## Appendix 1 to the Risk Assessment Report for the Sterigenics Facility in Willowbrook, Illinois:

#### Development of Ethylene Oxide Emissions Rates Used for Risk Assessment

#### Introduction

We (the EPA) developed ethylene oxide (EtO) emission estimates for the Sterigenics facility in Willowbrook, Illinois (Willowbrook 1 and Willowbrook 2 buildings), starting with information provided to us by Sterigenics regarding their operations, estimated emissions rates, and operational parameters for both the controlled and uncontrolled sources. We took this information and derived site-specific emission factors from previous stack testing results for the "controlled" sources, and estimated site-specific emission factors for the uncontrolled or "fugitive" emissions. Emission factors are calculated values that relate the quantity of a pollutant released to the atmosphere with an activity associated with the release of that pollutant and are generally assumed to be representative of long-term averages. Using dispersion modeling, we evaluated the accuracy of these site-specific emission factors and made adjustments to the factors so that the modeled results would better correspond with the ambient air concentrations measured at the monitoring sites near the facility. Tables 1 and 2 give the site-specific emission factors for the risk assessment.

| Tuble 1. Whow brook 1 and Whow brook 2 site specific emission fuctors used for the risk assessment |                            |                            |                            |  |  |  |
|----------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|--|--|--|
|                                                                                                    | Sterilizer vacuum vent     | Aeration room and backvent | Fugitives <sup>11</sup>    |  |  |  |
| Facility                                                                                           | (lbs EtO emitted/ton used) | (lbs EtO emitted/ton used) | (lbs EtO emitted/ton used) |  |  |  |
| Willowbrook 1                                                                                      | 0.9                        | 0.5                        | 12.0                       |  |  |  |
| Willowbrook 2                                                                                      | 9.4                        | 0.5                        | 13.0                       |  |  |  |

Table 1. Willowbrook 1 and Willowbrook 2 site-specific emission factors used for the risk assessment

The EPA used the site-specific emission factors and annual EtO usage rates for each building to determine the EtO emission rate for each emission point. An emission rate is the mass of a pollutant emitted over a period of time. The emission rate for each emission point was calculated as:

|       |                                                | $E_{\rm R} = {\rm EF}$ | * U <sub>D</sub> *K                            |
|-------|------------------------------------------------|------------------------|------------------------------------------------|
| Where | :                                              |                        |                                                |
| $E_R$ | = Emission Rate (lb/hr)                        | EF                     | = Emission Factor (lbs EtO emitted/ton used)   |
| $U_D$ | = 2017 Facility Usage <sup>12</sup> (ton/year) | K                      | = 0.000114, conversion from lbs/year to lbs/hr |

The emission rates for all sources at Willowbrook 1 and Willowbrook 2 were combined to yield the emissions estimates in Table 2.

| Table 2. Willowbrook 1 and Willowbrook 2 emission estimates used for the risk assess   | ment |
|----------------------------------------------------------------------------------------|------|
| Table 2. White block 1 and White block 2 childshold estimates used for the fisk assess | ment |

|               | Emission Rate (lbs/hr) |  |  |
|---------------|------------------------|--|--|
| Willowbrook 1 | 0.28                   |  |  |
| Willowbrook 2 | 0.19                   |  |  |

## Methodology

The emission factors in Table 1 were developed in part based upon ambient sampling that was performed by the EPA in Willowbrook, Illinois, from November 13, 2018 to March 31, 2019.

<sup>&</sup>lt;sup>11</sup> Combined output for all fugitive emission sources.

<sup>&</sup>lt;sup>12</sup> 2017 usage rates Willowbrook 1 (142 tons), Willowbrook (70 tons).

Sampling was conducted at eight total locations, two of which are very near the facility (Willowbrook Village Hall and EPA warehouse), and six additional sampling locations in the surrounding community. For the purposes of this analysis, only the sample data for Willowbrook Village Hall and the EPA warehouse were used, and only for the dates on which the facility was actively processing EtO.<sup>13</sup> The EtO samples were collected and analyzed according to EPA Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS),<sup>14</sup> and the Quality Assurance Project Plan (QAPP) for the Field Sampling Plan for Ambient Air Ethylene Oxide Monitoring Near Sterigenics Facility, Willowbrook, IL, dated November 17, 2018.<sup>15</sup> The ambient air samples were collected on a 1-in-3 day schedule<sup>16</sup> throughout the program with the exception of periods in which sampling was collected off-schedule to accommodate holidays or when weather was not conducive to sampling.

Sterigenics provided information to the EPA regarding the locations of expected EtO emissions points for both controlled and fugitive emissions, as well as emission factors for these sources. This information included the exact location, release height above ground, exit velocity, temperature, and other parameters needed for dispersion modeling. In addition to this information, the company also provided daily EtO usage rates<sup>17</sup> for each building for the entire sampling period, which were used to determine the daily emission rates for the individual emission points.

