INTEGRATION OF THE AIR POLLUTANT EMISSIONS INVENTORY WITH THE NATIONAL GREENHOUSE GAS INVENTORY FOR THE TRANSPORT

Duane Smith
Environment and Climate Change Canada
INVENTORY REPORTING AT ECCC
SCIENCE AND TECHNOLOGY BRANCH

Greenhouse Gas Inventory
Air Pollutant Emissions Inventory
Black Carbon Inventory
Facility-reported Greenhouse Gas data
• Historically air pollutants and GHGs estimates were developed independently from each other in the National Inventory Report and the Air Pollutant Emissions Inventory
• Wanted to make the process more efficient and consistent
• **Opportunity:** Could we create a model that satisfies international reporting requirements as well as support domestic policy, regulatory work and projections?
• Combined, reviewed of all key inputs and models
 – vehicle fleets, distance travelled, biofuels, mileage, off-road equipment, modeling approach
 – validation and “road test” phase
PROCESS – PRODUCTION
ENVIRONMENT

Calculation Data Flow

On-road Inputs:
Vehicle Populations (includes electric, propane and NG) Kilometer Accumulation Rates Fuel Information (includes biofuels as a %) Regional temperatures and defaults MOVES default database (slightly modified*)

MOVES
17 Regions, each year is a separate run

Outputs:
Energy (kJ) GHGs CACs Air Toxics Black Carbon

Post-process #1
Convert kJ to litres of fuel
Create Fuel Pool

Outputs:
Fuel use GHGs CACs Air Toxics

Off Road Inputs:
Equipment Populations by Subclass Code Hours of Use, Load Factor Horsepower Model year and Fuel Type Fuel Properties (includes biofuels as a %)

NONROAD
All provinces and years modelled simultaneously

Outputs:
Fuel use GHGs CACs Air Toxics

Post Process #2s: Scale Energy Pool to match RESD volumes, adjust biofuel volumes Address Propane and NG emissions

Post Process #3: Scale Emissions and Activity
Apply any custom EFs (on-road GHGs, off-road black carbon)
On-road variable KARs Off-road variable: hours of use Add propane and NG vehicles (tier 1) Activity VKTs, KARs, FCR

Format Output Tables

Environment and Climate Change Canada
Environnement et Changement climatique Canada
HARMONIZING BETWEEN TOP-DOWN AND BOTTOM-UP METHODS

- “Top down” refers to applying compiled fuel data to emission factors (info on underlying sources are either known or unknown)
- “Bottom up” refers to an activity based estimate built up from individual units.
- IPCC good practice considerations: (1) develop higher tier methods (i.e., bottom up) and (2) align fuel use with the national energy balance

Need to compare with fuel volume statistics

<table>
<thead>
<tr>
<th>Vehicle population (#)</th>
<th>Equipment population (#)</th>
<th>Flights (#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving rate (km/yr)</td>
<td>Hours of use (hr)</td>
<td>Origin-Destination (km)</td>
</tr>
<tr>
<td>Fuel efficiency (l/100 km)</td>
<td>Brake-specific horsepower (l/hp-hr)</td>
<td>Fuel burn rate (l/km)</td>
</tr>
</tbody>
</table>
RESULTS AND BENEFITS

• Divide the work year into two parts:
 – Production
 • Revised annually
 – Continuous Improvement
 • Implemented once complete

• Production efficiencies have allowed us to focus on longer term improvements
 – Off-road hours of use, NONROAD model update, sector by sector review
 – Bottom up marine model
 – In-house development of fleet characteristics (VIN decoding)