	AIC	(ppm)	(ppm)		
Exponential (M4)	N/A ^b	148.31	189	0.651	Due to inadequate fit of the	
Exponential (M2)	0.0404	150.51	270	117	models to the data means (shown by the goodness of fit <i>p</i> -	
Power ^c Linear ^d	0.00496	154.21	410	233	value) no model was selected.	
Polynomial 2 ^{°e}	0.00496	154.21	410	233		
Exponential (M3)	N/A ^b	179.12	1.8E+05	754		

^a Modeled variance case presented (BMDS Test 2 p-value = <0.0001, BMDS Test 3 p-value = 0.0545), no model was selected as a best-fitting model.

^b No available degrees of freedom to calculate a goodness of fit value.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d The Linear model may appear equivalent to the Polynomial 2° model, however differences exist in digits not displayed in the table.

 $^{\rm e}$ The Polynomial 2 $^{\circ}$ model may appear equivalent to the Power model, however differences exist in digits not displayed in the table. This also applies to the Linear model.

488

489

2.2.13 Decreased Male and Female Fertility Index

490 A decrease in the male and female fertility index was observed in the F_0 generation in the

491 reproductive and developmental study by WIL Laboratories (2001). The doses and response data

492 are presented in Table 2-49 as a percentage and incidence. The incidence represents the number

- 493 of males that did not sire a litter which is equal to the number of nongravid females. The
- 494 incidence was used for modeling as a dichotomous endpoint.
- 495

rube 2 47 For unity much Dum Selection for Dose-Kesponse modeling for 1-Di									
Dose (ppm)	Number of animals	Fertility Index (%)	Number Nongravid Females = Males that did not Sire a Litter						
0	25	92	2						
100	25	100	0						
250	25	88	3						
500	23	52	12						
750	22	0	25						

496 Table 2-49 Fertility Index Data Selected for Dose-Response Modeling for 1-BP

497

498 The BMD modeling results for the fertility index are summarized in Table 2-50. The best fitting

499 models were the LogLogistic and Dichotomous-Hill based on Akaike information criterion

500 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

501 indicates a better fit) and visual inspection. Dichotomous-Hill model slope parameter was at the

502 boundary value of 18 which indicates some concern for using this model fit and so instead the

503 LogLogistic model selected. The LogLogistic and Dichotomous-Hill models had nearly the same

504 BMDLs with LogLogistic slightly lower (356 ppm) than Dichotomous-Hill (363 ppm). For the

505 best fitting model a plot of the model is shown in Figure 2-18. The model version number, model

506 form, benchmark dose calculation, parameter estimates and estimated values are shown below in

507 Table 2-51.

508Table 2-50 Summary of BMD Modeling Results for Fertility Index of F0 Rats Following509Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study

Model ^a	Goodne	ess of fit	BMD10Pct	BMDL _{10Pct}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
LogLogistic	0.388	75.396	448	356	The LogLogistic model was
Dichotomous-Hill	0.388	75.396	448	363	selected based on the lowest AIC from this set of models
Multistage 4°	0.355	75.682	306	219	which have adequate goodness
Weibull	0.253	77.024	361	252	Quantal-Linear, Multistage 2 ⁰ ,
Gamma	0.256	77.045	361	260	Probit and Logistic) and adequate fit by visual inspection
LogProbit	0.223	77.357	461	352	and the BMDLs are < 2-fold
Multistage 3°	0.161	78.153	250	202	apart considered sufficiently close. The Dichotomous-Hill model had concern for the fit
Logistic	0.0103	80.981	238	182	
Probit	0.0031	82.358	208	159	the boundary and so instead the
Multistage 2°	0.0152	85.979	173	143	LogLogistic was selected.
Quantal-Linear	0	106.73	68.4	52.1	

^a Selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were 0.27, -1.34, 1.07, -0.01, 0.14, respectively.

- 17:13 12/03 2015 511
- Figure 2-18 Plot of Mean Response by Dose with Fitted Curve for the Selected Model 512
- 513 (LogLogistic) for Fertility Index in Rats Exposed to 1-BP Via Inhalation in ppm BMR 10% Extra Risk.
- 514
- 515
- Table 2-51 BMD Modeling Results for Fertility Index in Rats Exposed to 1-BP Via 516

Inhalation BMR 10% Extra Risk 517

Logistic Model. (Version: 2.14; Date: 2/28/2013) The form of the probability function is: P[response] = background + (1-background)/[1+EXP(intercept-slope*Log(dose))] Slope parameter is restricted as slope ≥ 1

Benchmark Dose Computation.

BMR = 10% Extra risk BMD = 448.13BMDL at the 95% confidence level = 356.183

Variable	Esti	mate	Default Initial Parameter Values		
background	0.066	66427	0.08		
intercept	-1.120	9E+02	-2.1668E+01		
slope	1	8	3.62868		
Analysis of De Model	Log(likelihood)	# Param's	5 Deviance	Test d.f.	<i>p</i> -value
Full model	-33.45	5			
Fitted model	-35.7	2	4.4943	3	0.21
Reduced model	-79.79	1	92.6846	4	<.0001
AIC: $= 75.396$	54 Tabla				
	it radie				
Dose	Est. Prob.	Expected	Observed	Size	Scaled Resid
Dose	Est. Prob. 0.0666	Expected 1.666	Observed 2	Size 25	Scaled Resid
Dose 0 100	Est. Prob. 0.0666 0.0666	Expected 1.666 1.666	Observed 2 0	Size 25 25	Scaled Resid 0.27 -1.34
Dose 0 100 250	Est. Prob. 0.0666 0.0666 0.0666	Expected 1.666 1.666 1.666	Observed 2 0 3	Size 25 25 25 25	Scaled Resid 0.27 -1.34 1.07
Dose 0 100 250 500	Est. Prob. 0.0666 0.0666 0.0666 0.0666 0.4809	Expected 1.666 1.666 1.666 12.022	Observed 2 0 3 12	Size 25 25 25 25 25	Scaled Resid 0.27 -1.34 1.07 -0.01

519

2.2.14 Decreased Implantations Sites

A decrease in the number of implantations sites was observed in the F_0 generation in the reproductive and developmental study by (<u>WIL Research, 2001</u>). The doses and response data used for modeling are presented in Table 2-52. The highest dose group was not included because none of the dams had implantations sites.

525 **Table 2-52 Implantations Site Data Selected for Dose-Response Modeling for 1-BP**

Dose (ppm)	Number of animals	Average Numer of Sites	Standard Deviation
0	23	15.3	2.53
100	25	14.3	3.09
250	22	13.8	4.23
500	11	9.0	4.54

- 527 The BMD modeling results for the number of implantations sites are summarized in Table 2-53.
- 528 The best fitting models were the Linear and Power based on Akaike information criterion (AIC;
- 529 lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a
- better fit) and visual inspection. Based on the parameter estimate for the Power model it reduced
- 531 to the Linear, so the Linear model was selected. For the best fitting model a plot of the model is
- shown in Figure 2-19. The model version number, model form, benchmark dose calculation,
- 533 parameter estimates and estimated values are shown below in Table 2-54.

534Table 2-53 Summary of BMD Modeling Results for Implantations Sites in F0 Rats

535 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study

Model ^a	Goodness of fit		BMD _{5RD}	BMDL _{5RD}	BMD _{1SD}	BMDL _{1SD}	Basis for model
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	selection
Linear Power ^b	0.936	284.66	80.8	56.1	282	188	Linear and Power models were selected
Exponential (M2)	0.901	284.74	74.1	48.1	270	166	based on the lowest AIC from this set of models
Exponential (M4)	0.901	284.74	74.1	37.3	270	138	which have adequate <i>p</i> -
Polynomial 3°	0.741	286.64	85.5	56.2	295	188	visual inspection and
Polynomial 2°	0.724	286.66	84.3	56.1	289	188	the BMDLs are < 1.5- fold anart considered
Hill	0.715	286.67	80.6	55.8	282	195	sufficiently close.
Exponential (M3)	0.669	286.71	82.3	48.2	278	167	
Exponential (M5)	N/A ^c	288.71	82.3	48.2	278	167	

^a Modeled variance case presented (BMDS Test 2 p-value = 0.0493), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were -0.17, -0.23, 1, -1, respectively.

^b For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^c No available degrees of freedom to calculate a goodness of fit value.

537 19:50 12/03 2015

- 538 Figure 2-19 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- (Linear) for Implantation Sites in Rats Exposed to 1-BP Via Inhalation in ppm BMR 1
 Standard Deviation.
- 541
- Table 2-54 BMD Modeling Results for Implantation Sites in Rats Exposed to 1-BP Via
 Inhalation in ppm BMR 1 Standard Deviation

Polynomial Model. (Version: 2.20; Date: 10/22/2014) The form of the response function is: Y[dose] = beta_0 + beta_1*dose A modeled variance is fit

Benchmark Dose Computation.

BMR = 1 Estimated standard deviations from the control mean

BMD = 282.359

BMDL at the 95% confidence level = 188.047

Parameter Est	Parameter Estimates						
Variable	Variable Estimate						
lalpha	12.2915	2.51459					
rho	-3.77194	0					
beta_0	15.393	15.7286					
beta_1	-0.00952791	-0.01237					

Table of Data and Estimated Values of Interest

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	23	15.3	15.4	2.53	2.69	-0.166
100	25	14.3	14.4	3.09	3.03	-0.231
250	22	13.8	13	4.23	3.69	1
500	11	9	10.6	4.54	5.41	-0.999

Likelihoods of Interest

Log(likelihood)	# Param's	AIC						
-140.289933	5	290.579865						
-136.366566	8	288.733132						
-138.26616	6	288.532319						
-138.332408	4	284.664816						
-151.740933	2	307.481866						
	Log(likelihood) -140.289933 -136.366566 -138.26616 -138.332408 -151.740933	Log(likelihood) # Param's -140.289933 5 -136.366566 8 -138.26616 6 -138.332408 4 -151.740933 2						

Tests of Interest							
Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value				
Test 1	30.7487	6	< 0.0001				
Test 2	7.84673	3	0.04929				
Test 3	3.79919	2	0.1496				
Test 4	0.132497	2	0.9359				

545 **2.2.15** Decreased Pup Body Weight

Decreased pup body weight was observed in the 2-generation reproductive and developmental 546 547 study by (WIL Research, 2001). Statistically significant decreases in pup body weight were noted 548 for males in the F₁ generation at PND 28 and in the F₂ generation in both sexes at PNDs 14 and 549 21. Continuous models were used to fit-dose response data for decreased pup body weights. A 550 BMR of 5% RD from control mean was applied in modeling pup body weight changes under the assumption that it represents a minimal biologically significant response. In adults, a 10% 551 552 decrease in body weight in animals is generally recognized as a biologically significant response 553 associated with identifying a maximum tolerated dose; during development, however, 554 identification of a smaller (5%) decrease in body weight is consistent with the assumptions that 555 development represents a susceptible lifestage and that the developing animal is more adversely 556 affected by a decrease in body weight than the adult. In humans, reduced birth weight is 557 associated with numerous adverse health outcomes, including increased risk of infant mortality 558 as well as heart disease and type II diabetes in adults (Barker, 2007; Reyes and Mañalich, 2005). 559 The selection of a 5% BMR is additionally supported by data from (Kaylock et al., 1995) which 560 found that a BMR of 5% RD for fetal weight reduction was statistically similar to several other BMR measurements as well as to statistically-dervived NOAEL values. For these reasons, a 561 562 BMR of 5% RD was selected for decreased pup weight. A BMR of 1 standard deviation is also 563 shown for comparison per EPA Benchmark Dose Technical Guidance (U.S. EPA, 2012). The 564 doses, response data and BMD modeling results for decreased pup body weight are presented 565 below at each time point.

- 566
- 567

2.2.15.1 Decreased Body Weight in F1 Male Pups at PND 28

568 The doses and response data from the WIL Laboratories (<u>WIL Research, 2001</u>) study were used 569 for the modeling and are presented in Table 2-55.

570

571 Table 2-55 Pup Body Weight Data in F1 Males at PND 28 for Dose-Response Modeling

	Concentration (ppm)				
	0	100	250	500	
Number of litters	23	24	21	10	
Mean pup wt (g)	88.1	82.8	80.3	76.0	
Standard deviation (g)	7.60	7.74	9.04	9.45	

572

573 A comparison of the model fits obtained for pup body weight changes is provided in Table 2-56. 574 The best fitting model was selected based on Akaike information criterion (AIC; lower values 575 indicates a better fit), visual inspection and comparison with the BMD/BMDLs among the data 576 for decreased pup weights at other time points. There is a large spread in BMC/L values among 577 the models and EPA procedures allow for selecting the lowest BMDL is this case (the Hill 578 model) however the Exponential (M2) was selected because it is in line with the results from the 579 pup body weight decreases observed at the other time points in this data set and the Hill model 580 has additional uncertainty of the BMD / BMDL ratio is 4-fold and the BMDL is greater than 4-581 fold lower than the lowest dose. The best-fitting model is indicated in bold. For the best fitting 582 model a plot of the model is shown in Figure 2-20. The model version number, model form,

583 benchmark dose calculation, parameter estimates and estimated values are shown below in Table

- 584 2-57. Also a plot of the Hill model is shown in Figure 2-21 and the model version number, model
- form, benchmark dose calculation, parameter estimates and estimated values are shown below inTable 2-57.
- 587

588 Table 2-56 Summary of BMD Modeling Results for Body Weight of F1 Male Rat Pups on

- 589 PND 28 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation
- 590 Study

Model ^a	Goodness of fit		BMD	BMDL	BMD	BMD	BMDL	Basis for model selection
	<i>p</i> -value	AIC	1SD (ppm)	1SD (ppm)	5RD (ppm)	5RD (ppm)		
Exponential (M2) Exponential (M3) ^b	0.449	411.46	334.07	228.77	174	123	The Exponential (M2) model was selected based on the lowest AIC from this set of models which have adequate <i>p</i> -values and adequate fit	
Power ^c Polynomial 3 ^{od} Polynomial 2 ^{oe} Linear	0.406	411.66	345.22	242.64	183	133	by visual inspection. The Hill model has the lowest BMDL and the BMDL is > 5-fold apart from other model BMDLs not considered sufficiently close, however the BMDL is > 4-fold	
Hill	0.578	412.17	234.74	85.21	92.2	23.2	from the lowest dose and BMD /	
Exponential (M4) Exponential (M5) ^f	0.512	412.29	238.92	95.80	101	36.8	EXPOL ratio is 4-101d and the Exponential (M2) model is in line with the result from pup body weight decreases observed in this study at other time points.	

^a Constant variance case presented (BMDS Test 2 p-value = 0.785), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were 0.77, -0.88, -0.17, 0.44, respectively.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^e For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f For the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M4) model.