Air dispersion modeling of the emission points<sup>18</sup> was conducted using the latest version of the American Meteorological Society/EPA Regulatory Model (AERMOD) atmospheric dispersion model (version 18081). Meteorological data used for the dispersion modeling came from a temporary weather station located on the roof of the EPA warehouse building. Where meteorological data were not available from this location due to data availability or quality concerns, alternate data were acquired from Midway Airport, located approximately 16 km east of the facility. For each day in which samples were collected, modeling runs were performed using the established modeling parameters (all emission locations), the meteorological data for that day, and calculated daily emission rates (all emission locations combined) to determine the projected impact (i.e., concentrations) of EtO in the areas surrounding the facility. The modeling does not consider any background concentrations of EtO that may be present in the ambient air; it only takes into account EtO emissions from emission points at the facility. To compare the measured ambient values against the modeled values, the EPA corrected the modeling results to include background concentrations<sup>19</sup> of EtO by adding the corresponding background concentrations were

<sup>&</sup>lt;sup>13</sup> November 13, 2018 – February 11, 2019.

<sup>&</sup>lt;sup>14</sup> USEPA. 1999. "Air Method, Toxic Organics-15 (TO-15): Compendium of Methods for the Determination of Toxic. Organic Compounds in Ambient Air, Second Edition: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)." EPA 625/R-96/010b. <u>https://www.epa.gov/homeland-security-research/epa-air-method-toxic-organics-15-15-determination-volatile-organic</u>.

<sup>&</sup>lt;sup>15</sup> https://www.epa.gov/sites/production/files/2018-11/documents/qapp\_eto\_willowbrook\_v1.4\_final\_signed.pdf.

<sup>&</sup>lt;sup>16</sup> See addendum for sampling days and the sample results for all locations (Table A-1).

<sup>&</sup>lt;sup>17</sup> See addendum for EtO usage for Willowbrook 1 and Willowbrook 2 (Table A-2).

<sup>&</sup>lt;sup>18</sup> See addendum for emission point details (Table A-3).

<sup>&</sup>lt;sup>19</sup> See addendum for daily background EtO levels (Table A-4).

identified based on daily meteorology to determine which residential sampling location was not affected by emissions from the facility.

We made a number of assumptions regarding the other sources of EtO emissions in the area of the facility and the emissions from and modeling parameters for the Sterigenics fugitive emission points that could not be verified from previous testing. We evaluated all known sources of EtO in the area and did not identify any significant sources. To confirm this assumption, we used a diagnostic mapping tool called a polarPlot<sup>20</sup> that shows EtO concentrations by wind speed and direction and allows us to identify any potential sources of EtO. This tool identified no sources of EtO other than Sterigenics. Additionally, while there are no test data to verify the exact location of the fugitive sources at the company and their associated modeling parameters, the information provided by the company seemed appropriate based on our understanding of the processes at the facility.

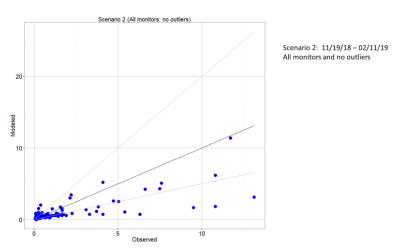
## **Emission Factor Development and Evaluation**

The development of the site-specific emission factors was predicated on the ability to achieve agreement between the modeled values with the observed values from the ambient sampling. To do this, we used an iterative process to evaluate different emission factors and modeling parameters to predict emissions versus the observed ambient values within the accuracy of the model (factor of +/- 2). This was done by determining the impact at the location of the ambient monitoring sites using modeling of each emission point (controlled and fugitive) at the facility. As a starting point, we performed a sensitivity analysis for each of the site-specific emission factors provided by Sterigenics against a "strawman" scenario representing a decrease in the control efficiency of those controlled sources and an increase in fugitives for a number of ambient sampling days.<sup>21</sup> We took the site-specific emission factors combined with the corresponding daily usage rate data for each building to determine the daily EtO emission rate for each emission point. The emission rates for each sampling day were calculated in the same manner as for the risk assessment, but the daily usage rate was used to determine an emission rate specific to the sampling day. Table 3 gives the emission factors used for the sensitivity analysis.

|               | Whole site emission         | Sterilizer vacuum | Aeration room and  | Fugitives |  |  |  |
|---------------|-----------------------------|-------------------|--------------------|-----------|--|--|--|
| Building      | factor (lbs/ton)            | vent (lbs/ton)    | backvent (lbs/ton) | (lbs/ton) |  |  |  |
|               | Sterigenics Emission Factor |                   |                    |           |  |  |  |
| Willowbrook 1 | 1.4                         | 0.01              | 0.4                | 1.0       |  |  |  |
| Willowbrook 2 | 2.5                         | 1.1               | 0.4                | 1.0       |  |  |  |
| Strawman      |                             |                   |                    |           |  |  |  |
| Willowbrook 1 | 5.9                         | 1.9               | 1.0                | 3.0       |  |  |  |
| Willowbrook 2 | 5.9                         | 1.9               | 1.0                | 3.0       |  |  |  |

| Table 3  | Sito | Specific | Emission | Factors  | Ucod f | for Sonci | itivity And | lycic  |
|----------|------|----------|----------|----------|--------|-----------|-------------|--------|
| Table 5. | Sile | specific | Emission | r actors | Used I | for Sensi | uvity Ana   | itysis |

Table 4 gives the average model-to-monitor comparison for the sensitivity analysis. The results of this analysis indicated that the results of the modeling using the emission factors used for both the Sterigenics and the EPA Strawman were significantly underpredicting the observed values.


