VULCAN AND HESTIA: QUANTIFICATION OF HIGH-RESOLUTION, BOTTOM-UP FOSSIL FUEL CO2 EMISSIONS FOR THE NATION AND US CITIES

DR. GEOFFREY ROEST (POSTDOC)
DR. KEVIN GURNEY (PROFESSOR)

SCHOOL OF INFORMATICS, COMPUTING AND CYBER SYSTEMS, NORTHERN ARIZONA UNIVERSITY
OUTLINE

• Overview and motivation
• Vulcan methodology
• Hestia methodology
• Applications

• NASA grant NNX14AJ20G (Vulcan)
• NIST grants 70NANB14H321 & 70NANB16H264 (Hestia)
• NSF CAREER award (All)
MOTIVATION

• CO₂ continues to increase
 • ~7 billion tons C year⁻¹ from fossil fuels

• Pressure to reduce CO₂ emissions
 • Paris Agreement
 • > 350 mayors in the U.S. have adopted the Paris Agreement goals
 • > 400 U.S. cities are participating in the EV Purchasing Collaborative
 • > 125 cities have pledged to transition their communities to 100% clean energy.
 – Center for Climate and Energy Solutions

• Urban areas:
 • 54% of global population, 70% of global energy use (IPCC 2014, UN 2015)
 • >80% of US population (2010 US Census)
GURNEY LAB AT NAU

• Quantify fossil fuel CO$_2$ (FFCO$_2$) emissions across spatial scales (scope 1):
 • Global (FFDAS)
 • US (Vulcan v3.0)
 • Cities (Hestia)

• Produce data products
 • Sector-specific
 • Gridded output for modeling
 • State/county/regional output
 • Visualization
<table>
<thead>
<tr>
<th>Sector/type</th>
<th>Emissions Data Source</th>
<th>Original spatial resolution/information</th>
<th>Spatial distribution</th>
<th>Temporal distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onroad</td>
<td>EMFAC(^a) CO(_2), EPA NEI(^b) onroad CO(_2)</td>
<td>County, road class, vehicle class</td>
<td>FHWA AADT(^c)</td>
<td>CCS(^d)</td>
</tr>
<tr>
<td>Electricity production</td>
<td>CAMD(^e) CO(_2), DOE/EIA(^f) fuel, EPA NEI point CO</td>
<td>Lat/lon, fuel type, technology</td>
<td>EPA/EIA NEI Lat/Lon, Google Earth</td>
<td>CAMD, EIA and EPA</td>
</tr>
<tr>
<td>Residential nonpoint buildings</td>
<td>EPA NEI nonpoint CO</td>
<td>County, fuel type</td>
<td>FEMA HAZUS(^g), DOE RECS NE-EUI(^h)</td>
<td>eQUEST(^i) model</td>
</tr>
<tr>
<td>Nonroad</td>
<td>NEI nonpoint CO</td>
<td>County, vehicle class</td>
<td>EPA spatial surrogates (vehicle class specific)</td>
<td>EPA temporal surrogates (by SCC)</td>
</tr>
<tr>
<td>Airport</td>
<td>EPA NEI point CO</td>
<td>Lat/lon, aircraft class</td>
<td>Lat/Lon</td>
<td>LAWA & OPSNET(^k)</td>
</tr>
<tr>
<td>Commercial nonpoint buildings</td>
<td>EPA NEI nonpoint CO</td>
<td>County, fuel</td>
<td>FEMA HAZUS, DOE CBECS NE-EUI(^l)</td>
<td>eQUEST model</td>
</tr>
<tr>
<td>Commercial point sources</td>
<td>EPA NEI point CO</td>
<td>Lat/lon, fuel type, combustion technology</td>
<td>EPA NEI Lat/Lon, Google Earth</td>
<td>eQUEST model</td>
</tr>
<tr>
<td>Industrial point sources</td>
<td>EPA NEI point CO</td>
<td>Lat/Lon, fuel type, combustion technology</td>
<td>EPA NEI Lat/Lon, Google Earth</td>
<td>EPA temporal surrogates (by SCC)</td>
</tr>
<tr>
<td>Industrial nonpoint buildings</td>
<td>EPA NEI nonpoint CO</td>
<td>County, fuel type</td>
<td>FEMA HAZUS, DOE MECS NE-EUI(^m)</td>
<td>eQUEST model</td>
</tr>
<tr>
<td>Commercial Marine Vessels</td>
<td>EPA NEI nonpoint CO</td>
<td>County, fuel type, port/underway</td>
<td>EPA port and shipping lane shapefiles</td>
<td>Flat time structure</td>
</tr>
<tr>
<td>Railroad</td>
<td>EPA NEI nonpoint CO, EPA NEI point CO</td>
<td>County, fuel type, segment</td>
<td>EPA NEI rail shapefile and density distribution</td>
<td>EPA temporal surrogates (by SCC)</td>
</tr>
</tbody>
</table>