Exponential 2 Model, with BMR of 0.05 Rel. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

- 592 16:23 10/27 2015
- 593 Figure 2-20 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 594 (Exponential (M2)) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm
- 595 **BMR 5% Relative Deviation.**
- 596
- Table 2-57 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via
 Inhalation BMR 5% Relative Deviation

Exponential Model. (Version: 1.10; Date: 01/12/2015) The form of the response function is: Y[dose] = a * exp(sign * b * dose) A constant variance model is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation BMD = 173.561

BMDL at the 95% confidence level = 122.612

Parameter Estimates							
Variable	Variable Estimate						
lnalpha	4.19824	4.17769					
rho	n/a	0					
a	86.7871	78.9392					
b	0.000295534	0.000288601					
с	n/a	0					
d	n/a	1					

Table of Data and Estimated Values of Interest

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	23	88.1	86.79	7.6	8.16	0.7717
100	24	82.8	84.26	7.74	8.16	-0.8765
250	21	80.3	80.61	9.04	8.16	-0.1719
500	10	76	74.87	9.45	8.16	0.4398

Like	Likelihoods of Interest								
	Model	Log(likelihood)	# Param's	AIC					
A1		-201.9297	5	413.8595					
A2		-201.395	8	418.7901					
A3		-201.9297	5	413.8595					
R		-210.4356	2	424.8712					
2		-202.7313	3	411.4626					

Tests of Interest

Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	18.08	6	0.006033
Test 2	1.069	3	0.7845
Test 3	1.069	3	0.7845
Test 4	1.603	2	0.4486

600 16:23 10/27 2015

n k

- Figure 2-21 Plot of Mean Response by Dose with Fitted Curve for the Hill Model for Pup 601
- Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR 5% Relative Deviation. 602
- 603

Table 2-58 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via 604 605

Inhalation BMR 5% Relative Deviation

Hill Model. (Version: 2.17; Date: 01/28/2013) The form of the response function is: $Y[dose] = intercept + v*dose^n/(k^n + dose^n)$ A constant variance model is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation BMD = 92.1819BMDL at the 95% confidence level = 23.1805

Parameter Estimates Variable Estimate **Default Initial Parameter Values** alph rho inter

a	65.474	68.7399
	n/a	0
rcept	87.9661	88.1
	-17.7059	-12.1
	1	0.881973
	278.907	145

Table of Data and Estimated Values of Interest								
Dose	Ν	Obs Mea	n Est M	Iean	Obs Std Dev	Est Std Dev	Scaled Resid	
0	23	88.1	88	3	7.6	8.09	0.0793	
100	24	82.8	83	.3	7.74	8.09	-0.299	
250	21	80.3	79	.6	9.04	8.09	0.398	
500	10	76	76	.6	9.45	8.09	-0.235	
Likelihoods o	of Interest							
Model	Log(likelil	nood)	# Param's		AIC			
A1	-201.929	732	5	4	13.859464			
A2	-201.395	503	8	4	18.790061			
A3	-201.929	732	5	4	13.859464			
fitted	-202.084	541	4	4	12.169082			
R	-210.435	607	2	4	24.871213			
Tests of Inter	est							
Test	-		Test df		p-value			
	2*log(Likel Ratio	lihood)						
Test 1	18.081	2	6		0.006033			
Test 2	1.0694	4	3		0.7845			
Test 3	1.0694	4	3		0.7845			
Test 4	0.30962	18	1		0.5779			

2.2.15.2 Decreased Body Weight in F₂ Female Pups at PND 14

- 609 The doses and response data used for the modeling are presented in Table 2-59.
- 610

608

Table 2-59 Pup Body Weight Data in F₂ Females at PND 14 from Selected for Dose-

612 **Response Modeling**

	Concentration (ppm)					
	0	100	250	500		
Number of litters	22	17	15	15		
Mean pup wt (g)	27.6	26.9	27.3	23.7		
Standard deviation (g)	2.29	2.11	3.87	3.70		

613

The BMD modeling results for decreased pup weight in F₂ females at PND 14 with non-

homogeneous variance (BMDS test 2 *p*-value = 0.0218) are summarized in Table 2-60. Although

the variances are non-homogeneous and not well modeled for any of the non-homogeneous

617 variance models the means were well-modeled (the highest *p*-value is 0.904 for the linear model

618 with non-homogeneous variances).

619

620 Table 2-60 Summary of BMD Modeling Results for Body Weight of F₂ Female Rat Pups on

621 PND 14 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation

622 Study

Model ^a		Goodness of fit	BMD _{5RD}	BMDL _{5RD} (ppm)	
	<i>p</i> -value	AIC	(ppm)		
Linear	0.904	221.02	228	145	
Exponential (M2)	0.893	221.05	224	138	
Exponential (M4)	0.893	221.05	224	104	
Exponential (M3)	0.715	222.96	244	139	
Power	0.708	222.96	245	146	
Polynomial 3 ^{ob}	0.687	222.98	245	145	
Polynomial 2°c	0.687	222.98	245	145	
Exponential (M5)	N/A ^d	224.82	228	107	
Hill	N/A ^d	224.82	226	105	
Polynomial 4°	error	error	error ^e	error ^e	

^a Modeled variance case presented (BMDS Test 2 p-value = 0.0218, BMDS Test 3 p-value = 0.0438), no model was selected as a best-fitting model.

^b The Polynomial 3° model may appear equivalent to the Polynomial 2° model, however differences exist in digits not displayed in the table.

^c The Polynomial 2[°] model may appear equivalent to the Polynomial 3[°] model, however differences exist in digits not displayed in the table.

^d No available degrees of freedom to calculate a goodness of fit value.

^e BMD or BMDL computation failed for this model.
- 623 To investigate the effect of the poor modeling of the variances on the BMDL, the models were
- run using the smallest dose standard deviation (2.29), highest (3.87) and pooled (2.89) for all dose levels and the modeling results are summarized in Table 2-61. 624
- 625

Table 2-61 BMD Modeling Results for Body Weight of F2 Female Rat Pups on PND 14 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study with Variances Fixed at Smallest, Pooled and Highest Values.

Model ^a	Sma	llest Sta	ndard De	viation	Pooled Standar			ation	L	argest S	tandard Dev	iation	Ratio
	Goodnes	ss of fit	BMD5RD	BMDL _{5RD}	Goodne	ess of fit	BMD _{5RD}	BMDL _{5RD}	Goodnes	ss of fit	BMD _{5RD}	BMDL _{5RD}	BMDLs Smallest
	<i>p</i> -value	AIC	(ppm)	(ppm)	<i>p</i> -value	AIC	(ppm)	(ppm)	<i>p</i> -value	AIC	(ppm)	(ppm)	to Largest Std Dev
Polynomial 3°	0.518	186.54	360	274	0.661	218.16	360	183	0.793	258.09	360	145	1.9
Polynomial 2°	0.318	187.51	304	199	0.485	218.78	304	260	0.667	258.44	304	140	1.4
Power	0.331	188.16	465	247	0.441	219.93	465	200	0.564	259.96	460	148	1.7
Exponential (M3)	0.331	188.16	473	249	0.441	219.93	470	202	0.564	259.96	473	143	1.7
Hill	N/A ^b	190.16	466	248	N/A ^b	221.93	465	200	N/A ^b	261.96	442	138	1.8
Exponential (M5)	N/A ^b	190.16	470	249	N/A ^b	221.93	470	202	N/A ^b	261.96	473	139	1.8
Linear	0.0533	191.08	193	146	0.154	221.07	193	138	0.348	259.74	193	127	1.1
Exponential (M2)	0.0443	191.45	188	139	0.137	221.31	188	131	0.325	259.88	188	119	1.2
Exponential (M4)	0.0443	191.45	188	131	0.137	221.31	188	115	0.325	259.88	188	90.2	1.5

^a Constant variance case presented (BMDS Test 2 *p*-value = 1., BMDS Test 3 *p*-value = 1.), no model was selected as a best-fitting model.

^b No available degrees of freedom to calculate a goodness of fit value.

- A comparison across the full suite of BMD models shows the BMDL is sensitive to the
- 630 adjustment of the variances and for the model that fit the constant variance data best, the
- Polynomial 3° model the ratio of BMDLs was 1.9. This result suggests that due to the poor
- variance modeling for the original data it is not reasonable to use BMDS for this endpoint. Instead
- 633 the NOAEL of 250 ppm was used.
- 634

2.2.15.3 Decreased Body Weight in F₂ Female Pups at PND 21

- 636 The doses and response data used for the modeling are presented in Table 2-62.
- 637

638Table 2-62 Pup Body Weight Data in F2 Females at PND 21 from Selected for Dose-

639 **Response Modeling**

		Concentration (ppm)								
	0	500								
Number of litters	22	17	15	15						
Mean pup wt (g)	46.6	44.7	45.6	39.7						
Standard deviation (g)	4.05	3.80	5.60	6.13						

640 Comparisons of model fits obtained are provided in Table 2-63. The best fitting model

641 (Polynomial 2° with constant variance) was selected based on Akaike information criterion

642 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

643 indicates a better fit) and visual inspection. The best-fitting model is indicated in bold. For the

best fitting model a plot of the model is shown in Figure 2-22. The model version number, model

645 form, benchmark dose calculation, parameter estimates and estimated values are shown below.

646

Table 2-63 Summary of BMD Modeling Results for Body Weight of F₂ Females on PND 21 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study

onowing initiation Exposure of Farenau Aats to F-br in a 1wo-Ocheration Study											
Model ^a	Goodne	Goodness of fit		Goodness of fit		Goodness of fit		BMDL _{1SD}	BMD5RD	BMDL _{5RD}	Basis for model
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	selection				
Polynomial 2°	0.372	291.28	436.24	299.79	303	148	The Polynomial				
Linear	0.176	292.77	386.50	269.95	187	135	2° model was selected based on				
Power	0.216	292.83	475.29	314.36	407	155	the lowest AIC				
Exponential (M3)	0.216	292.83	474.45	316.27	406	152	models which				
Polynomial 3°	0.213	292.85	449.22	313.20	336	154	have adequate <i>p</i> -				
Exponential (M2)	0.160	292.97	385.88	261.10	181	127	fit by visual				
Exponential (M4)	0.160	292.97	385.88	250.91	181	105	inspection and the BMDLs are <				
Exponential (M5)	N/A ^b	294.83	474.45	316.27	406	152	1.5-fold apart				
Hill	N/A ^b	294.83	475.10	314.77	406	150	sufficiently close.				

^a Constant variance case presented (BMDS Test 2 p-value = 0.144), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were 0.4, -1.06, 0.8, -0.15, respectively.

^b No available degrees of freedom to calculate a goodness of fit value.

649 13:20 10/29 2015

- 650 Figure 2-22 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- (Polynomial 2°) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR
 = 5% Relative Deviation.
- 653
- Table 2-64 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via
 Inhalation BMR = 5% Relative Deviation.

Polynomial Model. (Version: 2.20; Date: 10/22/2014) The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... A constant variance model is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation BMD = 302.794 BMDL at the 95% confidence level = 148.282

Estimate	Default Initial
	Parameter Values
22.9776	23.7017
n/a	0
46.1877	45.9942
0	0
0.0000251884	-0.000029911
	22.9776 n/a 46.1877 0 0.0000251884

Table of Data	and Estimated	Values of In	nterest				
Dose	Ν	Obs Mean	Est Mea	n Obs Std	Dev	Est Std Dev	Scaled Resid
0	22	46.6	46.2	4.05	5	4.79	0.403
100	17	44.7	45.9	3.8		4.79	-1.06
250	15	45.6	44.6	5.6		4.79	0.797
500	15	39.7	39.9	6.13	3	4.79	-0.154
				·	•		
Likelihoods of	f Interest						
Model	Log(likeliho	ood) # Pa	aram's	AIC			
A1	-141.65101	19	5	293.302038	3		
A2	-138.94428	37	8	293.888574	4		
A3	-141.65101	19	5	293.302038			
fitted	-142.64098	38	3	291.281976			
R	-150.68126	57	2	305.362534	4		
	·						
Tests of Intere	est						
Test	-2*log(Likel Ratio)	ihood 7	Test df	<i>p</i> -value			
Test 1	23.474		6	0.0006523			
Test 2	5.41346	5	3	0.1439			
		4	3	0.1439			
Test 3	5.41346	,	5	011 109			

657

2.2.15.4 Decreased Body Weight in F2 Male Pups at PND 14

The doses and response data used for the modeling are presented in Table 2-65. 658

Table 2-65 Pup Body Weight Data in F2 Males at PND 14 from Selected for Dose-Response 659 Modeling 660

	Concentration (ppm)							
	0	100	250	500				
Number of litters	22	17	15	16				
Mean pup wt (g)	29.2	28.1	28.4	24.5				
Standard deviation (g)	2.77	2.43	3.65	4.14				

661

Comparisons of model fits obtained are provided in Table 2-66. The best fitting model 662

(Polynomial 2° with constant variance) was selected based on Akaike information criterion 663

- 664 (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value
- 665 indicates a better fit) and visual inspection. The best-fitting model is indicated in bold. For the
- best fitting model a plot of the model is shown in Figure 2-23. The model version number, model
- 667 form, benchmark dose calculation, parameter estimates and estimated values are shown below in668 Table 2-67.
- 669

670 Table 2-66 Summary of BMD Modeling Results for Body Weight of F₂ Male Rat Pups on

- 671 PND 14 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation
- 672 **Study**

Model ^a	Goodness of fit		BMD _{1SD}	BMD _{1SD} BMDL _{1SD}		BMDL _{5RD}	Basis for model
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	selection
Polynomial 2°	0.509	238.45	427.44	290.47	288	136	The Polynomial
Linear	0.236	239.99	367.99	261.73	168	124	2° model was selected based on
Polynomial 3°	0.316	240.11	439.96	300.66	314	140	the lowest AIC
Power	0.290	240.22	457.39	297.00	358	138	models which
Exponential (M3)	0.289	240.23	456.58	297.67	358	134	have adequate <i>p</i> -
Exponential (M2)	0.209	240.23	365.77	251.63	161	115	fit by visual
Exponential (M4)	0.209	240.23	365.77	241.42	161	95.6	inspection and the BMDLs are <
Hill	N/A ^b	242.22	457.31	296.92	358	138	1.5-fold apart
Exponential (M5)	N/A ^b	242.23	456.58	297.67	358	134	sufficiently close.

^a Constant variance case presented (BMDS Test 2 *p*-value = 0.116), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were 0.35, -0.89, 0.64, -0.12, respectively. ^b No available degrees of freedom to calculate a goodness of fit value.

673

674 14:31 10/29 2015

- 675 Figure 2-23 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 676 (Polynomial 2°) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR
- 677 = **5% Relative Deviation.**

Table 2-67 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 5% Relative Deviation.

Polynomial Model. (Version: 2.20; Date: 10/22/2014) The form of the response function is: Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ... A constant variance model is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation BMD = 287.938 BMDL at the 95% confidence level = 135.688

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
alpha	10.1836	10.5942
rho	n/a	0
beta_0	28.9615	28.8658
beta_1	0	0
beta_2	-0.000017466	-0.000019675

Fable of Data and Estimated Values of Interest										
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid				
0	22	29.2	29	2.77	3.19	0.35				
100	17	28.1	28.8	2.43	3.19	-0.887				
250	15	28.4	27.9	3.65	3.19	0.643				
500	16	24.5	24.6	4.14	3.19	-0.119				

Likelihoods of Interest Model Log(likelihood) # Param's AIC A1 -115.551371 5 241.102743 A2 8 -112.600048 241.200097 A3 5 -115.551371 241.102743 fitted -116.227119 3 238.454239 R -125.255153 2 254.510306

Tests of Interest			
Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	25.3102	6	0.0002991
Test 2	5.90265	3	0.1164
Test 3	5.90265	3	0.1164
Test 4	1.3515	2	0.5088

682

2.2.15.5 Decreased Body Weight in F₂ Male Pups at PND 21

The doses and response data from the WIL Laboratories (2001) study was used for the modeling and are presented in Table 2-68.