<sup>&</sup>lt;sup>20</sup> See addendum of polarPlot maps (Figure A-1).

<sup>&</sup>lt;sup>21</sup> December 6, 13, and 26, 2018; and January 17.

Table 4. Model to Monitor Comparison for the Sensitivity Analysis

|                          | Observed | Sterigenics emission         | Strawman emission factor |
|--------------------------|----------|------------------------------|--------------------------|
| Location                 | (µg/m³)  | factors (μg/m <sup>3</sup> ) | (µg/m³)                  |
| Willowbrook Village Hall | 4.69     | 0.13                         | 0.61                     |
| EPA Warehouse            | 8.41     | 0.49                         | 2.23                     |

Based on these results, we chose to modify the emission factors in Table 3 for the controlled emissions from the EPA strawman to be in-line with manufacturer guarantees for similar pollution control equipment installed at the facility. We also reviewed the modeling parameters and compared them against previous test data at the facility as well as other test data from similar sources. This review yielded some seasonal corrections to the modeling parameters to better reflect the likely exit temperatures of the exhaust points during the winter months. With the controlled emission factors set, we incrementally increased the emission factors for the fugitive sources until the objectives were met for the comparison of the modeled results to the observed values. During this period, we were in contact with the company regarding the modifications being made to the facility air handling system and how these changes would affect the fugitive sources. We made revisions to the modeling parameters as new information was received, and these revisions were used for all modeling going forward. Figure 1 gives the ambient monitoring results (observed) plotted against the values developed from the dispersion modeling (modeled) based on the final emission factors and modeling parameters, for all monitor locations. This plot compares the monitored to the modeled results in a manner consistent with past evaluations of AERMOD<sup>22</sup> by comparing the monitored and modeled results unpaired in time and space, called a Q-Q plot. The monitored and modeled concentration distributions are both sorted and plotted against each other based on rank, so the highest monitored concentration is compared against the highest modeled concentration, regardless of the location and time of occurrence.





We did a model-to-monitor comparison using a statistic called the Robust Highest Concentration (RHC) and fractional bias. This comparison focuses on the higher concentrations in the distribution. The RHC coupled with fractional bias is the preferred methodology in the EPA's

<sup>&</sup>lt;sup>22</sup> USEPA. 2003. "AERMOD: Latest Features and Evaluation Results." EPA-454/R-03-003. <u>https://www3.epa.gov/scram001/7thconf/aermod/aermod\_mep.pdf</u>.

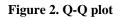
Protocol for Determining the Best Performing Model.<sup>23</sup> Normally, the protocol evaluates 1-hour, 3-hour, and 24-hour average concentrations. Since the ambient monitoring data for Sterigenics are only 24-hour averages, we focused only on 24-hour averages. The RHC is calculated at each monitoring location for observed concentrations and modeled concentrations.

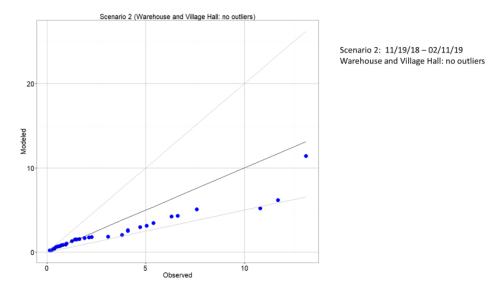
The RHC is calculated as:

$$RHC = X(N) + [\overline{X} - X(N)] \times \ln\left[\frac{3N - 1}{2}\right]$$

Where X(N) is the Nth highest concentration, and  $\overline{X}$  is the average of N-1 values where N is typically set to 26 values for most model evaluations. However, given the small sample size at each monitor, we started with N=11 and evaluated results up to N=20 (the fewest number of observations across the monitors). As stated above, the RHC is calculated at each monitor for observed concentrations and modeled concentrations. Next a fractional bias is calculated using the maximum observed RHC and maximum modeled RHC as:

$$FB = 2\left[\frac{OB - PR}{OB + PR}\right]$$


Where FB is the fractional bias, OB is the maximum observed RHC, and PR is the maximum modeled RHC. A positive (negative) fractional bias indicates model underprediction (overprediction). Fractional biases within  $\pm$  0.67 are not considered statistically different. Also, note that the two RHC values in the fractional bias may not be from the same monitor location. This is done to assess the model's ability to assess concentrations for regulatory purposes, that is, how well the model predicts maximum concentrations regardless of the spatial location. Table 5 gives the fractional biases and monitors used for the calculations for a range of values of N using the meteorology at the EPA warehouse and the estimated emissions factors.