a. Emissions Factors Model
b. Environmental Protection Agency, National Emissions Inventory
c. Federal Highway Administration, Annual Average Daily Traffic
d. Federal Emergency Management Agency
e. Continuous Count Stations
f. Clean Air Markets Division
g. Department of Energy/Energy Information Administration
h. Department of Energy Residential Energy Consumption Survey, non-electric energy use intensity
i. Quick Energy Simulation Tool
j. Source Classification Code
k. Los Angeles World Airport, The Operations Network
l. Department of Energy Commercial Energy Consumption Survey, non-electric energy use intensity
m. Department of Energy Manufacturing Energy Consumption Survey, non-electric energy use intensity
POINT AND NONPOINT

- Process n (e.g. commercial 10 MMBTU boiler, industrial reciprocating engine)
- Fuel f (e.g. natural gas, bituminous coal)
- E – emissions
- EF – emission factor

\[
E_{n,f}^{CO_2} = \frac{E_{n,f}^{CO}}{EF_{n,f}^{CO}} \cdot EF_{n,f}^{CO_2}
\]

- CO emission factors come from either:
 - Self-reported – submitted by SLTs (found through FIPS/SCC
 - Default – created internally but mostly retrieved from WebFIRE/AP-42 and a few literature

- CO2 emission factors:
 - Carbon coefficients/content, from coal sampling literature, EPA (liquids, gas), DOE and based on fuel sample statistics
POINT AND NONPOINT

Point:
- Temporal allocation (hourly): Industrial surveys of occupancy, production cycles, gives SCC categorized temporal structure

Nonpoint:
- Spatial allocation:
 - FEMA HAZUS general building stock data
 - Block group totals on residential, commercial, and industrial buildings
 - Energy use intensity – DOE survey by Census Division
- Temporal allocation (hourly):
 - eQUEST building energy model
 - Local meteorology, DOE survey data
ELECTRICITY PRODUCTION

• CAMD – stack monitoring CO₂ (hourly)
• DOE/EIA – fuel throughput (monthly)
• NEI – CO reporting (point process, annual)
ONROAD

- Merged HPMS road base and Open Street map
- FFCO₂ at county scale – EPA MOVES
 - County/vehicle class/road class
- California – EMFAC
 - County/vehicle class
 - Use statistics (FHWA) to distribute to road class

<table>
<thead>
<tr>
<th>NEI 2011 Road Class</th>
<th>HPMS Road Class</th>
<th>OSM Road Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural Interstate</td>
<td>Rural Interstate; Rural Principal Arterial–Other Freeways and Expressways</td>
<td>Motorway</td>
</tr>
<tr>
<td>Rural Other Principal Arterial; Rural Minor Arterial</td>
<td>Rural Principal Arterial–Other; Rural Minor Arterial</td>
<td>Trunk; Trunk-link; Primary; Primary -link</td>
</tr>
<tr>
<td>Rural Major Collector; Rural Minor Collector</td>
<td>Rural Major Collector; Rural Minor Collector</td>
<td>Secondary; Secondary-link; Tertiary; Tertiary-link</td>
</tr>
<tr>
<td>Rural Local</td>
<td>Rural Local</td>
<td>Residential; Unclassified</td>
</tr>
<tr>
<td>Urban Interstate; Urban Other Freeways and Expressways</td>
<td>Urban Interstate; Urban Principal Arterial–Other Freeways and Expressways</td>
<td>Motorway</td>
</tr>
<tr>
<td>Urban Other Principal Arterial; Urban Minor Arterial</td>
<td>Urban Principal Arterial–Other; Urban Minor Arterial</td>
<td>Trunk; Trunk-link; Primary; Primary -link</td>
</tr>
<tr>
<td>Urban Collector</td>
<td>Urban Major Collector; Urban Minor Collector</td>
<td>Secondary; Secondary-link; Tertiary; Tertiary-link</td>
</tr>
<tr>
<td>Urban Local; Parking Area</td>
<td>Urban Local</td>
<td>Residential; Unclassified</td>
</tr>
</tbody>
</table>
ONROAD