685Table 2-68 Pup Body Weight Data in F2 Males at PND 21

		Concentration (ppm)									
	0	500									
Number of litters	22	17	15	16							
Mean pup wt (g)	49.5	46.9	47.6	40.8							
Standard deviation (g)	5.14	5.03	5.40	6.70							

686

687 Comparisons of model fits obtained are provided in Table 2-69. The best fitting model (Linear

688 with homogeneous variance) was selected based on Akaike information criterion (AIC; lower

values indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a better

690 fit) and visual inspection. The best-fitting model is indicated in bold. For the best fitting model a

691 plot of the model is shown in Figure 2-24. The model version number, model form, benchmark

dose calculation, parameter estimates and estimated values are shown below in Table 2-70.

694Table 2-69 Summary of BMD Modeling Results for Body Weight of F2 Male Rat Pups on

- 695 PND 21 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation
- 696 Study

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	BMD5RD	BMDL _{5RD}	Basis for model
	<i>p</i> -value	AIC	(ppm)	(ppm)	(ppm)	(ppm)	selection
Linear	0.218	315.14	344.43	249.00	155	116	The Linear model
Exponential (M2)	0.194	315.38	339.42	237.32	147	107	was selected based on the
Exponential (M4)	0.194	315.38	339.42	220.01	147	84.8	lowest AIC from
Polynomial 3°	0.194	315.78	418.75	271.24	273	125	this set of models which have
Polynomial 2°	0.153	316.14	404.48	264.17	252	122	adequate <i>p</i> -
Power	0.150	316.17	435.13	263.67	313	122	fit by visual
Exponential (M3)	0.148	316.19	436.20	257.18	318	115	inspection and the BMDLs are <
Hill	N/A ^b	318.17	435.26	262.98	314	121	1.5-fold apart
Exponential (M5)	N/A ^b	318.19	436.20	257.18	318	115	sufficiently close.

^a Constant variance case presented (BMDS Test 2 *p*-value = 0.614), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were -0.04, -0.78, 1.44, -0.54, respectively.

^b No available degrees of freedom to calculate a goodness of fit value.

- 698 15:03 10/29 2015
- 699 Figure 2-24 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- (Linear) for Pup Body Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 5%
 Relative Deviation.
- 702

```
    Table 2-70 BMD Modeling Results for Pup Body Weight in Rats Exposed to 1-BP Via
    Inhalation in ppm BMR = 5% Relative Deviation
```

```
Polynomial Model. (Version: 2.20; Date: 10/22/2014)
The form of the response function is: Y[dose] = beta_0 + beta_1*dose
A constant variance model is fit
```

Benchmark Dose Computation.

BMR = 5% Relative deviation BMD = 154.623 BMDL at the 95% confidence level = 116.114

Variable	Estimate	Default Initial Parameter Values
alpha	30.4578	30.9275
rho	n/a	0
beta_0	49.5516	49.615
beta_1	-0.0160234	-0.0160705

Table of Data and Estimated Values of Interest

Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	22	49.5	49.6	5.14	5.52	-0.0439
100	17	46.9	47.9	5.03	5.52	-0.784
250	15	47.6	45.5	5.4	5.52	1.44
500	16	40.8	41.5	6.7	5.52	-0.536
Likelihoods o	f Interest				1	

Discrimoods of interest											
Model	Log(likelihood)	# Param's	AIC								
A1	-153.048201	5	316.096402								
A2	-152.146228	8	320.292456								
A3	-153.048201	5	316.096402								
fitted	-154.572024	3	315.144048								
R	-163.858303	2	331.716606								

Tests of Interest										
Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value							
Test 1	23.4241	6	0.0006662							
Test 2	1.80395	3	0.6141							
Test 3	1.80395	3	0.6141							
Test 4	3.04765	2	0.2179							

706 2.2.16 Decreased Brain Weight

707 Decreased brain weights were observed in the 2-generation reproductive and developmental

study by (<u>WIL Research, 2001</u>). Statistically significant decreases in brain weights were noted

- for both sexes in the F_0 generation, F_1 generation as adults and in the F_2 generation at PNDs 21.
- Continuous models were used to fit-dose response data for decreased brain weights. A BMR of
 5% was used because reduced brain weight is considered a more severe endpoint than other
- 711 5% was used because reduced brain weight is considered a more severe endpoint than other 712 decreased organ weights. A BMR of 1 standard deviation is also shown for comparison per EPA
- 713 Benchmark Dose Technical Guidance (U.S. EPA, 2012). The doses, response data and BMD
- 714 modeling results for decreased pup brain weight are presented below at each time point.

715 **2.2.16.1 Decreased Brain Weight in F**₀ Females

- The doses and response data from the WIL Laboratories (2001) study was used for the modeling
- and are presented in Table 2-71.

	Concentration (ppm)							
	0	100	250	500	750			
Number of animals	25	25	25	25	25			
Brain wt (g)	1.96	1.92	1.94	1.89	1.86			
Standard deviation (g)	0.078	0.094	0.084	0.105	0.072			

718 Table 2-71 Brain Weight Data in Fo Females for Dose-Response Modeling

719

720 Comparisons of model fits obtained are provided in Table 2-72. The best fitting model (Linear

with homogeneous variance) was selected based on Akaike information criterion (AIC; lower

values indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a better

fit) and visual inspection. The best-fitting model is indicated in bold. For the best fitting model a

- plot of the model is shown in Figure 2-25. The model version number, model form, benchmark
- dose calculation, parameter estimates and estimated values are shown below in Table 2-73.
- 726

Table 2-72 Summary of BMD Modeling Results for Brain Weight of F₀ Females Following Inhalation Exposure to 1-BP

Model ^a	Goodne	ess of fit	BMD _{1SD}	BMDL _{1SD}	Basis for model selection			
	<i>p</i> -value	AIC	(ppm)	(ppm)				
Linear	0.444	-480.77	711	509	The Linear model was selected			
Exponential (M2)	0.441	-480.75	711	504	based on the lowest AIC from this set of models which have			
Exponential (M4)	0.441	-480.75	711	434	adequate <i>p</i> -values, adequate fit			
Polynomial 4 ^{°b} Polynomial 3 [°]	0.273	-478.85	717	511	BMDLs are < 1.2 -fold apart considered sufficiently close.			
Polynomial 2°	0.271	-478.84	718	511				
Power	0.263	-478.77	715	509				
Exponential (M3)	0.261	-478.76	716	504				
Exponential (M5)	0.101	-476.76	716	504				
Hill	0.100	-476.75	error ^c	error ^c				

^a Constant variance case presented (BMDS Test 2 *p*-value = 0.340), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, 500, and 750 ppm were 0.41, -1.2, 1.01, -0.12, -0.1, respectively.

^b For the Polynomial 4° model, the b4 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 3° model.

^c BMD or BMDL computation failed for this model.

729

730 18:44 10/05 2015

731 Figure 2-25 Plot of Mean Response by Dose with Fitted Curve for the Selected Model

- (Linear) for Brain Weight in F₀ Female Rats Exposed to 1-BP Via Inhalation in ppm BMR
 = 1 Standard Deviation.
- 734

Table 2-73 BMD Modeling Results for Brain Weight in F₀ Female Rats Exposed to 1-BP Via Inhalation in ppm BMR = 1 Standard Deviation

Polynomial Model. (Version: 2.20; Date: 10/22/2014)

The form of the response function is: Y[dose] = beta_0 + beta_1*dose A constant variance model is fit

Benchmark Dose Computation.

BMR = 1 Estimated standard deviations from the control mean BMD = 711.056BMDL at the 95% confidence level = 508.985

BMDL at the 95% confidence level = 508.985

Parameter Estimates Variable **Default Initial** Estimate **Parameter Values** alpha 0.00749034 0.007637 0 rho n/a beta_0 1.95295 1.95295 -0.000121716 -0.000121716 beta_1

Table of Data and Estimated Values of Interest											
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid					
0	25	1.96	1.95	0.08	0.09	0.407					
100	25	1.92	1.94	0.09	0.09	-1.2					
250	25	1.94	1.92	0.08	0.09	1.01					
500	25	1.89	1.89	0.1	0.09	-0.121					
750	25	1.86	1.86	0.07	0.09	-0.096					

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	244.723276	6	-477.446552
A2	246.984613	10	-473.969225
A3	244.723276	6	-477.446552
fitted	243.383815	3	-480.76763
R	234.782134	2	-465.564268

Tests of Interest			
Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	24.405	8	0.001959
Test 2	4.52267	4	0.3399
Test 3	4.52267	4	0.3399
Test 4	2.67892	3	0.4438

737

738

2.2.16.2 Decreased Brain Weight in F₀ Males

The doses and response data from the WIL Laboratories (2001) study was used for the modelingand are presented in Table 2-74.

741 Table 2-74 Brain Weight Data in F₀ Males for Dose-Response Modeling

	Concentration (ppm)							
	0	100	250	500	750			
Number of animals	25	25	25	25	25			
Brain wt (g)	2.19	2.15	2.08	2.1	2.05			
Standard deviation (g)	0.091	0.114	0.087	0.177	0.091			

- The BMD modeling results for decreased brain weight in F_0 males with non-homogeneous
- variance (BMDS test 2 p-value = 0.000386) are summarized in Table 2-75. Although the
- variances are non-homogeneous and not well modeled for any of the non-homogeneous variance
- models the means were well-modeled (the highest *p*-value is 0.618 for the Exponential (M4)
- 747 model with non-homogeneous variances).
- 748

Table 2-75 Summary of BMD Modeling Results for Brain Weight of F₀ Males Following Inhalation Exposure to 1-BP

Model ^a	Goodne	ess of fit	BMD5RD	BMDL _{5RD}
	<i>p</i> -value AIC		(ppm)	(ppm)
Exponential (M4)	0.618	-408.61	372	159
Hill	0.340	-406.66	354	107
Exponential (M5)	0.152	-405.52	115	102
Exponential (M2) Exponential (M3) ^b	0.0868	-405.00	636	453
Power ^c Polynomial 4 ^{od} Polynomial 2 ^{oe} Linear ^f	0.0804	-404.83	644	463
Polynomial 3 ^{°g}	0.0804	-404.83	644	463

^a Modeled variance case presented (BMDS Test 2 *p*-value = 3.86E-04, BMDS Test 3 *p*-value = 5.66E-04), no model was selected as a best-fitting model.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d For the Polynomial 4° model, the b4 and b3 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 4° model, the b4, b3, and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^e For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f The Linear model may appear equivalent to the Polynomial 3° model, however differences exist in digits not displayed in the table. ^g The Polynomial 3° model may appear equivalent to the Power model, however differences exist in digits not displayed in the table. This also

applies to the Polynomial 4° model. This also applies to the Polynomial 2° model. This also applies to the Linear model.

- 752 To investigate the effect of the poor modeling of the variances on the BMDL, the models were
- run using the smallest dose standard deviation (0.091), highest (0.177) and the pooled (0.0907) for
- all dose levels and the modeling results are summarized in Table 2-76.

Table 2-76 BMD Modeling Results for Brain Weight of F₀ Male Rats Following Inhalation Exposure to 1-BP in a Two Generation Study with Variances Fixed at Smallest, Pooled and Highest Values.

Model ^a	Smallest Standard Deviation			Po	Pooled Standard Deviation			Largest Standard Deviation				Ratio	
	Goodne	ess of fit	BMD5RD BMDL5R		Goodness of fit		BMD5RD	BMDL _{5RD}	Goodness of fit		BMD _{5RD}	BMDL _{5RD}	BMDLs Smallest
	<i>p</i> -value	AIC	(ppm)	(ppm)	<i>p</i> -value	AIC	(ppm)	(ppm)	<i>p</i> -value	AIC	(ppm)	(ppm)	to Largest Std Dev
Exponential (M4)	0.0893	-477.73	375	164	0.108	-467.70	375	159	0.553	-303.82	375	78.7	2.1
Hill	0.0423	-476.44	289	106	0.0513	-466.35	289	106	0.315	-302.00	289	70.4	1.5
Exponential (M5)	0.0398	-476.34	246	104	0.0484	-466.26	246	103	0.309	-301.97	246	82.4	1.3
Exponential (M2)	0.0238	-475.11	669	515	0.0332	-465.43	669	510	0.503	-304.65	669	420	1.2
Exponential (M3)	0.0238	-475.11	669	515	0.0332	-465.43	669	510	0.503	-304.65	669	420	1.2
Power	0.0223	-474.96	674	523	0.0312	-465.29	674	518	0.496	-304.62	674	430	1.2
Polynomial 4°	0.0223	-474.96	674	523	0.0312	-465.29	674	518	0.496	-304.62	674	430	1.2
Polynomial 2°	0.0223	-474.96	674	523	0.0312	-465.29	674	518	0.496	-304.62	674	430	1.2
Linear	0.0223	-474.96	674	523	0.0312	-465.29	674	518	0.496	-304.62	674	430	1.2
Polynomial 3°	0.0223	-474.96	674	523	0.0312	-465.29	674	518	0.496	-304.62	674	430	1.2

^a Constant variance case presented (BMDS Test 2 *p*-value = 1., BMDS Test 3 *p*-value = 1.), no model was selected as a best-fitting model.

- A comparison across the full suite of BMD models shows the BMDL is sensitive to the adjustment
- of the variances and for the model that fit the constant variance data best, the Exponential (M4)
- 761 model the ratio of BMDLs was 2.1. This result suggests that due to the poor variance modeling for
- the original data it is not reasonable to use BMDS for this endpoint. Instead the NOAEL of 100 ppm was used.
- 764

2.2.16.3 Decreased Brain Weight in F₁ Females as Adults

The doses and response data used for the modeling are presented in Table 2-77.

Table 2-77 Brain Weight Data in F1 Females as Adults from Selected for Dose-Response Modeling

		Concentration (ppm)					
	0	0 100 250					
Number of animals	25	25	25	25			
Brain wt (g)	1.97	1.96	1.92	1.89			
Standard deviation (g)	0.076	0.073	0.067	0.102			

769

Comparisons of model fits obtained are provided in Table 2-78. The best fitting model

771 (Exponential (M2) with homogeneous variance) was selected based on Akaike information

criterion (AIC; lower values indicates a better fit), chi-square goodness of fit *p*-value (higher value

indicates a better fit) and visual inspection. The best-fitting model is indicated in bold. For the best

fitting model a plot of the model is shown in Figure 2-26. The model version number, model form,

benchmark dose calculation, parameter estimates and estimated values are shown below in Table

776 2-79.

777

Table 2-78 Summary of BMD Modeling Results for Brain Weight of F1 Female Rats as Adults Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study

Model ^a	Goodne	ess of fit	BMD	BMDL	BMD	BMDL	BMD	BMDL	Basis for model
	<i>p</i> -value	AIC	1SD (ppm)	1SD (ppm)	5RD (ppm)	5RD (ppm)	1RD (ppm)	1RD (ppm)	selection
Exponential (M2) Exponential (M3) ^b	0.787	-401.21	472	327	590	416	116	81.5	The Exponential (M2) model was selected based on the lowest AIC
Power ^c Polynomial 3 ^{°d} Polynomial 2 ^{°e} Linear	0.780	-401.19	473	331	589	419	118	83.8	from this set of models which have adequate <i>p</i> - values, adequate fit by visual
Exponential (M4)	0.534	-399.30	459	230	619	363	94.7	35.1	inspection and the BMDLs are < 3-
Hill	N/A ^f	-397.69	482	230	error ^g	error ^g	138	33.1	considered
Exponential (M5)	N/A ^f	-397.69	463	112	error ^g	0	141	37.6	sufficiently close.