|    | Observed | Modeled | Fractional | Observed monitor | Modeled monitor |
|----|----------|---------|------------|------------------|-----------------|
| N  | RHC      | RHC     | Bias       | location         | location        |
| 11 | 20.8     | 8.0     | 0.89       | EPA Warehouse    | EPA Warehouse   |
| 12 | 19.8     | 7.5     | 0.90       | EPA Warehouse    | EPA Warehouse   |
| 13 | 19.0     | 7.3     | 0.9        | EPA Warehouse    | EPA Warehouse   |
| 14 | 17.9     | 7.0     | 0.9        | EPA Warehouse    | EPA Warehouse   |
| 15 | 16.9     | 6.8     | 0.8        | EPA Warehouse    | EPA Warehouse   |
| 16 | 16.7     | 6.7     | 0.9        | EPA Warehouse    | EPA Warehouse   |
| 17 | 16.1     | 7.0     | 0.8        | EPA Warehouse    | EPA Warehouse   |
| 18 | 16.2     | 6.9     | 0.8        | EPA Warehouse    | EPA Warehouse   |
| 19 | 14.4     | 6.5     | 0.8        | EPA Warehouse    | EPA Warehouse   |
| 20 | 13.7     | 6.3     | 0.7        | EPA Warehouse    | EPA Warehouse   |

We also generated a Q-Q plot of the concentrations at only the Willowbrook Village Hall and the EPA warehouse, shown in Figure 2. The plot indicates good agreement on the low end of the concentration distribution, and underprediction at the middle to high end of the concentration

<sup>&</sup>lt;sup>23</sup> USEPA. 1992. Protocol for Determining the Best Performing Model. EPA-454/R-92-025.

distribution, but within a factor of 2, which is acceptable performance. At the highest end of the distribution, the model is just slightly underpredicting compared to the observed maximum.





In addition to the RHC analysis and Q-Q plots, we also did a direct comparison of the modeled values against the observed values at Willowbrook Village Hall and the EPA warehouse. For this analysis, all data points were included in the comparison unless a sample was invalided, elevated background concentrations were observed, or when a result was considered an outlier. A total of 47 data points was used for this analysis, 26 from sampling events at the Willowbrook Village Hall monitoring location and 21 from the EPA warehouse monitoring location. The modeled value agreed (within a factor of 2) with the observed value for approximately 65 percent of the sampling events, with the model overpredicting 15 percent and underpredicting 20 percent of the time. A comparison of the means of the modeled versus the observed or monitored results, the observed mean was within the accuracy of the model, although the model appears to underpredict. The mean observed value is heavily influenced by the elevated values observed after January 12, 2019, following a maintenance event at Willowbrook 1. Tables 6 and 7 present the results of the model-to-monitor comparison for the entire sampling period and for the period prior to the maintenance event at Willowbrook 1, respectively.

|                          | Mean Observed Value | Mean Modeled Value <sup>24</sup> |
|--------------------------|---------------------|----------------------------------|
| Location                 | (μg/m³)             | (µg/m³)                          |
| Willowbrook Village Hall | 2.83                | 1.53                             |
| EPA Warehouse            | 3.14                | 2.02                             |

<sup>&</sup>lt;sup>24</sup> Corrected for background.

#### Table 7. Model-to-monitor comparison 11/19/2019 - 01/09/2019

|                          | Mean Observed Value | Mean Modeled Value <sup>25</sup> |
|--------------------------|---------------------|----------------------------------|
| Location                 | (µg/m³)             | (µg/m³)                          |
| Willowbrook Village Hall | 2.85                | 2.05                             |
| EPA Warehouse            | 2.31                | 2.69                             |

The model-to-monitor comparison showed reasonable results when comparing mean results at the monitor location, but the model had difficulty predicting the elevated results at these locations on a few of the days when samples were collected. Disparities in the modeled versus the observed results can be attributed to the model's sensitivity to errors in the meteorology or to the other activities at the facility or happening in the surrounding area that could affect plume magnitude or dispersion. This could explain the closer relationship observed at the EPA Warehouse sampling location which was near the temporary weather station located on the EPA Warehouse building.

# Conclusions

The site-specific estimated emission factors from which the emission rates were derived and modeling parameters developed for the risk assessment appear to adequately predict the expected concentrations surrounding the facility and, while these factors appear to underpredict the emissions from the facility, the results are well within the acceptable performance of the model.

The results of this analysis provide an estimation of the emission of the EtO emissions for the purposes of the risk assessment. These results only provide emission estimates for the period in time when ambient samples were collected and analyzed. A more refined assessment of these emissions was problematic due to the limited number of monitoring locations near the facility and the relatively small sample size. While additional measurements were collected from the residential areas, these were not used for this analysis due to the significant proportion of EtO concentrations present in the ambient air not attributed to the company.