• Spatial allocation:
 • FHWA AADT – VMT on all but local roads
 • Non-local roads – gap-filling using nearest neighbor
 • Local-roads – “flat” spatial distribution within counties

• Temporal allocation:
 • CCS classified by road types
 • Allocated to road segments using inverse distance weighting
NONROAD

- CO\textsubscript{2} from EPA nonroad model in all states except CA
- CA: use CO reporting with CO/CO\textsubscript{2} ratio from other western states
- Temporal distribution: SCC time cycle profiles (if available)
- Spatial distribution: EPA shapefiles (if available)

AIRPORT

- NEI point source w/ spatial correction to center of runway
- Reflects taxi/takeoff/landing (below 3000 ft)
- CO/CO\textsubscript{2} ratio from literature review, categorized by aircraft type/size/class
- Temporal distribution: airport “type” based on OPSNET (daily flight volumes) and AIRNAV datasets (airport class shares)
RAIL

• CO reporting from point (railyard) and nonpoint (rail travel)

• Map to EPA rail basemap, distributing via freight statistics (RITA data)

• Constant emissions in time

CMV

• CO nonpoint reporting

• Spatial distribution: port and shipping distributed with shapefiles

• Constant emissions in time
HESTIA

- Urban FFCO$_2$ estimation embedded within national Vulcan product
- Additional data from local sources
- Codebase depends on city, data sources, unique challenges
- Indianapolis, Salt Lake City, Baltimore, Los Angeles
- Melbourne Australia, Virginia-PA corridor

Cities need to understand and manage their carbon footprint at the level of streets, buildings and communities, urge Kevin Robert Gurney and colleagues.
<table>
<thead>
<tr>
<th>Sector/type</th>
<th>Emissions Data Source</th>
<th>Original spatial resolution/information</th>
<th>Spatial distribution</th>
<th>Temporal distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onroad</td>
<td>EMFAC(^a), EPA NEI(^b) onroad</td>
<td>County, road class, vehicle class</td>
<td>SCAG AADT(^c)</td>
<td>PeMS(^d), CCS(^e)</td>
</tr>
<tr>
<td>Electricity production</td>
<td>CAMD(^f) CO2, EIA(^g) fuel, EPA NEI point CO</td>
<td>Lat/lon, fuel type, technology</td>
<td>EPA NEI Lat/Lon, Google Earth</td>
<td>CAMD, EIA and EPA</td>
</tr>
<tr>
<td>Residential nonpoint buildings</td>
<td>EPA NEI nonpoint CO/DOE fuel consumption statistics</td>
<td>County, fuel type/state, fuel</td>
<td>SCAG Parcel, floor area, DOE RECS NE-EUI(^h), LA County building footprint</td>
<td>eQUEST(^i)</td>
</tr>
<tr>
<td>Nonroad</td>
<td>NEI nonpoint CO</td>
<td>County, vehicle class</td>
<td>EPA spatial surrogates (vehicle class specific)</td>
<td>EPA temporal surrogates (by SCC(^j))</td>
</tr>
<tr>
<td>Airport</td>
<td>EPA NEI point CO</td>
<td>Lat/lon, aircraft class</td>
<td>Lat/Lon</td>
<td>LAWA(^k)</td>
</tr>
<tr>
<td>Commercial nonpoint buildings</td>
<td>EPA NEI nonpoint CO/DOE fuel consumption statistics</td>
<td>County, fuel/state, fuel</td>
<td>SCAG Parcel, floor area, DOE CBECS NE-EUI(^l)</td>
<td>eQUEST</td>
</tr>
<tr>
<td>Commercial point sources</td>
<td>EPA NEI point CO</td>
<td>Lat/lon, fuel type, combustion technology</td>
<td>EPA NEI Lat/Lon, Google Earth</td>
<td>eQUEST</td>
</tr>
<tr>
<td>Industrial point sources</td>
<td>EPA NEI point CO/EPA GHGRP</td>
<td>Lat/Lon, fuel type, combustion technology</td>
<td>EPA NEI Lat/Lon, Google Earth</td>
<td>EPA temporal surrogates (by SCC)</td>
</tr>
<tr>
<td>Industrial nonpoint buildings</td>
<td>EPA NEI nonpoint CO</td>
<td>County, fuel type</td>
<td>SCAG-Parcel, floor area, DOE MECS NE-EUI(^m)</td>
<td>eQUEST</td>
</tr>
<tr>
<td>Commercial Marine Vessels</td>
<td>EPA NEI nonpoint CO</td>
<td>County, fuel type, port/underway</td>
<td>MEM(^n)</td>
<td>MEM</td>
</tr>
<tr>
<td>Railroad</td>
<td>EPA NEI nonpoint CO, EPA NEI point CO</td>
<td>County, fuel type, segment</td>
<td>EPA NEI rail shapefile and density distribution</td>
<td>EPA temporal surrogates (by SCC)</td>
</tr>
</tbody>
</table>