^a Constant variance case presented (BMDS Test 2 p-value = 0.144), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were -0.05, 0.39, -0.53, 0.19, respectively.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^e For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f No available degrees of freedom to calculate a goodness of fit value.

^g BMD or BMDL computation failed for this model.

780

781 13:46 11/06 2015

- 782 Figure 2-26 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 783 (Exponential (M2)) for Brain Weight in F₁ Female Rats as Adults Exposed to 1-BP Via
- 784 **Inhalation in ppm BMR = 1% Relative Deviation.**
- 785

Table 2-79 BMD Modeling Results for Brain Weight in F₁ Female Rats as Adults Exposed to 1-BP Via Inhalation BMR = 1% Relative Deviation.

Exponential Model. (Version: 1.10; Date: 01/12/2015) The form of the response function is: Y[dose] = a * exp(sign * b * dose) A constant variance model is fit

Benchmark Dose Computation.

BMR = 1% Relative deviation BMD = 115.594 BMDL at the 95% confidence level = 81.5083

Parameter Estimat	es	
Variable	Estimate	Default Initial Parameter Values
lnalpha	-5.07205	-5.07685
rho	n/a	0
a	1.97082	1.89939
b	0.0000869453	0.000086769
с	n/a	0
d	n/a	1

Table of Data and Estimated Values of Interest									
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid			
0	25	1.97	1.97	0.08	0.08	-0.05174			
100	25	1.96	1.95	0.07	0.08	0.3941			
250	25	1.92	1.93	0.07	0.08	-0.5332			
500	25	1.89	1.89	0.1	0.08	0.1908			

Likelihoods of Interest							
Model	Model Log(likelihood)		AIC				
A1	203.8426	5	-397.6852				
A2	206.5452	8	-397.0903				
A3	203.8426	5	-397.6852				
R	196.2377	2	-388.4753				
2	203.6027	3	-401.2054				

Tests of Interest

Tests of Intel est			
Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	20.62	6	0.002151
Test 2	5.405	3	0.1444
Test 3	5.405	3	0.1444
Test 4	0.4799	2	0.7867

788

789

2.2.16.4 Decreased Brain Weight in F₁ Males as Adults

790 The doses and response data used for the modeling are presented in Table 2-80.

791 Table 2-80 Brain Weight Data in F1 Males as Adults from Selected for Dose-Response Modeling

792

	Concentration (ppm)					
	0	100	250	500		
Number of animals	24	25	25	24		
Brain wt (g)	2.21	2.11	2.12	2.01		
Standard deviation (g)	0.092	0.111	0.109	0.079		

793

The data were not adequately fit by any of the models, the means goodness of fit *p*-values were 794 less than 0.05 for all of the models. Comparisons of model fits obtained are provided in Table 2-81. 795 Since no model was selected a plot of the model, BMD and BMDL calculations and other output 796 are not presented. BMRs other than 5% relative deviation are not shown because the fit to the 797 means are not different and therefore also inadequate. Instead the LOAEL of 100 ppm was used 798 799 because there was no NOAEL observed in the WIL Laboratories (2001) study.

800

Table 2-81 Summary of BMD Modeling Results for Brain Weight of F1 Male Rats as Adults 801 802 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study

Model ^a	Goodne	ess of fit	BMD _{5RD}	BMDL _{5RD}
	<i>p</i> -value	AIC	(ppm)	(ppm)
Exponential (M2) Exponential (M3) ^b	0.0320	-346.71	308	245
Power ^c Polynomial 3 ^{°d} Polynomial 2 ^{°e} Linear	0.0312	-346.66	314	252
Hill	0.00968	-344.90	265	112
Exponential (M4) Exponential (M5) ^f	0.00932	-344.84	279	144

^a Constant variance case presented (BMDS Test 2 p-value = 0.310, BMDS Test 3 p-value = 0.310), no model was selected as a best-fitting model.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^e For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^f For the Exponential (M5) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M4) model.

2.2.16.5 Decreased Brain Weight in F₂ Females at PND 21

805 The doses and response data used for the modeling are presented in Table 2-82.

806 Table 2-82 Brain Weight Data in F₂ Females at PND 21 from Selected for Dose-Response 807 Modeling

8						
		Concent	ration (ppm)			
	0	100	250	500		
Number of animals	22	17	15	15		
Brain wt (g)	1.3957	1.3903	1.3673	1.3089		
Standard deviation (g)	0.06491	0.08882	0.12231	0.1004		

808

809 Comparisons of model fits obtained are provided in Table 2-83. The best fitting model

810 (Exponential (M2) with non-homogeneous variance) was selected based on Akaike information

criterion (AIC; lower values indicates a better fit), chi-square goodness of fit p-value (higher value 811

indicates a better fit) and visual inspection. The best-fitting model is indicated in bold. For the best 812

813 fitting model a plot of the model is shown in Figure 2-27. The model version number, model form,

benchmark dose calculation, parameter estimates and estimated values are shown below in Table 814

- 2-84. 815
- 816

817 Table 2-83 Summary of BMD Modeling Results for Brain Weight of F₂ Female Rats at PND 21 Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study 818

Model ^a	Good	ness of fit	BMD	BMDL	BMD	BMDL	BMD	BMDL	Basis for model
	<i>p-</i> value	AIC	1SD (ppm)	1SD (ppm)	5RD (ppm)	5RD (ppm)	1RD (ppm)	1RD (ppm)	selection
Exponential (M2) Exponential (M3) ^b	0.634	-257.31	454	260	426	256	83.4	50.1	The Exponential (M2) model was selected based on
Power	0.621	-257.27	456	266	427	261	85.3	52.1	the lowest AIC from this set of
Polynomial 3 ^{°c} Linear ^d	0.566	-257.27	456	266	427	261	85.3	52.1	models which have adequate <i>p</i> -
Polynomial 2 ^{°e}	0.566	-257.27	456	266	427	261	85.3	52.1	fit by visual
Exponential (M4)	0.702	-256.08	643	130	1149	170	48.5	12.6	inspection and the BMDLs are < 4-
Hill	N/A ^f	-254.41	error ^g	error ^g	error ^g	error ^g	85.7	6.27	fold apart
Exponential (M5)	N/A ^f	-254.41	error ^g	0	error ^g	0	81.2	14.9	considered sufficiently close.

^a Modeled variance case presented (BMDS Test 2 *p*-value = 0.0643), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were -0.31, 0.32, 0.34, -0.32, respectively.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Polynomial 3^o model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^d The Linear model may appear equivalent to the Polynomial 2° model, however differences exist in digits not displayed in the table.

^e The Polynomial 2° model may appear equivalent to the Polynomial 3° model, however differences exist in digits not displayed in the table. This also applies to the Linear model.

^f No available degrees of freedom to calculate a goodness of fit value.

^g BMD or BMDL computation failed for this model.

- 820 13:15 11/06 2015
- 821 Figure 2-27 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 822 (Exponential (M2)) for Brain Weight in F₂ Female Exposed to 1-BP Via Inhalation in ppm
- 823 **BMR = 1% Relative Deviation.**
- 824

825 Table 2-84 BMD Modeling Results for Brain Weight in F₂ Female Exposed to 1-BP Via

826 Inhalation BMR = 1% Relative Deviation.

Exponential Model. (Version: 1.10; Date: 01/12/2015) The form of the response function is: Y[dose] = a * exp(sign * b * dose) A modeled variance is fit

Benchmark Dose Computation.

BMR = 1% Relative deviation BMD = 83.4282 BMDL at the 95% confidence level = 50.1098

Parameter Estimate	S	
Variable	Estimate	Default Initial Parameter Values
lnalpha	-0.0282712	-1.99881
rho	-15.3239	-8.92906
a	1.40066	1.33604
b	0.000120467	0.000129477
c	n/a	0
d	n/a	1

Table of Data and Estimated Values of Interest								
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid		
0	22	1.4	1.4	0.06	0.07	-0.3121		
100	17	1.39	1.38	0.09	0.08	0.3231		
250	15	1.37	1.36	0.12	0.09	0.3377		
500	15	1.31	1.32	0.1	0.12	-0.3236		

Likelihoods of Interest								
Model	Log(likelihood)	# Param's	AIC					
A1	131.2578	5	-252.5155					
A2	134.8828	8	-253.7656					
A3	133.1137	6	-254.2275					
R	126.819	2	-249.638					
2	132.6574	4	-257.3148					

Tests of Intere	st		
Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	16.13	6	0.01309
Test 2	7.25	3	0.06434
Test 3	3.538	2	0.1705
Test 4	0.9127	2	0.6336

2.2.16.6 Decreased Brain Weight in F₂ Males at PND 21

The doses and response data from the WIL Laboratories (2001) study was used for the modeling are presented in Table 2-85.

		Concentration (ppm)					
	0	100	250	500			
Number of animals	22	17	15	16			
Brain wt (g)	1.4728	1.4253	1.4668	1.3629			
Standard deviation (g)	0.07836	0.07679	0.05971	0.09581			

831 Table 2-85 Brain Weight Data in F₂ Males at PND 21 for Dose-Response Modeling

832

833 Comparisons of model fits obtained are provided in Table 2-86. The best fitting model (Power with

homogeneous variance) was selected based on Akaike information criterion (AIC; lower values

835 indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a better fit) and

visual inspection. The best-fitting model is indicated in bold. For the best fitting model a plot of the

837 model is shown in Figure 2-28. The model version number, model form, benchmark dose

calculation, parameter estimates and estimated values are shown below in Table 2-87.

839

Table 2-86 Summary of BMD Modeling Results for Brain Weight of F₂ Male Rats as Adults Following Inhalation Exposure of Parental Rats to 1-BP in a Two-Generation Study

Model ^a	Goodn	ess of fit	BMD	BMDL	BMD	BMDL	BMD	BMDL	Basis for model
	<i>p</i> -value	AIC	1SD (ppm)	1SD (ppm)	5RD (ppm)	5RD (ppm)	1RD (ppm)	1RD (ppm)	selection
Power	0.137	-279.68	495	395	493	374	451	97.6	The Power model
Polynomial 3°	0.0961	-278.97	472	353	459	331	269	67.1	was selected based adequate goodness of fit <i>p</i> -value (> 0.1
Polynomial 2°	0.0647	-278.18	459	383	440	370	197	166	which excludes all other models) and
Exponential (M3)	0.0463	-277.68	495	396	493	376	450	102	adequate fit by visual inspection. Also, note if Polynomial 3°
Hill	0.0463	-277.68	495	281	493	error ^b	450	error ^b	model <i>p</i> -value was
Linear	0.0306	-276.68	430	293	393	274	78.6	54.8	and included the
Exponential (M2)	0.0294	-276.60	431	289	393	269	76.9	52.8	Power model would be selected based on lowest AIC for
Exponential (M4)	0.0294	-276.60	431	278	393	250	76.9	36.9	models with BMDLs < 1.5-fold apart
Exponential (M5)	N/A ^c	-275.68	495	272	493	376	449	102	sufficiently close

^a Constant variance case presented (BMDS Test 2 p-value = 0.337), selected model in bold; scaled residuals for selected model for doses 0, 100, 250, and 500 ppm were 0.99, -1.62, 0.52, 0, respectively.

^b BMD or BMDL computation failed for this model.

^c No available degrees of freedom to calculate a goodness of fit value.

843 13:32 11/06 2015

- Figure 2-28 Plot of Mean Response by Dose with Fitted Curve for the Selected Model
- 845 (Power) for Brain Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 1%
- 846 **Relative Deviation.**
- 847

Table 2-87 BMD Modeling Results for Brain Weight in Rats Exposed to 1-BP Via Inhalation in ppm BMR = 1% Relative Deviation

Power Model. (Version: 2.18; Date: 05/19/2014)

The form of the response function is: Y[dose] = control + slope * dose^power A constant variance model is fit

Benchmark Dose Computation.

BMR = 1% Relative deviation

BMD = 450.983

BMDL at the 95% confidence level = 97.5507

Parameter Estimates						
Variable	Estimate	Default Initial Parameter Values				
alpha	0.00621258	0.00622577				
rho	n/a	0				
control	1.45618	1.3629				
slope	-2.44527E-50	0.0048117				
power	18	-9999				

Table of Data	and Estima	ted Va	alues o	f Interes	t				
Dose	Ν	Obs]	Mean	Est Me	an	Obs Std Dev	Es	st Std Dev	Scaled Resid
0	22	1.	47	1.46		0.08		0.08	0.989
100	17	1.	43	1.46		0.08		0.08	-1.62
250	15	1.	47	1.46		0.06		0.08	0.522
500	16	1.	36	1.36		0.1		0.08	-0.00000182
Likelihoods o	of Interest								
Model	Log(likelih	lood)	# Pa	ram's		AIC			
A1	144.8264	-66		5	-2	79.652932			
A2	146.5161	24		8	-2	277.032248			
A3	144.8264	66		5	-2	279.652932			
fitted	142.8412	.94		3	-2	.79.682588			
R	135.1166	512		2	-2	266.233223			
Tests of Inter	rest						1		
Test	-2*log(Like Ratio)	lihood)	Te	est df		<i>p</i> -value			

	Ratio)		
Test 1	22.799	6	0.0008667
Test 2	3.37932	3	0.3368
Test 3	3.37932	3	0.3368
Test 4	3.97034	2	0.1374

851 **2.2.17 Decreased Hang Time**

EPA selected decreased time hanging from a suspended bar from the (<u>Honma et al., 2003</u>) study as

- a relevant endpoint for calculating risks associated with chronic worker scenarios. Since this is a
- continuous endpoint and in the absence of a basis for selecting a BMR a default selection of 1
- 855 standard deviation was used in accordance with EPA <u>Benchmark Dose Technical Guidance (U.S.</u>
- EPA, 2012). The doses and response data used for the modeling are presented in Table 2-88.

857 **Table 2-88 Hang Time from a Suspended Bar Data for Dose-Response Modeling for 1-BP**

Dose (ppm)	Number of animals	Mean traction time (sec)	Standard Deviation
0	5	25.2	15.25
10	5	23.8	7.53
50	5	15.2	5.54
200	5	5.2	3.42
1000	5	4.4	3.65

858

- 859 The best fitting model was selected based on Akaike information criterion (AIC; lower value
- indicates a better fit), chi-square goodness of fit *p*-value (higher value indicates a better fit), ratio of
 the BMC:BMCL (lower value indicates less model uncertainty) and visual inspection.
- Comparisons of model fits obtained are provided in Table 2-89. The best-fitting model
- 862 (Exponential M4), based on the criteria described above, is indicated in bold. For the best fitting
- model a plot of the model is shown in Figure 2-29. The model version number, model form,
- benchmark dose calculation, parameter estimates and estimated values are shown below in Table
- 865 benchmark dose calculation, parameter estimates and estimated values are shown below in Table 866 2-90.
- 867

Table 2-89 Summary of BMD Modeling Results for Hang Time from a Suspended Bar; BMR = 1 std. dev. change from control mean

Model ^a	Goodness of fit		BMD _{1SD}	BMDL _{1SD}	Basis for model selection
	<i>p</i> -value	AIC	(ppm)	(ppm)	
Exponential (M4)	0.955	122.13	36.9	18.2	The Exponential (M4) model
Exponential (M5)	0.766	124.12	37.7	18.2	was selected based on the lowest AIC from this set of models
Hill	0.467	124.57	45.0	error ^b	which have adequate <i>p</i> -values
Exponential (M2) ^c	0.00443	133.13	47.4	20.8	M5 and excluding Exponential
Exponential (M3) ^d	0.00443	133.13	47.4	20.8	M2 and M3, Power, Polynomial and Linear models) adequate
Power ^e	2.22E-04	139.47	799	525	fit by visual inspection and
Polynomial 2 ^{°f} Linear ^g	2.22E-04	139.47	799	525	BMDLs (excluding Hill model) are the same for Exponential M4 and M5.
Polynomial 3°	< 0.0001	188.00	-9999	error ^b	
Polynomial 4°	N/A ^h	192.45	-9999	error ^b	

^a Modeled variance case presented (BMDS Test 2 *p*-value = 0.00293), selected model in bold; scaled residuals for selected model for doses 0, 10, 50, 200, and 1000 ppm were -0.34, 0.12, 0.44, -0.07, -0.17, respectively.