The tools used to perform this analysis were adequate due to the magnitude of the emissions from the facility. Any changes made to the facility or similar facilities which would result in a significant decrease in EtO emissions would result in a need to revise the way emissions are characterized. Any future assessment should incorporate direct measurement of all emission points at the facility during all aspects of operation to more effectively determine emission factors. As these sources become better controlled (e.g., improved capture and control of fugitives), emission characterization using ambient measurements will become more difficult because the contribution from the facility would be less distinguishable from levels found in the ambient air.

<sup>&</sup>lt;sup>25</sup> Corrected for background.

# Addendum to Appendix 1

| Sample Start | Willowbrook  | EPA       | Sample Start | Willowbrook  | EPA       |
|--------------|--------------|-----------|--------------|--------------|-----------|
| Date         | village hall | warehouse | Date         | village hall | warehouse |
| 11/13/2018   | Invalid      | 2.37      | 1/27/2019    | 19.3         | 1.11      |
| 11/16/2018   | 0.824        | 1.81      | 2/1/2019     | 0.954        | 0.133     |
| 11/19/2018   | 6.11         | 6.62      | 2/2/2019     | 0.383        | 0.228     |
| 11/23/2018   | 0.284        | 0.180     | 2/5/2019     | 17.3         | 26.4      |
| 11/25/2018   | 4.10         | Invalid   | 2/8/2019     | 0.725        | 5.04      |
| 11/28/2018   | 1.83         | 0.248     | 2/11/2019    | 3.98         | ND        |
| 12/1/2018    | 1.68         | 0.456     | 2/14/2019    | 0.178        | 0.745     |
| 12/6/2018    | 5.39         | 11.7      | 2/19/2019    | 0.239        | 0.150     |
| 12/7/2018    | 0.737        | 2.26      | 2/20/2019    | 0.260        | 0.159     |
| 12/10/2018   | 0.300        | 0.269     | 2/21/2019    | 0.144        | ND        |
| 12/13/2018   | 2.04         | 0.436     | 2/22/2019    | 0.123        | 0.121     |
| 12/16/2018   | 0.871        | 2.11      | 2/23/2019    | 0.128        | 0.132     |
| 12/19/2018   | 0.521        | 0.345     | 2/26/2019    | 0.166        | 0.119     |
| 12/22/2018   | 0.981        | 3.09      | 3/1/2019     | ND           | 0.103     |
| 12/26/2018   | 10.8         | Invalid   | 3/4/2019     | 0.161        | ND        |
| 12/28/2018   | 0.672        | 1.42      | 3/7/2019     | 0.099        | 0.096     |
| 1/2/2019     | 0.251        | 0.237     | 3/10/2019    | Invalid      | 0.075     |
| 1/3/2019     | 0.372        | ND        | 3/13/2019    | 0.204        | 0.122     |
| 1/6/2019     | 7.59         | ND        | 3/16/2019    | 0.461        | 0.171     |
| 1/9/2019     | 3.81         | Invalid   | 3/19/2019    | 0.136        | 0.056     |
| 1/12/2019    | 1.57         | ND        | 3/22/2019    | 0.060        | 0.117     |
| 1/15/2019    | 0.672        | 14.2      | 3/25/2019    | 0.078        | 0.134     |
| 1/17/2019    | 0.517        | 13.1      | 3/28/2019    | 0.114        | 0.181     |
| 1/22/2019    | 1.51         | 4.10      | 3/31/2019    | 0.057        | ND        |
| 1/24/2019    | 0.262        | 0.280     | -            | -            | -         |

Table A-1. Ambient monitoring results  $(\mu g/m^3)$  for Willowbrook village hall and EPA warehouse locations