\(^a\) Emissions Factors Model
\(^b\) Environmental Protection Agency, National Emissions Inventory
\(^c\) Southern CA Assoc. of Governments, Average Annual Daily Traffic
\(^d\) Caltrans PeMS
\(^e\) Continuous Count Stations
\(^f\) Clean Air Markets Division
\(^g\) Department of Energy/Energy Information Administration
\(^h\) Department of Energy Residential Energy Consumption Survey, non-electric energy use intensity
\(^i\) Quick Energy Simulation Tool
\(^j\) Source Classification Code
\(^k\) Los Angeles World Airport
\(^l\) Department of Energy Commercial Energy Consumption Survey, non-electric energy use intensity
\(^m\) Department of Energy Manufacturing Energy Consumption Survey, non-electric energy use intensity
\(^n\) Marine Emissions Model
EXAMPLE: RESIDENTIAL BUILDINGS

<table>
<thead>
<tr>
<th>RECS building type</th>
<th>Pre-1980 NG NE-EUI (kbtu/ft²)</th>
<th>Post-1979 NG NE-EUI (kbtu/ft²)</th>
<th>Pre-1980 Fuel oil NE-EUI (kbtu/ft²)</th>
<th>Post-1979 Fuel oil NE-EUI (kbtu/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile home</td>
<td>52.56</td>
<td>22.90</td>
<td>NA*</td>
<td>NA</td>
</tr>
<tr>
<td>Single-family detached house</td>
<td>24.53</td>
<td>18.00</td>
<td>18.87</td>
<td>7.23</td>
</tr>
<tr>
<td>Single-family attached house</td>
<td>42.56</td>
<td>32.38</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Apartment building with 2-4 units</td>
<td>27.84</td>
<td>42.27</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Apartment building with 5 or more units</td>
<td>17.21</td>
<td>30.85</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
APPLICATION: INVERSE MODELING

- Indianapolis Hestia compared to atmospheric CO$_2$ inversion (Lauvaux et al., 2016)
- Biotic respiration prior to persistent ground freeze explains majority of difference
FINAL REMARKS

• Vulcan v3.0 (national) data product to be published soon
 • Gridded down to 1km
 • Hourly available on request

• Hestia available for select cities
 • Indianapolis
 • Salt Lake City
 • Baltimore
 • LA (accepted)
 • Melbourne, Australia (ongoing)
 • Virginia-PA corridor (ongoing)

Please contact Gurney group for data requests and re-gridding!
gurneylab.nau.edu
geoffrey.roest@nau.edu
kevin.gurney@nau.edu