^b BMD or BMDL computation failed for this model.

^c The Exponential (M2) model may appear equivalent to the Exponential (M3) model, however differences exist in digits not displayed in the table.

^d The Exponential (M3) model may appear equivalent to the Exponential (M2) model, however differences exist in digits not displayed in the table.

^e The Power model may appear equivalent to the Polynomial 2° model, however differences exist in digits not displayed in the table. This also applies to the Linear model.

 $^{\rm f}$ For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^g The Linear model may appear equivalent to the Power model, however differences exist in digits not displayed in the table. ^h No available degrees of freedom to calculate a goodness of fit value.

870

Exponential 4 Model, with BMR of 1 Std. Dev. for the BMD and 0.95 Lower Confidence Limit for the BMDL

871 17:15 08/10 2015

- 872 Figure 2-29 Plot of Mean Response by Dose in ppm with Fitted Curve for Exponential (M4)
- 873 Model with Modeled Variance for Hang Time from a Suspended Bar; BMR = 1 Standard
- 874 **Deviation Change from Control Mean.**
- 875
- Table 2-90 BMD Modeling Results for Hang Time from a Suspended Bar; BMR = 1
 Standard Deviation Change from Control Mean

Exponential Model. (Version: 1.10; Date: 01/12/2015) The form of the response function is: Y[dose] = a * [c-(c-1) * exp(-b * dose)] A modeled variance is fit

Benchmark Dose Computation.

BMR = 1.0000 Estimated standard deviations from control BMD = 36.9173 BMDL at the 95% confidence level = 18.2429

Parameter Estimates							
Variable	Estimate	Default Initial Parameter Values					
lnalpha	-0.107405	0.415293					
rho	1.46448	1.29675					
a	26.8244	26.46					
b	0.0174245	0.00510395					
с	0.172048	0.15837					
d	n/a	1					

Fable of Data and Estimated Values of Interest							
Dose	Ν	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid	
0	5	25.2	26.82	15.25	10.54	-0.3447	
10	5	23.8	23.27	7.53	9.5	0.1241	
50	5	15.2	13.91	5.54	6.51	0.4434	
200	5	5.2	5.3	3.42	3.21	-0.0668	
1000	5	4.4	4.62	3.65	2.9	-0.1656	

Likelihoods of Interest							
Model	Log(likelihood)	# Param's	AIC				
A1	-62.64066	6	137.2813				
A2	-54.60856	10	129.2171				
A3	-56.01777	7	126.0355				
R	-73.64274	2	151.2855				
4	-56.06343	5	122.1269				

Tests of Interest			
Test	-2*log(Likelihood Ratio)	Test df	<i>p</i> -value
Test 1	38.07	8	< 0.0001
Test 2	16.06	4	0.002934
Test 3	2.818	3	0.4205
Test 6a	0.09133	2	0.9554

880 **3 Benchmark Dose Modeling of Tumors**

881 EPA selected 1-BP-induced tumors observed in mice and rats in the chronic inhalation bioassay by

882 NTP (2011) for BMD modeling with EPA's <u>BMDS</u>. The three tumor sites were selected for

883 modeling were alveolar/bronchiolar adenomas and carcinomas (i.e. lung tumors) in female mice,

adenomas of the large intestine in female rats, and keratoacanthoma and squamous cell carcinomas
 of the skin in male rats. None of the tumor sites occurred in the same strain and sex therefore

- combined tumor modeling was not conducted. Three approaches were applied to model individual
- tumor sites; multistage modeling, frequentist model-averaging and Bayesian model averaging.
- All of the models in the BMDS suite of dichotomous models were applied the gamma, logistic, log-
- logistic, multistage, probit, log-probit, quantal-linear and Weibull models. BMRs of 10% and 0.1%
- 890 (1 in 1,000) both added nad extra risk were modeled and the 95% lower confidence limit was
- 891 calculated. Models were determined to be adequate or not in a manner consistent with EPA
- 892 <u>Benchmark Dose Technical Guidance (U.S. EPA, 2012</u>). Briefly the AIC, goodness of fit *p*-values
- 893 (0.1 or greater) and a visual assessment of fit are important criteria.

894 In agreement with U.S. EPA's long-standing approach all three tumor types from the NTP study

895 (NTP, 2011) were dose-response modeled with multistage models using the typical constrained 896 model coefficients ≥ 0 (EPA, 2012). Under U.S. EPA's 2005 cancer guidelines (U.S. EPA 2005), 897 quantitative risk estimates from cancer bioassay data were calculated by modeling the data in the

observed range to estimate a BMCL for a BMR of 10% extra risk, which is generally near the low

- end of the observable range for standard cancer bioassay data. Also the results for a BMR of 0.1%
- 900 added risk are presented for comparison.
- 901

902 In addition to the multistage modeling model averaging methods were applied, frequentist

903 (Wheeler and Bailer, 2007) and Bayesian (USEPA 2018 BMDS software) to assess the impact of

- 904 model uncertainty. A model-averaging (MA) technique (<u>Wheeler and Bailer, 2007</u>) was applied 905 using the multistage, log-probit and Weibull models based on the observation that those 3 models
- 905 using the multistage, log-probit and Weibull models based on the observation that those 3 models 906 performed better in bias and coverage than other combinations of models (Wheeler and Bailer,
- 2007). The model averaging applied statistics (bootstrapping technique) to weigh, based on fit, the
- models providing acceptable fit to the experimental dataset (as evidenced by a chi-square
- 909 goodness-of-fit value > 0.10). Model-averaging software was restricted to avoid supralinear
- 910 models, which exhibit properties at the low dose that are not considered biologically plausible. The
- 911 resulting model-average benchmark concentrations (MA BMCs) associated with 0.1% added risk
- and their 95% lower confidence limits (MA BMCLs) are shown the Frequentist Model-Average
- 913 (BMDS 2.6) row for each of the three cancer datasets.
- 914
- 915 Since the 2016 Draft Risk Assessment (U.S. EPA, 2016), the EPA has conducted additional
- modeling, using the BMDS (Version 3.0) and more details are available in the supplemental file.
- 917 All dichotomous frequentist and Bayesian¹ models in the BMD software (BMDS Version 3.0),
- 918 were fit to the incidence data for each of the three tumor types. The benchmark response (BMR)
- 919 levels used were 0.1% and 10% added and extra risk. The BMR used in the 2016 Draft Risk
- 920 Assessment (U.S. EPA, 2016) was 0.1% added risk. The BMR of 10% extra risk which is
- generally near the low end of the observable range for standard cancer bioassay data was used. The

¹ The Bayesian dichotomous models used in BMDS 3.0 are identical to the frequentist parametric models but incorporate prior information (e.g., parameter distributions) that is used in the model fit (see the BMDS 3.0 User Guide for details; <u>https://www.epa.gov/bmds/benchmark-dose-software-bmds-version-30-user-guide-readme</u>).

- Bayesian models and Bayesian model averaging solve issues associated with strict frequentist
- parameter bounds by replacing them with "soft bounds" defined by mildly informative prior
- density for the individual parameters of the models included in the analysis. Thus, in the cases
- 925 where there are limited data, the shapes of the models are limited to dose-response shapes that are
- frequently seen in practice. In addition, because parameters are restricted through their prior
 density, the U.S. EPA BMDS 3.0 Bayesian model averaging approach allows for consideration of a
- 927 density, the U.S. EPA BMDS 5.0 Bayesian model averaging approach allows for consideration of a 928 large suite of models across many different study designs without typical model "degeneracy" or
- 929 "overparameterization" concerns of previous model averaging approaches (BMDS 3.0 User
- 930 Guide). The resulting model-average benchmark concentrations (MA BMCs) associated with 0.1%
- added risk (AR) and 10% extra risk (ER) and their 95% lower confidence limits (BMCLs) are
- shown in the Bayesian Model-Average (BMDS 3.0) row for each of the three cancer datasets.

933 **3.1 Lung Tumors in Female Mice**

- The doses and response data from the NTP (2011) study that were used for the modeling are
- presented in Table 3-1.

Dose (ppm)	Number of animals	Number of Animals with Tumors
	50	1
2.5	50	9
25	50	8
50	50	14

936 <u>Table 3-1 Incidence of Lung Tumors in Female Mice</u>

- 938 Comparisons of model fits obtained from BMD modeling of the NTP (2011) study are provided in
- Table 3-2. A summary of all the dichotomous models and all three modeling approachs are shown
- 940 for comparison with the BMDS results in Table 3-2. Detailed output of the multistage, frequestist
- 941 model average and Bayesian model average results are also shown below.

Table 3-2 Summary of BMDS 3.0 modeling results for lung tumors in female mice exposed to 1-BP by inhalation for 2 years (NTP, 2011); BMRs = 10% and 0.1% extra and added risk, doses are in ppm

Frequentist Model	Restriction**	10% Ex	tra Risk	10% Ad	ded Risk	0.1% Ex	tra Risk	0.1% Ad	ded Risk	P Value	AIC	BMDS Recommendation
Frequentist Would	*	BMD	BMDL	BMD	BMDL	BMD	BMDL	BMD	BMDL	1 Value	AIC	Notes
Dichotomous Hill	Restricted	37.97524	CF	39.13867	CF	0.262433	CF	0.267937	CF	0.2913697	167.35319	Lower limit includes zero
Gamma	Restricted	78.59758	54.06762	81.47433	54.97972	0.74636	0.513424	0.772227	0.521665	0.2183691	166.9715428	
Log-Logistic	Restricted	69.93796	46.26665	72.25183	46.99549	0.630072	0.416817	0.64879	0.422752	0.2824931	166.5219996	Lowest AIC
Log-Probit	Restricted	135.5751	91.5552	142.1972	93.75467	22.21672	15.00317	22.7714	15.19065	0.0392364	170.9591691	Goodness of fit p-value < 0.1 Goodness of fit p-value < 0.05
Multistage Degree 3	Restricted	78.59758	54.05654	81.47433	54.96919	0.74636	0.513402	0.772228	0.521634	0.2183691	166.9715428	Converges to Degree 1
Multistage Degree 2	Restricted	78.59758	54.05354	81.47433	54.96921	0.74636	0.513407	0.772228	0.521634	0.2183691	166.9715428	Converges to Degree 1
Multistage Degree 1 (Quantal Linear)**	Restricted	78.59758	54.06143	81.47433	54.96919	0.74636	0.5134	0.772228	0.521634	0.2183691	166.9715428	All Multistage models converged to Degree 1
Weibull	Restricted	65.43007	41.33211	66.06867	41.67007	4.083719	0.997165	4.121506	1.005019	3.896E-08	197.0272423	Goodness of fit p-value < 0.1 Goodness of fit p-value < 0.05
Dichotomous Hill	Unrestricted	28.47259	CF	29.82262	CF	0.00191	CF	0.001991	CF	CF	169.1046753	Lower limit includes zero
Logistic	Unrestricted	136.7186	107.335	144.6373	113.6071	1.996488	1.492227	2.156856	1.643332	0.0888649	169.5064951	Goodness of fit p-value < 0.1
Log-Probit	Unrestricted	29.35781	CF	30.64006	CF	0.038238	CF	0.039098	CF	0.3429581	167.1324257	Lower limit includes zero
Probit	Unrestricted	129.2628	100.3938	136.6598	105.8843	1.801609	1.349556	1.937322	1.474752	0.0955787	169.2319294	Goodness of fit p-value < 0.1
Frequentist Model Average (multistage, log-probit and Weibull)	Restricted							0.849	0.634	0.1298	NA	
Bayesian Model										BMA model Posterior Probabilities	Unnormalized Log Posterior Probabilities	
Dichotomous Hill	Priors	64.34544	14.5245	67.31868	15.29848	0.752301	0.006834	0.779298	0.007215	0.166806	-87.09741015	NB
Gamma	Priors	98.64837	50.08382	104.1892	52.11979	1.716614	0.088742	1.80595	0.093472	0.056914	-88.17269343	NB
Logistic	Priors	150.9715	111.2937	162.4684	118.824	2.063819	1.503801	2.27159	1.670964	0.195845	-86.93691547	NB
Log-Logistic	Priors	73.78165	29.87163	77.34186	31.35776	0.751037	0.008745	0.783528	0.009254	0.079815	-87.8345243	NB
Log-Probit	Priors	97.84488	45.04163	102.5082	46.68855	8.25872	0.636263	8.460435	0.652272	0.012133	-89.71830101	NB
Multistage Degree 3	Priors	78.73632	57.42297	81.69198	58.98483	0.839515	0.572085	0.873569	0.587588	NA	-96.25255595	NB
Multistage Degree 2	Priors	74.67602	54.67322	77.5899	56.14487	0.773638	0.538379	0.804686	0.552757	0.000911	-92.30719837	NB
Multistage Degree 1	Priors	70.96872	51.75386	74.00783	53.1925	0.673917	0.491566	0.701235	0.50454	NA	-87.07030802	NB
Probit	Priors	136.3017	102.8982	145.3018	109.0151	1.838917	1.363377	1.995304	1.496475	0.199328	-86.91928526	NB
Quantal Linear	Priors	82.46298	56.36126	86.78205	58.07897	0.783066	0.535205	0.82187	0.550684	0.240282	-86.73242779	NB
Weibull	Priors	95.40995	43.42538	100.647	45.41124	1.445756	0.034791	1.520816	0.036836	0.047966	-88.3437562	NB

Bayesian Model Average (BMA) results	Priors	104.6183	39.4122	111.1076	41.12461	1.412281	0.080929	1.511725	0.084815	Probabilities Sum to 1	NA	NB
--	--------	----------	---------	----------	----------	----------	----------	----------	----------	---------------------------	----	----

944 **Best Multistage; scaled residuals for doses 0, 62.5, 125, and 250 were -0.529882976, 1.548678296, -0.413499804, and -0.439288554, respectively.
945 ***Restrictions and parameter priors defined in the <u>BMDS 3.0 User Guide</u>; CF = Computation failed; NA = Not available in BMDS 3.0; NA = Not Applicable

946 **3.1.1 Summary of Multistage Model**

9473.1.1.1Selected Frequentist Multistage - Multistage 1 Restricted; Extra Risk,948BMR = 0.001 and 0.1, doses are in ppm

949 Table 3-3 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1

950 Restricted; Extra Risk, BMR = 0.001 and 0.1 User Input

	_				
Info		Options		Model Data	
Model	frequentist Multistage degree 1 v1.0	Risk Type	Extra Risk	Dependent	
Dataset	1-BP - Lung Tumors - F	BMR	0.001 and 0.1	Variable	PPM
Name	Mice	Confidence	0.001 and 0.1	Independent Variable	[Tumor Incidence]
	NTP (2011) Lung Tumors	Level	0.95	Total # of	[rumor mendence]
User notes	in Female Mice from 1- BP	Background	Estimated	Observation	4
L	<u> </u>				