| Data       | Willowbrook 1    | Willowbrook 2 | Data       | Willowbrook 1 | Willowbrook 2 |
|------------|------------------|---------------|------------|---------------|---------------|
| Date       | Willowbrook 1    | Willowbrook 2 | Date       |               | Willowbrook 2 |
| 11/13/2018 | 755 (820)        | 482 (477)     | 12/30/2018 | 853           | 0             |
| 11/14/2018 | 753              | 495           | 12/31/2018 | 510           | 0             |
| 11/15/2018 | 794              | 258           | 1/1/2019   | 622           | 0             |
| 11/16/2018 | 864 (935)        | 611 (385)     | 1/2/2019   | 598 (491)     | 0 (0)         |
| 11/17/2018 | 877              | 489           | 1/3/2019   | 732 (718)     | 0 (0)         |
| 11/18/2018 | 938              | 465           | 1/4/2019   | 795           | 151           |
| 11/19/2018 | 880 (981)        | 517 (529)     | 1/5/2019   | 703.3         | 420           |
| 11/20/2018 | 1057             | 413           | 1/6/2019   | 110 (517)     | 279 (487)     |
| 11/21/2018 | 946              | 694           | 1/7/2019   | 0.3           | 485           |
| 11/22/2018 | 808              | 339           | 1/8/2019   | 0             | 274           |
| 11/23/2018 | 827 (1036)       | 690 (593)     | 1/9/2019   | 0             | 338           |
| 11/24/2018 | 844              | 538           | 1/10/2019  | 0             | 242           |
| 11/25/2018 | 665 (729)        | 131 (487)     | 1/11/2019  | 613.9         | 485           |
| 11/26/2018 | 844              | 0             | 1/12/2019  | 940 (895)     | 315 (468)     |
| 11/27/2018 | 789              | 0             | 1/13/2019  | 693.7         | 489           |
| 11/28/2018 | 851 (864)        | 0 (0)         | 1/14/2019  | 911.4         | 333           |
| 11/29/2018 | 902              | 0             | 1/15/2019  | 764 (805)     | 318 (336)     |
| 11/30/2018 | 943              | 0             | 1/16/2019  | 950.7         | 58            |
| 12/1/2018  | 793 (908)        | 11 (11)       | 1/17/2019  | 813 (760)     | 344 (128)     |
| 12/2/2018  | 837              | 515           | 1/18/2019  | 857.7         | 420           |
| 12/3/2018  | 975              | 341           | 1/19/2019  | 800.2         | 343           |
| 12/4/2018  | 1035             | 390           | 1/20/2019  | 803.6         | 484           |
| 12/5/2018  | 972              | 445           | 1/21/2019  | 1068.2        | 317           |
| 12/6/2018  | 1054 (1105)      | 347 (317)     | 1/22/2019  | 787 (1003)    | 298 (417)     |
| 12/7/2018  | 697 (839)        | 262 (480)     | 1/23/2019  | 862.1         | 373           |
| 12/8/2018  | 948              | 447           | 1/24/2019  | 653 (859)     | 340 (426)     |
| 12/9/2018  | 1020             | 415           | 1/25/2019  | 960.9         | 396           |
| 12/10/2018 | 852 (892)        | 412 (494)     | 1/26/2019  | 759.7         | 444           |
| 12/11/2018 | 843              | 414           | 1/27/2019  | 888 (875)     | 286 (313)     |
| 12/12/2018 | 797              | 416           | 1/28/2019  | 916.1         | 313           |
| 12/13/2018 | 1064 (852)       | 476 (441)     | 1/29/2019  | 866.4         | 358           |
| 12/14/2018 | 671              | 59            | 1/30/2019  | 607.1         | 289           |
| 12/15/2018 | 574              | 0             | 1/31/2019  | 928.1         | 357           |
| 12/16/2018 | 626 (786)        | 293 (222)     | 2/1/2019   | 892           | 345           |
| 12/17/2018 | 964              | 470           | 2/2/2019   | 829           | 340           |
| 12/18/2018 | 669              | 384           | 2/3/2019   | 821.5         | 188           |
| 12/19/2018 | 826 (988)        | 402 (312)     | 2/4/2019   | 795.1         | 282           |
| 12/20/2018 | 878              | 351           | 2/5/2019   | 773           | 344           |
| 12/21/2018 | 784              | 342           | 2/6/2019   | 974.6         | 131           |
| 12/22/2018 | 685 (953)        | 0 (283)       | 2/7/2019   | 790.4         | 312           |
| 12/23/2018 | 797.2            | 0             | 2/8/2019   | 847           | 470           |
| 12/24/2018 | 736              | 350           | 2/9/2019   | 929.6         | 352           |
| 12/25/2018 | 893              | 399           | 2/10/2019  | 657.3         | 553           |
| 12/26/2018 | 631 (796)        | 471 (471)     | 2/11/2019  | 814           | 260           |
| 12/27/2018 | 784              | 360           | 2/12/2019  | 69.5          | 302           |
| 12/28/2018 | <b>593 (684)</b> | 295 (293)     | 2/12/2019  | 818.7         | 442           |
| 12/29/2018 | 671              | 233 (233)     | 2/13/2019  |               | 442           |
| 12/29/2018 | 0/1              | 228           | 2/14/2019  | 852.8         | 408           |

Table A-2. Daily ethylene oxide usage rates (lbs) fed to the sterilization chamber

Note: BOLD values are days in which ambient sampling was taken. Additionally, the values in (parenthesis) for <u>sample dates</u> from 11/13/2018 - 1/27/2019 are the estimated mass of ethylene oxide sent to the pollution controls.