951

952Table 3-4 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1

953 Restricted; Extra Risk, BMR = 0.001 and 0.1 Model Results

BMR Benchm BMD BMDL	0.001 ark Dose 0.746360281	
BMD BMDL	0.746360281	
BMDL	0.740300281	
BMDL	0.512400221	
DIGU	0.513400221	
BMDU	1.377878074	
Benchm	ark Dose	
BMD	78.59757869	
BMDL	54.06142797	
BMDU	145.0923735	
AIC	166.9715428	
P-value	0.218369111	
D.O.F.	2	
Chi ²	3.043136955	
L		I
		1
Model Pa	irameters	
# of Parameters	3	
Variable	Estimate	Std Error
Background	0.033480124	0
	0.001340506	0
Beta1	0.001340300	

Goodnes	ss of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.033480124	1.674006202	1	50	-0.529883
62.5	0.111157329	5.557866469	9	50	1.5486783
125	0.182591778	9.129588912	8	50	-0.4135
250	0.308698954	15.43494771	14	50	-0.439289
Analysis of	Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-80.10278985	0	-	_	-
Fitted Model	-81.4857714	2	2.7659631	2	0.2508296
Reduced Model	-87.93397588	1	15.6623721	3	0.0013298

- 956 Figure 3-1 Plot of Results for Lung Tumors in Female Mice Frequentist Multistage Degree 1
- 957 Model with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the
- 958 **BMDL**
- 959

3.1.1.2 Selected Frequentist Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1, doses are in ppm

961 962

960

Table 3-5 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1 963

Restricted; Added Risk, BMR = 0.001 and 0.1 User Input 964

	_				
Info		Options		Model Data	
Model	frequentist Multistage degree 1 v1.0	Risk Type	Added Risk	Dependent	
Dataset	1-BP - Lung Tumors - F	BMR	0.001 and 0.1	Variable	PPM
Name	Mice	Confidence	0.05	Variable	[Tumor Incidence]
User notes	in Female Mice from 1-	Level	0.95	Total # of	4
	BP	Background	Estimated	Observation	4

-

965

Table 3-6 Lung Tumors in Female Mice, Selected Frequentist Multistage - Multistage 1 966 967

Restricted; Added Risk, BMR = 0.001 and 0.1 Model Results

BMR ().001				
BMD	0 772227533				
PMD	0.521640376				
BMDU	1 405515202				
BMDU	0.1				
Benchma	rk Dose				
BMD	81.47432888				
BMDL	54.97974829				
BMDU	158.2503904				
AIC	166.9715428				
P-value	0.218369111				
D.O.F.	2				
Chi ²	3.043136955				
	ameters				
# OI Parameters	Estimata	Std Emon			
Packground	0.022480124				
Dackground Date 1	0.001240506	0			
Betal	0.001340506	0			
Beta2	0	0			
Goodne	ss of Fit				
--------------	--------------------------	-----------------	-----------	-----------	--------------------
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.033480124	1.674006202	1	50	-0.529883
62.5	0.111157329	5.557866469	9	50	1.5486783
125	0.182591778	9.129588912	8	50	-0.4135
250	0.308698954	15.43494771	14	50	-0.439289
Analysis of	f Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-80.10278985	0		-	-
Fitted Model	-81 4857714	2	2,7659631	2	0 2508296

-87.93397588

15.6623721

3

0.0013298

968

Reduced Model

3.1.2 Summary of Frequentist Model Averaging

Table 3-7 Lung Tumors in Female Mice, Summary of Frequentist Model Averaging

Model Averag	ing Fit Sta	tistics				
Model	Weight	-2log(L)	AIC	BIC		
Multistage, 3°	0.245	162.97	170.97	184.16		
Weibull	0.665	162.97	168.97	178.87		
Log-Prohit	0.091	166.96	172.96	182.85		
Average Model	Donohmon	k Dogo Fat	imata	102.05		
Nominally Speci	ified Confid	nce Level				
Weighting Criter	rion: AIC		.0.930			
BMD Calculatio	n^{\cdot} Added Ri	isk				
BMR: 0.001000	n. / ladea la	ык				
BMD: 0.849148	762733					h
BMDL(BCa):0.4	1008884793	70				
BMDL(Percentil	le):0.634308	3392327				
Acceleration: 0.0	043517					
Bootstrap Resam	nples: 5000					
Random Seed: 1	0 2210					
Average-Model	Goodness	of Fit Test				
Test Statistic: 3.2	274559					
Bootstrap <i>p</i> -valu	e: 0.129800					
Parameter Estin	mates					
Model	Param	eter E	Estimate	Standard Er	ror	
Multistage, 3°	gamma	0	.03348013	0.02882729		
	beta(1)	0	.001340506	0.0003669969)	
	beta(2)	0		N/A		
	beta(3)	0		N/A		
Weibull	gamma	0	.033480	0.028840		
	alpha	1	.0	N/A		
	beta	0	.001341	0.000367		
Log-Probit	gamma	0	.079419089201	0.034577		
	alpha	-(5.191081	0.272037		
	beta	1	.0	N/A		

976 **Summary of Bayesian Model Averaging** 3.1.3

Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1, doses 977 3.1.3.1 978 are in ppm

Table 3-8 Lung Tumors in Female Mice, Bayesian Model Averaging – Extra Risk, BMR = 979

0.001 and 0.1 User Inputs 980

Info]	Madal		Model Data	
Model	Bayesian Model Averaging v1.0	Options		Dependent Variable	PPM
Dataset Name	1-BP - Lung Tumors - F Mice	Risk Type BMR	Extra Risk	Independent Variable	[Incidence]
User notes	NTP (2011) Lung Tumors in Female Mice from 1- BP	Confidence Level	0.95	Total # of Observation	4
		Background	Estimated		

981

982 Table 3-9 Lung Tumors in Female Mice, Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1 Model Results

983

BMR (0.001
Benchman	rk Dose
BMD	1.412280907
BMDL	0.08092889
BMDU	6.929373369
BMR	0.1
Benchman	rk Dose
BMD	104.618334
BMDL	39.41220045
BMDU	220.1845944

MA - Indivi	dual Models		BMR 0.001			BMR 0.1	
Model	Posterior Probability	BMD	BMDL	BMDU	BMD	BMDL	BMDU
Dichotomous Hill	0.166805588	0.752300664	0.00683358	11.23398263	64.34543431	14.5244971	165.5205
Gamma	0.056914248	1.716613537	0.088741617	15.75845852	98.64837676	50.0838161	206.6454
Logistic	0.195845027	2.06381944	1.503801206	3.924900666	150.9715021	111.293748	313.7542
Log-Logistic	0.07981527	0.751036569	0.008744945	12.44686637	73.78164679	29.8716258	150.8161
Log-Probit	0.012133111	8.258719929	0.636263227	106.3076332	97.84487635	45.0416319	232.3484
Multistage	0.000911231	0.773638254	0.538378954	1.237213961	74.67601448	54.976739	100.7804
Probit	0.199328433	1.838917378	1.363377436	2.949863905	136.3016963	102.89821	237.678
Quantal Linear	0.240281547	0.783066032	0.535204832	1.367988414	82.46298134	56.3612543	144.0599
Weibull	0.047965545	1.445755828	0.034791225	21.79520577	95.40994465	43.4253775	190.5838

9843.1.3.2Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1, doses985are in ppm

Table 3-10 Lung Tumors in Female Mice, Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1 User Inputs

Info				Model Data	
Model	Bayesian Model Averaging v1.0	Model Options		Dependent Variable	PPM
Dataset	1-BP - Lung Tumors - F	Risk Type	Added Risk	Independent	
Name	Mice	BMR	0.001 and 0.1	Variable	[Incidence]
User notes	NTP (2011) Lung Tumors in Female Mice from 1- BP	Confidence Level	0.95	Total # of Observation	4
		Background	Estimated		

988

989 Table 3-11 Lung Tumors in Female Mice, Bayesian Model Averaging – Added Risk, BMR =

990 0.001 and 0.1 Model Results

BMR (0.001
Benchman	rk Dose
BMD	1.511725049
BMDL	0.084814979
BMDU	7.349459454
BMR	0.1
Benchman	rk Dose
BMD	111.1076087
BMDL	41.12460837
BMDU	242.2282994

MA - Indivio	dual Models		BMR 0.001			BMR 0.001	
Model	Posterior Probability	BMD	BMDL	BMDU	BMD	BMDL	BMDU
Dichotomous Hill	0.166805588	0.779298134	0.00721453	11.78462	67.3186779	15.2984811	179.9472
Gamma	0.056914248	1.805950073	0.09347239	16.61692	104.1891947	52.1197878	225.3164
Logistic	0.195845027	2.271589823	1.67096395	4.486674	162.4683738	118.824027	351.2111
Log-Logistic	0.07981527	0.783527736	0.00925409	13.02672	77.34185457	31.3577577	160.9768
Log-Probit	0.012133111	8.460435085	0.6522715	107.9432	102.5081798	46.6885529	244.554
Multistage	0.000911231	0.804685755	0.55281934	1.312665	77.5898993	56.0719296	106.9866
Probit	0.199328433	1.995303668	1.49647507	3.303659	145.3018337	109.015137	262.5193
Quantal Linear	0.240281547	0.821870286	0.55068434	1.494455	86.78204566	58.078967	158.1819
Weibull	0.047965545	1.52081612	0.036836	22.85683	100.6470174	45.4112366	204.8545

992 **3.2 Large Intestine Adenomas in Female Rats**

- 993 The doses and response data from the NTP (2011) study that were used for the modeling are
- presented in Table 3-12.

995 **Table 3-12 Incidence of Large Intestine Adenomas in Female Rats**

Dose (ppm)	Number of animals	Number of Animals with Tumors
0	50	0
125	50	1
250	50	2
500	50	5

- 997 Comparisons of model fits obtained from BMD modeling of the NTP (2011) study are provided in
- Table 3-13. A summary of all the dichotomous models and all three modeling approaches are
- shown for comparison with the the BMDS results in Table 3-13. Detailed output of the multistage,
- 1000 frequestist model average and Bayesian model average results are also shown below.

Frequentist Model	Restriction*	10% Ex	tra Risk	10% Ad	ded Risk	0.1% Ex	tra Risk	0.1% Ad	ded Risk	P Value	AIC	BMDS Recommendation Notes
- Dichotomous Hill	Restricted	BMD 507 1886	BMDL	BMD 507 1886	CE CE	BMD	2.02E-05	BMD	BMDL	0.883/656	65 12821578	BMD10 higher than may dose
Gamma	Restricted	507.0328	328.131	507.0328	328.1311	12.23436	3.132948	12.23436	3.132948	0.9899304	63.12698036	BMD10 higher than max dose
Log-Logistic	Restricted	507.1886	326.4527	507.1886	326.4527	12.49014	2.967884	12.49015	2.967884	0.989315	63.12821578	BMD10 higher than max dose
Log-Probit	Restricted	477.1922	330.2017	478.8704	330.202	78.19758	54.11022	78.34071	54.11038	0.6315053	64.24003983	
Multistage Degree 3	Restricted	500.7362	330.5708	CF	CF	6.557897	3.138036	6.557897	3.138036	0.9988974	63.10882433	BMD10 higher than max dose
Multistage Degree 2	Restricted	502.9252	330.2656	CF	CF	7.437661	3.136283	7.437661	3.136283	0.9958358	63.11496834	BMD10 higher than max dose
Multistage Degree 1 (Quantal Linear)*	Restricted	555.3227	326.7021	555.3227	326.7336	5.273328	3.102597	5.273328	3.102597	0.9885628	61.23428391	BMD10 higher than max dose Lowest AIC
Weibull	Restricted	301.4129	228.7688	301.7364	284.8074	105.7531	45.34816	105.8608	45.36294	2.024E-14	126.9988592	Goodness of fit p-value < 0.1 Goodness of fit p-value < 0.05
Dichotomous Hill	Unrestricted	507.1886	326.4527	507.1886	326.4527	12.49015	CF	12.49015	CF	0.989315	63.12821578	BMD10 higher than max dose
Logistic	Unrestricted	502.6164	401.8342	504.1957	403.3183	21.75435	11.15261	21.92247	11.40486	0.7220677	64.14445439	BMD10 higher than max dose
Log-Probit	Unrestricted	513.5019	319.158	513.5019	319.158	22.53697	3.05E-10	22.53697	3.05E-10	0.9787434	63.15005452	BMD10 higher than max dose
Probit	Unrestricted	498.6988	387.1642	500.1934	388.3664	20.22219	10.09325	20.35123	10.29972	0.7579644	63.98223935	
Frequentist Model Average	Restricted							13.5	5.005	0.824	NA	Average of: multistage, log-probit and Weibull
Bayesian Model										BMA model Posterior Probabilities	Unnormalized Log Posterior Probability	
Dichotomous Hill	Priors	580.7885	363.9277	586.8591	366.3746	32.1626	1.943651	32.44390	1.970037	0.220739	-34.83201879	NB
Gamma	Priors	574.6022	370.815	581.0418	373.6548	36.78534	7.612838	37.14127	7.691739	0.039040	-36.56441487	NB
Logistic	Priors	748.2903	435.647	758.8572	439.4368	17.09404	9.77774	17.53697	10.10689	0.209018	-34.88658014	NB
Log-Logistic	Priors	443.7372	317.9377	447.3434	320.2013	34.7643	3.044037	35.01854	3.079371	0.009846	-37.941941	NB
Log-Probit	Priors	496.108	365.0003	500.2088	367.391	138.4617	37.032	139.0559	37.23307	0.019907	-37.23793011	NB
Multistage Degree 3	Priors	281.6332	214.8912	283.5637	216.3168	3.58622	2.361475	3.617773	2.380263	NA	-55.95416186	NB
Multistage Degree 2	Priors	292.2843	214.7176	294.6334	216.4783	3.394427	2.261514	3.425026	2.27977	3.7871E-08	-50.41033757	NB
Multistage Degree 1	Priors	326.0742	223.1094	329.3273	224.9746	3.096391	2.118664	3.125683	2.135989	NA	-43.07798951	NB
Probit	Priors	560.3876	401.1173	563.8816	403.0099	16.40803	9.430684	16.60386	9.66788	0.488955	-34.03672885	NB
Quantal Linear	Priors	518.8844	308.1564	525.4594	311.1072	4.92731	2.926244	4.986506	2.952824	0.003797	-38.89483963	NB
Weibull	Priors	482.3999	345.5124	486.5647	347.9023	36.57184	4.415083	36.87119	4.466438	0.008698	-38.06592312	NB
Bayesian Model Average (BMA) results	Priors	601.4568	392.3594	607.1436	394.7824	23.56684	7.783059	23.84832	7.975868	Probabilities Sum to 1	NA	NB

1001Table 3-13 Summary of BMDS 3.0 modeling results for large intestine adenomas in female rats exposed to 1-BP by inhalation for 2 years1002(NTP, 2011); BMRs = 10% and 0.1% extra and added risk, doses are in ppm

1003 *Best overall and Multistage; scaled residuals for doses 0, 125, 250 and 500 were -0.000872639, -0.160645981, -0.212777056, and 0.234051055, respectively. **Restrictions and parameter priors are defined in the <u>BMDS 3.0 User Guide</u>; CF = Computation failed; NA = Not available in BMDS 3.0; NA = Not Applicable

1005 **3.2.1 Summary of Multistage Model**

- 10063.2.1.1Selected Frequentist Multistage Multistage 1 Restricted; Extra Risk,1007BMR = 0.001 and 0.1, doses are in ppm
- 1008 Table 3-14 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage -
- 1009 Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1 User Input

Info		Model		Model Data	
	frequentist Multistage degree 1	Options		Dependent	
Model	v1.0	Risk Type	Extra Risk	Variable	PPM
Dataset	1-BP Large Intestine Adenomas	BMR	0.001 and 0.1	Independent	
Name	- F Rats	Confidence	0.001 and 0.1	Variable	[Incidence]
	NTP (2011) Large Intestine	Level	0.95	Total # of	
User notes	Adenomas in Female Rats from	Level	0.75	Observation	4
	1-BP	Background	Estimated		

1010

1011 Table 3-15 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage -

1012 Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1 Model Results

BMR (Bonohmo).001 rk Doso	
BMD	5 273328163	
BMD	3 102507277	
DMDL	3.102397277	
BMDU	0.1	
Benchma	rk Dose	
BMD	555.3227114	
BMDL	326.7020652	
BMDU	1058.027014	
AIC	61.23428391	
P-value	0.988562772	
DOF	3	
Chi ²	0.125861864	
Cill	0.125801804	
Model Par	ameters	
# of Parameters	3	
Variable	Estimate	Std Error
Background	0	0
Beta1	0.000189728	0
Beta2	0	0

Conducer of Fit	
Goodness of Fit	
DoseEstimated ProbabilityExpectedObservedSize	Scaled Residual
0 1.523E-08 7.61499E-07 0 50 -	-0.000873
125 0.023437055 1.171852759 1 50 -	-0.160646
250 0.0463248 2.316240014 2 50 -	-0.212777
500 0.0905036 4.525179979 5 50 0	0.2340511
Analysis of Deviance	
Model Log Likelihood # of Parameters Deviance Test d.f.	P Value

Full Model	-29.55331182	0	-	-	-
Fitted Model	-29.61714195	1	0.12766026	3	0.988323
Reduced Model	-33.58882955	1	8.07103545	3	0.0445662

Frequentist Multistage Degree 1 Model with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

1014

- 1015 Figure 3-2 Plot of Results for Large Intestine Adenomas in Female Rats Frequentist
- 1016 Multistage Degree 1 Model with BMR of 10% Extra Risk for the BMD and 0.95 Lower
- 1017 **Confidence Limit for the BMDL**

1019**3.2.1.2** Selected Frequentist Multistage - Multistage 1 Restricted; Added Risk,1020BMR = 0.001 and 0.1, doses are in ppm

Table 3-16 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 User Input

Info		Model Options		Model Data	
Model	frequentist Multistage degree 1 v1.0	Risk Type	Added Risk	Dependent Variable	PPM
Dataset	1-BP Large Intestine Adenomas	BMR	0.001 and 0.1	Independent	[In siden sel
Inallie	NTP (2011) Large Intestine	Confidence Level	0.95	Total # of	[Incluence]
User notes	Adenomas in Female Rats from 1-BP	Background	Estimated	Observation	4
	·				

1023

1024Table 3-17 Large Intestine Adenomas in Female Rats, Selected Frequentist Multistage -1025Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 Model Results

BMR Benchma	0.001 Irk Dose		
SMD	5.273328163		
BMDL	3.102597277		
BMDU	11.28247793		
BMF Benchma	k 0.1 Irk Dose		
BMD	555.322731		
BMDL	326.7335971		
BMDU	1188.88287		
AIC	61.23428391		
P-value	0.988562772		Ĭ
D.O.F.	3		
Chi ²	0.125861864		
Model Pa	rameters		
# of Parameters	3		-
Variable	Estimate	Std Error	
Background	0	0	
Beta1	0.000189728	0	
Beta2	0	0	

Goodnes	s of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	1.523E-08	7.61499E-07	0	50	-0.000873
125	0.023437055	1.171852759	1	50	-0.160646
250	0.0463248	2.316240014	2	50	-0.212777
500	0.0905036	4.525179979	5	50	0.2340511
Analysis of	Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-29.55331182	0	-	-	-
Fitted Model	-29.61714195	1	0.12766026	3	0.988323
Reduced Model	-33.58882955	1	8.07103545	3	0.0445662

1027

1028

3.2.2 Summary of Frequentist Model Averaging

1029 Table 3-18 Large Intestine Adenomas in Female Rats, Summary of Frequentist Model

1030

Averaging					
Model Average	ing Fit Stat	istics			
Model	Weight	-2log(L)	AIC	BIC	
Multistage, 3°	0.191	59.11	67.11	80.30	
Weibull	0.514	59.13	65.13	75.02	
Log-Probit	0.295	60.24	66.24	76.13	

Average-Model Benchmark Dose Estimate:

Nominally Specified Confidence Level:0.950 Weighting Criterion: AIC BMD Calculation: Added Risk BMR: 0.001000 BMD: 13.472617282689 BMDL(BCa): 2.445277845095 BMDL(Percentile): 5.005030327500 Acceleration: -0.149668 Bootstrap Resamples: 5000 Random Seed: 331201 **Average-Model Goodness of Fit Test** Test Statistic: 0.139777

Bootstrap *p*-value: 0.824400

Parameter Estim	nates		
Model	Parameter	Estimate	Standard Error
Multistage, 3°	gamma	0.0	N/A
	beta(1)	0.0001525544	0.00006655318
	beta(2)	0	N/A
	beta(3)	2.307482E-10	N/A
Weibull	gamma	0.0	N/A
	alpha	1.238098	0.739784
	beta	0.000047	0.000206
Log-Probit	gamma	0.006136953057	0.011787
	alpha	-7.449471	0.263198
	beta	1.0	N/A

1032

Summary of Bayesian Model Averaging 3.2.3

Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1, doses 1033 3.2.3.1 1034 are in ppm

1035

1036 Table 3-19 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Extra **Risk, BMR = 0.001 and 0.1 User Inputs** 1037

					-
Info		Model		Model Data	
Model	Bayesian Model Averaging v1.0	Options		Dependent Variable	PPM
Dataset Name	I-BP Large Intestine Adenomas - F Rats	Risk Type	Extra Risk	Independent	[In siden se]
User notes	NTP (2011) Large Intestine Adenomas in Female Rats from	BMR Confidence	0.001 and 0.1	Total # of	[Incidence]
	1-BP	Level	0.95	Observation	4
		Background	Estimated		

1038

1039 Table 3-20 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1 Model Results

B	MR 0.001
Benc	chmark Dose
BMD	23.5668422
BMDL	7.783059031
BMDU	103.7795544
I	BMR 0.1
Benc	chmark Dose
BMD	601.4567771
BMDL	392.359376
BMDU	1236.80985

MA - Individ	MA - Individual Models BMR 0.001				BMR 0.1			
Model	Posterior Probability	BMD	BMDL	BMDU	BMD	BMDL	BMDU	
Dichotomous Hill	0.220739084	32.16260672	1.943651238	140.386492	580.7885528	363.927722	-9999*	
Gamma	0.039039943	36.78534552	7.61283841	119.1831902	574.6021867	370.8150089	1205.82664	
Logistic	0.20901793	17.09404029	9.777739644	85.90026945	748.2903004	435.6470108	-9999*	
Log-Logistic	0.00984594	34.76430476	3.044036916	128.055945	443.7371492	317.9377317	710.2971673	
Log-Probit	0.019906973	138.4616643	37.03200072	298.4407544	496.1079955	365.0002778	766.8138146	
Multistage	3.78705E-08	3.394427244	2.261513844	5.397694651	292.2843099	215.5684978	386.8899941	
Probit	0.488955424	16.40802808	9.430683218	39.76662457	560.3876114	401.1173546	-9999*	
Quantal Linear	0.003796807	4.927310627	2.926244168	9.784449823	518.8843608	308.1564009	1030.379176	
Weibull	0.00869786	36.57183424	4.415083211	123.5612407	482.3999405	345.5123901	809.5982075	
* these model ou	these model outputs -9999 indicate a BMDU was not identified							

1042

Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1, doses 3.2.3.2 are in ppm

1043 1044

Table 3-21 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Added 1045 Risk, BMR = 0.001 and 0.1 User Inputs 1046

Info	Bayesian Model Averaging v1.0	Model		Model Data Dependent	
Dataset	1-BP Large Intestine Adenomas - F Rats	Risk Type	Added Risk	Variable Independent	PPM
User notes	NTP (2011) Large Intestine Adenomas in Female Rats from	BMR Confidence	0.001 and 0.1	Variable Total # of Observation	[Incidence] 4
	IDC	Background	Estimated		

1047

1048

Table 3-22 Large Intestine Adenomas in Female Rats, Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1 Model Results 1049

BMR 0.001 Benchmark Dose					
BMD	23.84832328				
BMDL	7.975867949				
BMDU	95.10070086				
BMR Benchma	0.1 rk Dose				
BMD	607.1436084				
BMDL	394.782424				
BMDU	1228.752732				

MA - Indivi	dual Models		BMR 0.001		BMR 0.1					
Model	Posterior Probability	BMD	BMDL	BMDU	BMD	BMDL	BMDU			
Dichotomous Hill	0.220739084	32.44390339	1.97003712	141.4284	586.859107	366.374612	-9999*			
Gamma	0.039039943	37.14127466	7.69173913	120.7405	581.0417533	373.654813	-9999*			
Logistic	0.20901793	17.53697172	10.1068914	57.47345	758.8571906	439.436793	-9999*			
Log-Logistic	0.00984594	35.01853719	3.07937129	128.7793	447.3433793	320.201248	721.1831			
Log-Probit	0.019906973	139.0558928	37.2330733	299.1879	500.2087951	367.39105	778.8816			
Multistage	3.78705E-08	3.425025847	2.27973261	5.453989	294.6333885	216.422349	405.7088			
Probit	0.488955424	16.60385728	9.6678799	39.83995	563.8816357	403.009892	1407.68			
Quantal Linear	0.003796807	4.986505955	2.95282365	9.981385	525.4594088	311.107248	1052.267			
Weibull	0.00869786	36.87119484	4.46643773	124.3649	486.5646958	347.902298	822.9395			
* these model ou	these model outputs -9999 indicate a BMDU was not identified									

1051

3.3 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats

1052 The doses and response data from the NTP (2011) study that were used for the modeling are 1053 presented in Table 3-23.

1054 **Table 3-23 Incidence of Keratoacanthoma and Squamous Cell Carcinomas in Male Rats**

Dose (ppm)	Number of animals	Number of Animals with Tumors
0	50	1
125	50	4
250	50	6
500	50	8

1055

1056 Comparisons of model fits obtained from BMD modeling of the NTP (2011) study are provided in

1057 Table 3-24. A summary of all the dichotomous models and all three modeling approaches are

shown for comparison with the the BMDS results in Table 3-24. Detailed output of the multistage,

1059 frequestist model average and Bayesian model average results are also shown below.

1060Table 3-24 Summary of BMDS 3.0 modeling results for keratoacanthoma & squamous cell carcinomas in male rats exposed to10611-BP by inhalation for 2 years (NTP, 2011); BMRs = 10% and 0.1% extra and added risk, doses are in ppm

Frequentist Model	Restriction	10% Ex	tra Risk	10% Ad	ded Risk	0.1% Ex	xtra Risk	0.1% Ad	lded Risk	P Value	AIC	BMDS Recommendation Notes
Frequentist Woder	***	BMD	BMDL	BMD	BMDL	BMD	BMDL	BMD	BMDL	1 value	AIC	BND3 Recommendation Notes
Dichotomous Hill	Restricted	241.9508	CF	250.0001	CF	3.236715	CF	3.290924	CF	CF	126.3403356	BMD Lower limit includes zero
Gamma	Restricted	303.843	185.275	312.2107	187.7474	2.885284	1.759366	2.960561	1.781668	0.8021847	122.7789055	
Log-Logistic	Restricted	294.0892	173.3592	302.2094	175.6876	2.649453	1.561794	2.715178	1.580743	0.8427402	122.6810603	Lowest AIC
Log-Probit	Restricted	399.4465	261.7774	411.4748	265.8007	65.45737	42.89751	66.4724	43.24036	0.312975	124.8422642	
Multistage Degree 3	Restricted	303.843	185.2034	312.2107	187.6895	2.885284	1.759338	2.960561	1.781575	0.8021847	122.7789055	Converges to Degree 1
Multistage Degree 2	Restricted	303.843	185.206	312.2107	187.6879	2.885284	1.759315	2.960561	1.781575	0.8021847	122.7789055	Converges to Degree 1
Multistage Degree 1**	Restricted	303.843	185.2037	312.2107	187.6903	2.885284	1.759336	2.960561	1.781575	0.8021847	122.7789055	All Multistage models converged to Multistage Degree 1
Weibull	Restricted	210.3339	150.19	211.7953	150.9278	35.05038	12.46708	35.28128	12.52632	5.148E-12	173.1717353	Goodness of fit p-value < 0.1 Goodness of fit p-value < 0.05
Dichotomous Hill	Unrestricted	241.9507	CF	250	CF	3.236742	CF	3.290951	CF	CF	126.3403356	BMD Lower limit includes zero
Logistic	Unrestricted	408.5802	301.9481	420.7805	310.1677	7.203864	4.997068	7.542471	5.311385	0.4706516	123.9898837	
Log-Probit	Unrestricted	258.4618	CF	267.409	CF	1.230169	CF	1.252142	CF	0.9131073	124.3521934	BMD Lower limit includes zero
Probit	Unrestricted	394.6247	285.4619	406.5746	292.8437	6.509137	4.502717	6.797135	4.762942	0.5034012	123.8228047	
Frequentist Model Average	Restricted							3.73	2.26	0.7077	NA	Average of: multistage, log-probit and Weibull
Bayesian Model										BMA model Posterior Probabilities	Unnormalized Log Posterior Probability	
Dichotomous Hill	Priors	355.5078	147.56	369.5556	152.9072	8.094685	0.153672	8.357178	0.160579	0.203424	-64.32163349	NB
Gamma	Priors	389.7621	222.3436	404.6563	228.1034	15.30021	1.588847	15.82102	1.643549	0.054140	-65.64536621	NB
Logistic	Priors	528.4769	325.7855	553.3675	337.3084	8.149692	5.110528	8.702688	5.475214	0.321293	-63.86457516	NB
Log-Logistic	Priors	300.2942	168.0456	309.8314	172.937	8.166761	0.220277	8.399582	0.229138	0.029647	-66.24756569	NB
Log-Probit	Priors	407.5987	226.62	420.3065	232.0305	82.22845	9.177505	83.54719	9.343584	0.019221	-66.6809488	NB
Multistage Degree 3	Priors	216.2644	160.9627	220.8948	163.8834	2.47565	1.663083	2.537335	1.695316	NA	-79.02131211	NB
Multistage Degree 2	Priors	213.6458	156.4551	218.7139	159.4762	2.319659	1.581474	2.378462	1.612377	1.1126E-05	-74.13536451	NB
Multistage Degree 1	Priors	218.2195	153.9162	224.3367	157.1083	2.072206	1.461724	2.127236	1.490495	NA	-67.77973593	NB
Probit	Priors	434.7017	297.0376	450.8228	305.801	6.767236	4.568947	7.121577	4.849836	0.302901	-63.92352293	NB
Quantal Linear	Priors	295.3006	185.6616	306.2603	190.0876	2.804166	1.763037	2.902711	1.802915	0.045837	-65.81184537	NB
Weibull	Priors	352.5042	206.0483	364.4752	211.6823	12.68129	0.624409	13.08899	0.649286	0.023527	-66.47877309	NB
Bayesian Model Average (BMA) results	Priors	433.4563	220.5825	451.3116	227.1573	9.392749	1.425164	9.805706	1.473828	Probabilities Sum to 1	NA	NB