|            |        |                                              |                   |                   | EtO        |                                                                |
|------------|--------|----------------------------------------------|-------------------|-------------------|------------|----------------------------------------------------------------|
|            | Source |                                              | Easting           | Northing          | Emissions  |                                                                |
| Building   | ID     | Source Description                           | (X) <sup>26</sup> | (Y) <sup>27</sup> | (Yes/No)   | Emission Type                                                  |
| 0          |        | •                                            |                   |                   |            | Controlled emissions from the chamber vent                     |
| WB1        | STK1   | Deoxx                                        | 421892.07         | 4622242.11        | Yes        |                                                                |
| WB1        |        |                                              |                   |                   |            | Controlled emissions from the aeration rooms                   |
|            | STK2   | AAT Scrubber                                 | 421897.15         | 4622252.27        | Yes        | and backvent                                                   |
| WB1        | 1EF11  | 1-EF-11 Work Aisle                           | 421896.70         | 4622230.30        | Yes        | EtO fugitive emission point                                    |
|            |        | 1-EF-15 Process Storage/East                 |                   |                   |            | Former fugitive emission point, exhaust fan has                |
| WB1        | 1EF15  | Aeration                                     | 421911.94         | 4622211.67        | No         | been turned off effective January 2019 (assumed)               |
| WB1        | 1EF3   | 1-EF-3 Shipping                              | 421835.32         | 4622206.80        | Yes        | EtO fugitive emission point                                    |
| WB1        |        | 1-EF-4 Process                               |                   |                   | Yes        | EtO fugitive emission point                                    |
|            | 1EF4   | Storage/Central Aeration                     | 421868.72         | 4622224.47        |            |                                                                |
| WB1        | 1EF10  | 1-EF-10 Maintenance Aisle                    | 421897.74         | 4622213.58        | No         | Former fugitive emission point                                 |
| WB1        |        | 1-EF-9 Work Aisle/Boiler                     |                   |                   | Yes        | EtO fugitive emission point                                    |
|            | 1EF9   | Room                                         | 421888.14         | 4622229.62        |            |                                                                |
| WB1        |        |                                              |                   |                   |            | Former fugitive emission point, exhaust fan has                |
|            | 1EF13  | 1-EF-13 Chamber A or 9                       | 421904.23         | 4622241.98        | No         | been turned off                                                |
| WB1        |        | 1-EF-20 Chamber B Cubical                    |                   |                   |            | Former fugitive emission point, exhaust fan has                |
|            | 1EF20  | Exhaust                                      | 421922.88         | 4622241.05        | No         | been turned off                                                |
| WB1        |        | 1-EF-21 Aat Scrubber Room                    |                   |                   |            | No emission expected                                           |
|            | 1EF21  | Exhaust                                      | 421925.04         | 4622249.06        | No         |                                                                |
| WB1        | 1EF8   | 1-EF-8 Pump Aisle                            | 421879.63         | 4622243.03        | No         | No emission expected                                           |
| WB1        |        | 1-EF-12 Chamber A Gassing                    |                   |                   | No         | Former fugitive emission point, exhaust fan has                |
|            | 1EF12  | Room                                         | 421908.04         | 4622241.75        |            | been turned off                                                |
| WB1        | 1EF16  | 1-EF-16 Chamber A Cubicle                    | 421913.64         | 4622241.08        | No         | No emission expected                                           |
| WB1        |        | 1-EF-19 Chamber E Cubical                    |                   |                   | No         | No emission expected                                           |
|            | 1EF19  | Exhaust                                      | 421921.00         | 4622223.31        |            |                                                                |
| WB1        |        | 1-EF-18 Chamber C Cubical                    |                   |                   | No         | No emission expected                                           |
|            | 1EF18  | Exhaust                                      | 421916.72         | 4622238.97        |            |                                                                |
|            |        |                                              |                   | 4699957.00        | Yes        | Controlled emissions from chamber vent,                        |
| WB2        | A      | AAT Scrubber                                 | 421701.70         | 4622357.89        |            | aeration room, and backvents                                   |
| 14/02      |        | 2 Chamber Dealais                            | 424700.27         | 4622270.00        | No         | Former EtO emission point, routed to AAT                       |
| WB2        | В      | 3 Chamber Backvent                           | 421708.37         | 4622378.69        | No         | scrubber July 2018<br>Former EtO emission point, routed to AAT |
| WB2        | с      | 1 Chamber Backvent                           | 421709.16         | 4622354.88        | INO        | Former EtO emission point, routed to AAT scrubber July 2018    |
| WB2<br>WB2 | P      | Chamber Backvent<br>Chamber Room Exhaust Fan | 421709.16         | 4622354.88        | Voc        | EtO fugitive emission point                                    |
| WB2<br>WB2 | Q      | Work Aisle Exhaust Fan                       | 421736.89         | 4622335.04        | Yes<br>Yes | EtO fugitive emission point<br>EtO fugitive emission point     |
| VVDZ       | ų      | WORK AISIE EXHAUST FAN                       | 421/30.30         | 4022328.70        | 162        | Former fugitive emission point, exhaust fan has                |
| WB2        | Т2     | North Wall Vent West                         | 421713.72         | 4622390.70        | No         | been turned off effective January 2019 (assumed)               |
| VVDZ       | 12     |                                              | 421/13./2         | 4022390.70        | No         | Former fugitive emission point, exhaust fan has                |
| WB2        | тз     | North Wall Vent East                         | 421742.29         | 4622390.70        | INU        | been turned off effective January 2019 (assumed)               |
| VVDZ       | 15     |                                              | 421/42.29         | 4022390.70        |            | been turned on enective January 2019 (assumed)                 |

Table A-3. Willowbrook 1 and Willowbrook 2 emission points and locations

 <sup>&</sup>lt;sup>26</sup> Coordinates reflect UTM NAD83, Zone 16
<sup>27</sup> Coordinates reflect UTM NAD83, Zone 16

|            |            |                            | Modeled          | Corrected        |
|------------|------------|----------------------------|------------------|------------------|
|            | Background | Background Location        | Background value | background value |
| Date       | (µg/m³)    |                            | (μg/m³)          | (µg/m³)          |
| 11/19/2018 | 0.164      | Gower ES                   | 0.016            | 0.148            |
| 11/23/2018 | 0.197      | Gower MS                   | 0.007            | 0.190            |
| 11/25/2018 | 0.345      | Willow Pond Park           | 0.046            | 0.299            |
| 11/28/2018 | 0.656      | Gower MS                   | 0.064            | 0.592            |
| 12/1/2018  | 0.211      | Willow Pond Park           | 0.013            | 0.198            |
| 12/6/2018  | 0.082      | Willow Pond Park           | 0.022            | 0.060            |
| 12/7/2018  | 0.164      | Gower ES                   | 0.030            | 0.134            |
| 12/10/2018 | 0.138      | Gower ES                   | 0.017            | 0.121            |
| 12/13/2018 | 0.211      | Water Tower                | 0.060            | 0.151            |
| 12/16/2018 | 0.732      | Gower ES                   | 0.011            | 0.721            |
| 12/19/2018 | 0.360      | Gower MS                   | 0.028            | 0.332            |
| 12/22/2018 | 0.360      | Gower ES                   | 0.027            | 0.333            |
| 12/26/2018 | 0.082      | Gower MS                   | 0.084            | -0.002           |
| 12/28/2018 | 0.133      | Gower ES                   | 0.010            | 0.123            |
| 1/2/2019   | 0.210      | Gower ES                   | 0.004            | 0.206            |
| 1/3/2019   | 0.082      | West Neighborhood          | 0.040            | 0.042            |
| 1/6/2019   | 0.082      | Willow Pond Park           | 0.006            | 0.076            |
| 1/9/2019   | 0.295      | Hinsdale South High School | 0.027            | 0.268            |
| 1/12/2019  | 0.082      | Gower MS                   | 0.007            | 0.075            |
| 1/15/2019  | 0.082      | Gower ES                   | 0.008            | 0.074            |
| 1/17/2019  | 0.144      | Willow Pond Park           | 0.008            | 0.136            |
| 1/22/2019  | 0.349      | Hinsdale South High School | 0.059            | 0.290            |
| 1/24/2019  | 0.095      | Gower ES                   | 0.005            | 0.090            |
| 1/27/2019  | 0.155      | Gower MS                   | 0.045            | 0.110            |
| 2/1/2019   | 0.101      | Gower MS                   | 0.039            | 0.062            |
| 2/2/2019   | 0.371      | Gower MS                   | 0.016            | 0.355            |
| 2/5/2019   | 0.174      | Willow Pond Park           | 0.006            | 0.168            |
| 2/8/2019   | 0.202      | Gower ES                   | 0.010            | 0.192            |
| 2/11/2019  | 0.089      | Willow Pond Park           | 0.001            | 0.088            |

| Table A-4. Daily | background | ethylene | oxide levels |
|------------------|------------|----------|--------------|
|                  |            |          |              |

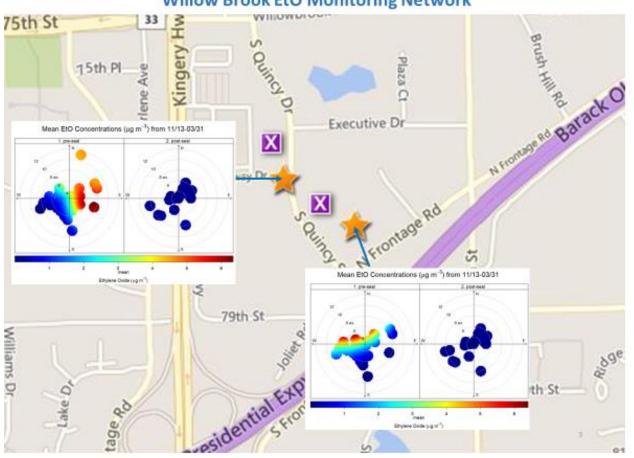



Figure A-1. EtO Concentration Plots for the Willowbrook Village Hall and EPA Warehouse Monitors Willow Brook EtO Monitoring Network