1062 **Best Multistage; scaled residuals for doses 0, 125, 250 and 500 were -0.243246539, 0.375234935, 0.313277121, and -0.37778312, respectively. 1063 ***Restrictions and parameter priors are defined in the <u>BMDS 3.0 User Guide</u>; CF = Computation failed; NA = Not available in BMDS 3.0; NA = Not Applicable

1064 **3.3.1 Summary of Multistage Model**

1065**3.3.1.1** Selected Frequentist Multistage - Multistage 1 Restricted; Extra Risk,1066BMR = 0.001 and 0.1, doses are in ppm

1067 Table 3-25 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected

1068 Frequentist Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1 User

1069 **Input**

Info		Model		Model Data	
Model	frequentist Multistage degree 1 v1.0	Options Risk Type	Extra Risk	Dependent Variable	PPM
Dataset		Кізк Турс	LAUG RISK	Independent	
Name	1-BP K and SCC - M Rats	BMR	0.001 and 0.1	Variable	[Incidence]
	NTP (2011) Keratoacanthoma and	Confidence		Total # of	
User notes	Squamous Cell Carcinomas in Male	Level	0.95	Observations	4
	Rats	Background	Estimated		

1070

1071 Table 3-26 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected

1072 Frequentist Multistage - Multistage 1 Restricted; Extra Risk, BMR = 0.001 and 0.1 Model

1073 **Results**

BMR Benchma	0.001 ark Dose
BMD	2.885283902
BMDL	1.759336336
BMDU	7.747724524
BMR Benchma	k 0.1 ark Dose
BMD	303.8429907
BMDL	185.2037126
BMDU	815.6993114
AIC	122.7789055
P-value	0.802184708
D.O.F.	2
Chi ²	0.440832776
Model Par	rameters
# of Parameters	3
Variable	Estimate
Background	0.025413861
Beta1	0.00034676
Beta2	0

Goodnes	s of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.025413861	1.270693055	1	50	-0.243247
125	0.066754831	3.337741571	4	50	0.3752349
250	0.106342159	5.317107955	6	50	0.3132771
500	0.180550282	9.027514105	8	50	-0.377783
Analysis of	Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-59.17016779	0	_	-	-
Fitted Model	-59.38945275	2	0.43856993	2	0.8030928
Reduced Model	-62.79117005	1	7.24200452	3	0.0645715

Frequentist Multistage Degree 1 Model with BMR of 10% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

1075 Figure 3-3 Plot of Results for Keratoacanthoma and Squamous Cell Carcinomas in Male

1076 Rats Frequentist Multistage Degree 1 Model with BMR of 10% Extra Risk for the BMD and
1077 0.95 Lower Confidence Limit for the BMDL

3.3.1.2 Selected Frequentist Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1, doses are in ppm

1080 1081

1079

1082 **Table 3-27 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected**

1083 Frequentist Multistage - Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 User

1084 **Input**

Info		Model		Model Data	
Model Dataset	frequentist Multistage degree 1 v1.0	Risk Type	Added Risk	Dependent Variable	PPM
Name	1-BP K and SCC - M Rats	BMR	0.001 and 0.1	Variable	[Incidence]
User notes	NTP (2011) Keratoacanthoma and Squamous Cell Carcinomas in Male Rats	Confidence Level	0.95	Total # of Observations	4
		Background	Estimated	1	

1085

1086

1087 Table 3-28 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Selected

- 1088 Frequentist Multistage Multistage 1 Restricted; Added Risk, BMR = 0.001 and 0.1 Model
- 1089

Results

BMR (Benchma).001 rk Dose	
BMD	2.960560843	
BMDL	1.781575063	
BMDU	8.258328982	
BMR Benchmar	0.1 rk Dose	
BMD	312.2107498	
BMDL	187.7473751	
BMDU	872.7938309	
DINIDO		
AIC	122.7789055	
D valua	0.802184708	
P-value	2	
D.O.F.	0.440832776	
Ch1 ²	01110002770	
Model Par	ameters	
# of Parameters	3	
Variable	Estimate	Std Error
Background	0.025413861	0
Beta1	0.00034676	0
D ()	0	

Goodnes	s of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.025413861	1.270693055	1	50	-0.243247
125	0.066754831	3.337741571	4	50	0.3752349
250	0.106342159	5.317107955	6	50	0.3132771
500	0.180550282	9.027514105	8	50	-0.377783

of Parameters

0

2

1

Test d.f.

_

2

3

Deviance

_

0.43856993

7.24200452

P Value

0.8030928

0.0645715

1090

1091

Summary of Frequentist Model Averaging 3.3.2

Analysis of Deviance

Log Likelihood

-59.17016779

-59.38945275

-62.79117005

Model

Full Model

Fitted Model

Reduced Model

1092 1093 Table 3-29 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Summary of Frequentist Model Averaging

Model Averagi	Model Averaging Fit Statistics									
Model	Weight	-2log(L)	AIC	BIC						
Multistage, 3°	0.213	118.78	126.78	139.97						
Weibull	0.580	118.78	124.78	134.67						
Log-Probit	0.207	120.84	126.84	136.74						
Log-Probit0.207120.84126.84136.74Average-Model Benchmark Dose Estimate: Nominally Specified Confidence Level:0.950Weighting Criterion: AICBMD Calculation: Added RiskBMD Calculation: Added RiskBMR: 0.001000BMD: 3.732432783338BMDL(BCa): 1.505273123061BMDL(Percentile): 2.260265766150Acceleration: 0.030873Bootstrap Resamples: 5000Random Seed: 257515Average-Model Goodness of Fit TestText Statistics 0.707705										
Bootstrap <i>p</i> -value	e: 0.586800									

Parameter Estim	nates		
Model	Parameter	Estimate	Standard Error
Multistage, 3°	gamma	0.02541313	0.02238034
	beta(1)	0.0003467654	0.0001309450
	beta(2)	0	N/A
	beta(3)	0	N/A
Weibull	gamma	0.025414	0.022401
	alpha	1.0	N/A
	beta	0.000347	0.000131
Log-Probit	gamma	0.050387778679	0.025518
	alpha	-7.271630	0.311627
	beta	1.0	N/A

1096

3.3.3 **Summary of Bayesian Model Averaging**

- 1097

Bayesian Model Averaging – Extra Risk, BMR = 0.001 and 0.1, doses 3.3.3.1 are in ppm

1098 1099

Table 3-30 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model 1100 Averaging – Extra Risk, BMR = 0.001 and 0.1 User Inputs 1101

Info		Model		Model Data	
Model	Bayesian Model Averaging v1.0	Options		Dependent Variable	ррм
Dataset Name	1-BP Large Intestine Adenomas - F Rats	Risk Type	Extra Risk	Independent	
	NTP (2011) Large Intestine	BMR	0.001 and 0.1	Variable Total # of	[Incidence]
User notes	Adenomas in Female Rats from 1-BP	Level	0.95	Observation	4
		Background	Estimated		

1102

Table 3-31 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model 1103 1104

Averaging – Extra Risk, BMR = 0.001 and 0.1 Model Results

BMR 0.001			
Bend	chmark Dose		
BMD	9.392749294		
BMDL	1.425164286		
BMDU	55.04451692		
]	BMR 0.1		
Bene	chmark Dose		
BMD	433.4563002		
BMDL	220.582515		
BMDU	1556.137562		

MA - Individual Models		BMR 0.001			BMR 0.1		
Model	Posterior Probability	BMD	BMDL	BMDU	BMD	BMDL	BMDU
Dichotomous Hill	0.203424469	8.094685152	0.153671514	86.83353662	355.5077612	147.5600451	192683.5175
Gamma	0.054139392	15.30020591	1.588847255	82.10273087	389.7621334	222.343564	928.3482432
Logistic	0.321292879	8.149691857	5.11052832	31.40190989	528.4768939	325.7855475	2252.007484
Log-Logistic	0.029647049	8.166761138	0.220277332	67.28941947	300.2942502	168.0455804	513.0673647
Log-Probit	0.019220539	82.22845197	9.177505039	271.9267905	407.5987339	226.6199589	689.7653341
Multistage	1.11264E-05	2.319659106	1.581473509	3.680806607	213.6458308	156.4551443	296.4730561
Probit	0.302900793	6.767235696	4.568947013	15.09856433	434.7017109	297.0376015	1098.289967
Quantal Linear	0.0458366	2.804165939	1.763036591	5.545045715	295.3006327	185.6615543	583.9366913
Weibull	0.023527152	12.68129051	0.624408538	81.15071058	352.504164	206.0482651	624.6541739
* these model ou	tputs -9999 indi	cate a BMDU w	as not identified				

1106

1107

3.3.3.2 Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1, doses are in ppm

1108

Table 3-32 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1 User Inputs

Info Model Dataset Name	Bayesian Model Averaging v1.0 1-BP Large Intestine Adenomas - F Rats	Model Options Risk Type	Added Risk	Model Data Dependent Variable Independent	PPM
User notes	NTP (2011) Large Intestine Adenomas in Female Rats from 1-BP	BMR Confidence Level	0.001 and 0.1	VariableTotal # ofObservation	[Incidence] 4
		Background	Estimated		

1111

Table 3-33 Keratoacanthoma and Squamous Cell Carcinomas in Male Rats, Bayesian Model Averaging – Added Risk, BMR = 0.001 and 0.1 Model Results

BMR).001
Benchma	rk Dose
BMD	9.805706222
BMDL	1.47382787
BMDU	51.07468367
BMR	0.1
Benchma	rk Dose
BMD	451.311646
BMDL	227.1572948
BMDU	1229.189038

MA - Indivi	dual Models	BMR 0.001			BMR 0.1		
Model	Posterior Probability	BMD	BMDL	BMDU	BMD	BMDL	BMDU
Dichotomous Hill	0.203424469	8.357177489	0.16057906	89.33856338	369.5555627	152.9071629	-9999
Gamma	0.054139392	15.82102291	1.64354872	85.22485197	404.6563208	228.1033844	983.3875895
Logistic	0.321292879	8.702687919	5.475214217	31.09874949	553.3674359	337.3084068	-9999
Log-Logistic	0.029647049	8.399581537	0.229138095	68.88824701	309.8314404	172.9370356	540.1743054
Log-Probit	0.019220539	83.54718983	9.343584068	274.2274106	420.3065038	232.0304662	722.1497893
Multistage	1.11264E-05	2.378462348	1.612394466	3.807670902	218.7139392	159.5782638	296.4761257
Probit	0.302900793	7.121576462	4.84983623	16.27391949	450.8228302	305.8009446	1167.158008
Quantal Linear	0.0458366	2.90271081	1.802915474	5.884175655	306.2603176	190.0876462	621.7316389
Weibull	0.023527152	13.08898814	0.649286201	83.21873099	364.4751906	211.6823345	659.6490741

4 References

1116	Barker, DJP. (2007). The Origins of the Developmental Origins Theory. J Intern Med 261: 412-
1117	417. <u>http://dx.doi.org/10.1111/j.1365-2796.2007.01809.x</u>
1118	ClinTrials. (1997). A 13-Week Inhalation Toxicity Study of a Vapor Formulation of Albta1 in the
1119	Albino Rat. (Report No. 91190). Canada.
1120	Honma, T; Suda, M; Miyagawa, M. (2003). Inhalation of 1-Bromopropane Causes Excitation in
1121	the Central Nervous System of Male F344 Rats. Neurotoxicology 24: 563-575.
1122	http://dx.doi.org/10.1016/S0161-813X(03)00049-4
1123	Ichihara, G; Yu, X; Kitoh, J; Asaeda, N; Kumazawa, T; Iwai, H; Shibata, E; Yamada, T; Wang, H;
1124	Xie, Z; Maeda, K; Tsukamura, H; Takeuchi, Y. (2000). Reproductive Toxicity of 1-
1125	Bromopropane, a Newly Introduced Alternative to Ozone Layer Depleting Solvents, in
1126	Male Rats. Toxicol Sci 54: 416-423. http://dx.doi.org/10.1093/toxsci/54.2.416
1127	Kavlock, RJ; Allen, BC; Faustman, EM; Kimmel, CA. (1995). Dose-Response Assessments for
1128	Developmental Toxicity. Iv. Benchmark Doses for Fetal Weight Changes. Toxicol Sci 26:
1129	211-222. http://dx.doi.org/10.1006/faat.1995.1092
1130	Ntp. (2011). Toxicology and Carcinogenesis Studies of 1-Bromopropane (CAS No. 106-94-5) in
1131	F344/N Rats and B6C3F1 Mice (Inhalation Studies) [NTP] (pp. 1-190). (ISSN 0888-8051
1132	NTP TR 564; NIH Publication No. 11-5906). Research Triangle Park, NC.
1133	http://ntp.niehs.nih.gov/ntp/htdocs/LT_rpts/TR564.pdf
1134	Reyes, L; Mañalich, R. (2005). Long-Term Consequences of Low Birth Weight [Review]. Kidney
1135	Int Suppl 68: S107-S111. http://dx.doi.org/10.1111/j.1523-1755.2005.09718.x
1136	U.S. EPA. (1996). Guidelines for Reproductive Toxicity Risk Assessment (pp. 1-143).
1137	(EPA/630/R-96/009). Washington, DC: U.S. Environmental Protection Agency, Risk
1138	Assessment Forum. https://www.epa.gov/sites/production/files/2014-
1139	11/documents/guidelines_repro_toxicity.pdf

1140	U.S. EPA. (2012). Benchmark Dose Technical Guidance. (EPA/100/R-12/001). Washington, DC:
1141	U.S. Environmental Protection Agency, Risk Assessment Forum.
1142	https://www.epa.gov/risk/benchmark-dose-technical-guidance
1143	U.S. EPA. (2016). TSCA Work Plan Chemical Risk Assessment: Peer Review Draft 1-
1144	Bromopropane: (N-Propyl Bromide) Spray Adhesives, Dry Cleaning, and Degreasing Uses
1145	CASRN: 106-94-5 [EPA Report]. (EPA 740-R1-5001). Washington, DC.
1146	https://www.epa.gov/sites/production/files/2016-03/documents/1-
1147	<u>bp_report_and_appendices_final.pdf</u>
1148	Wheeler, MW; Bailer, AJ. (2007). Properties of Model-Averaged Bmdls: A Study of Model
1149	Averaging in Dichotomous Response Risk Estimation. Risk Anal 27: 659-670.
1150	http://dx.doi.org/10.1111/j.1539-6924.2007.00920.x
1151	WIL Research. (2001). An Inhalation Two-Generation Reproductive Toxicity Study of 1-
1152	Bromopropane in Rats. (Study No. WIL-380001). Ashland, OH.
1153	Yamada, T; Ichihara, G; Wang, H; Yu, X; Maeda, K; Tsukamura, H; Kamijima, M; Nakajima, T;
1154	Takeuchi, Y. (2003). Exposure to 1-Bromopropane Causes Ovarian Dysfunction in Rats.
1155	Toxicol Sci 71: 96-103. <u>http://dx.doi.org/10.1093/toxsci/71.1.96</u>
1156	